Ⅰ 离子交换柱层析纯化蔗糖酶实验中梯度洗脱时使用梯度混合仪时在不含氯化钠的一侧为什么放密封小磁棒
据我所了解的
低盐浓度的就是右侧那个,里面应该是有个磁力搅拌用的磁力搅拌子专。
因为梯属度洗脱需要高浓度的盐溶液进入低浓度的溶液中,在这个过程中需要不停搅拌以混匀溶液,让盐浓度能够均匀的提高,以避免出现盐浓度升高过快,达不到梯度的效果。
不知道是不是你说的密封小磁棒
Ⅱ 离子交换柱层析能分离纯化蔗糖酶的主要依据是什么
DEAE-纤维素为二乙氨乙基纤维素,是阴离子交换剂。
其原理基于离子交换层析:离版子交换层析中,基质是由带权有电荷的树脂或纤维素组成。
由于蛋白质也有等电点,当蛋白质处于不同的pH条件下,其带电状况也不同。阴离子交换基质结合带有负电荷的蛋白质,所以这类蛋白质被留在柱子上,然后通过提高洗脱液中的盐浓度等措施,将吸附在柱子上的蛋白质洗脱下来。结合较弱的蛋白质首先被洗脱下来。反之阳离子交换基质结合带有正电荷的蛋白质,结合的蛋白可以通过逐步增加洗脱液中的盐浓度或是提高洗脱液的pH值洗脱下来。
Ⅲ 我要分离纯化一种未知酶,一切未知,想用凝胶层析和离子交换层析分离,不知选用什么填料合适有好的建议
建议用离子交换层析。凝胶过滤层析流速慢,上样量低,而且分离效果一般,凝胶回过滤答一般用于层析的后期包括除盐,去除降解片段之类的。
离子交换一般就用到DEAE,因为大部分蛋白都偏酸。要是你的酶是碱性蛋白,那就更好办,上个CM柱,其他杂蛋白就留不下多少了。
所以先拿DEAE试试吧。
Ⅳ 用盐析法纯化酶蛋白时,怎样能够进一步提高其纯化倍数
盐析法提取的蛋白纯度差,进一步纯化需要进行离子交换分离或者凝胶过滤吧,就是过柱子,可以使用蛋白纯化系统。不知道你的“提高其纯化倍数”是不是这个意思。
Ⅳ 做酶的分离纯化是做离子交换和凝胶层析时使用普通的玻璃层析柱,只选择填料行不行
没问题的。
普通的玻璃层析柱只是做离子交换、凝胶层析压力没问题,一般也用不到什么有机溶剂,所以放心用吧。
Ⅵ 酶分离纯化离子交换柱预装柱怎么使用
如果不限定纯化方法,可以考虑亲和层析或离子交换,但根据你问题的意思,是内选定离子交换。
此时容就要考虑你蛋白的等电点了,如果等电点在你稳定pH之上,就用阳离子交换柱:
设计阳离子交换层析:将你的样品置换到你所指的稳定pH的running buffer。同时装柱,平衡,然后上样,平衡,洗脱(因为你的pH不稳定,建议盐洗脱),收峰。得你的蛋白;
如果你的等电点在稳定pH之下,就用阴离子交换柱,其步骤如上,只是改变柱子类型。
Ⅶ 给出一种酶,如何设计其纯化方案
发个实验给你参考参考!!!
酵母蔗糖酶的分离纯化和活力测定
实验简介:酶的分离制备在酶学以及生物大分子的结构功能研究种具有重要意义。啤酒酵母中蔗糖酶含量丰富。本实验用新鲜啤酒酵母作为原料,通过破碎细胞,热处理,乙醇沉淀,柱层析等步骤提取蔗糖酶。并对其活力进行测定。
实验原理
蔗糖酶主要存在于酵母中,但工业上通常从酵母中制取。酵母蔗糖酶系胞内酶,提取时细胞破碎或菌体自溶。常用的提纯方法有盐析、有机溶剂沉淀、离子交换和凝胶柱层析。以此可得到较高纯度的酶。
蔗糖酶催化下蔗糖水解为等量的葡萄糖和果糖。用测定生成还原糖(葡萄糖和果糖)的量来测定蔗糖水解的速度,本实验中,蔗糖酶的活力单位指在一定条件下反应5min,每产生l毫克葡萄糖所需酶量。 用考马斯亮蓝法测定蛋白质含量,比活力为每毫克蛋白质的活力单位数。
实验操作
1. 提取
(1) 准备一个冰浴,将研钵稳妥放入冰浴中。
(2) 将10g湿啤酒酵母,和适量(5g)二氧化硅一起放入研钵中。二氧化硅要预先研细。
(3) 缓慢加入预冷的30mL去离子水,每次加2mL左右,边加边研磨,至少用30分钟。以便将蔗糖酶充分转入水相,至酵母细胞大部分研碎,以便将蔗糖酶充分转入水相中。
(4) (可选项) 研磨时用显微镜检查研磨的效果。
(5) 将混合物转入两个离心管中,平衡后,用高速冷离心机,4℃,10000rpm,离心5min。
(6) 用滴管小心地取出水相,转入另一个清洁的离心管中,4℃,10000rpm,离心15min。
(7) 将清液转入量筒,量出体积,用广泛pH试纸检查上清液pH,用1mol / L 醋酸将pH调至5.0,称为“粗级分Ⅰ”。留出1.5mL测定酶活力及蛋白含量,剩余部分转入清洁的离心管中。
2. 热处理和乙醇沉淀
(1) 预先将恒温水浴调到50℃,将盛有粗级分I的离心管稳妥地放入水浴中,45℃下保温30分钟,在保温过程中不断轻摇离心管。
(2) 取出离心管,于冰浴中迅速冷却,用4℃,10000rpm,离心10min。
(3) 将上清液转入小烧杯中,放入冰盐浴(没有水的碎冰撒入少量食盐),逐滴加入等体积预冷至-20℃的95%乙醇,同时轻轻搅拌,共需30分钟,再在冰盐浴中放置10分钟,以沉淀完全。于4℃,10000rpm,离心10min,倾去上清,并滴干,沉淀保存于离心管中,盖上盖子或薄膜封口,然后将其放入冰箱中冷冻保存(称为“级分Ⅱ”)。废弃上清液之前,要用尿糖试纸检查其酶活性(于下一个实验一起做)。
3. DEAE纤维素柱层析纯化酶蛋白
(1) 离子交换剂的处理
称取1.5克DEAE纤维素(DE-32)干粉,加入0.5mol/L NaOH溶液(约50m1),轻轻搅拌,浸泡至少0.5小时(不超过1小时),用玻璃砂漏斗抽滤,并用去离子水洗至近中性,抽干后,放入小烧杯中,加50mL 0.5mol/L HCl,搅匀,浸泡0.5小时,用去离子水洗至。近中性,再用0.5 mol/L NaOH重复处理一次,用去离子水洗至近中性后,抽干备用(因DEAE纤维素昂贵,用后务必回收)。实际操作时,通常纤维素是已浸泡过并回收的,按“碱一酸”的顺序洗即可,因为酸洗后较容易用水洗至中性。碱洗时因过滤困难,可以先浮选除去细颗粒,抽干后用0.5 mol/L NaOH-0.5 mol/L NaCl溶液处理,然后水洗至中性。
(2) 装柱与平衡
先将层析柱垂直装好,在烧杯内用0.02 mol/L,pH7.3 Tris-HCl缓冲液洗纤维素几次,用滴管吸取烧杯底部大颗粒的纤维素装柱,然后用此缓冲液洗柱至流出液的pH与缓冲液相同或接近时即可上样。
(3) 上样与洗脱
上样前先准备好梯度混合器,详见附录TH-500梯度混合器使用说明。
用5mL 0.02mol/L,pH7.3的Tris-HCl缓冲液充分溶解醇级分Ⅱ(注意玻璃搅棒头必须烧圆,搅拌溶解时不可将离心管划伤),若溶液混浊,则4 000r/min离心除去不溶物。取1.5mL上清液(即醇级分Ⅱ样品,留待下一个实验测酶活力及蛋白含量),将剩余的3.5mL上清液小心地加到层析柱上,不要扰动柱床,上样后用约30mL缓冲液洗去柱中未吸附的蛋白质,至A280降到0.1以下,注意从上样开始使用部分收集器收集,每管2.5~3.0mL/l0min。然后打开梯度混合器,采用30mL,0.02mol/L,pH7.3的Tris-HCl缓冲液和30mL含0.2mol/L浓度NaCl的0.02mol/L,pH7.3的Tris-HCl.缓冲液,进行线性梯度洗脱,连续收集洗脱液,控制流速2.5~3.0mL/10min。测定每管洗脱液的A280光吸收值。
(4) 各管洗脱液酶活力的定性测定
在点滴板上每一孔内,加一滴0.2mol/L,pH4.6的乙酸缓冲液,一滴0.5mol/L蔗糖和一滴洗脱液,反应5min,在每一孔内同时插入一小条尿糖试纸,10~20min后观察试纸颜色的变化。用“+”号的数目,表示颜色的深浅,即各管酶活力的大小。合并活性最高的2~3管,量出总体积,并将其分成10份,分别倒人10个小试管,用保鲜膜封口,冰冻保存,使用时取出一管,此即“柱级分Ⅲ”。
4. 各级分Ⅰ、Ⅱ、Ⅲ蔗糖酶活力
用0.02mol/L,pH4.6乙酸缓冲液(也可以用pH5~6的去离子水代替)稀释各级分酶液,测出酶活合适的稀释倍数:
Ⅰ: 1 000~10 000倍;
Ⅱ: 1 000~10 000倍;
Ⅲ: 100~1 000倍;
以上稀释倍数仅供参考。
按“表1”的顺序在试管中加入各试剂,进行测定,为简化操作可取消保鲜膜封口,沸水浴加热改为用90~95℃水浴加热 8-10min,以5min生成的还原糖的毫克数为纵坐标,以试管中lmL反应混合物中的酶浓度(mg蛋白/m1)为横坐标,画出反应速度与酶浓度的关系曲线。
表1 各级分I、Ⅱ、Ⅲ蔗糖酶活性测定
各管名称 对照 级分Ⅰ 级分Ⅱ 级分Ⅲ 葡萄糖
管数 1 2 3 4 5 6 7 8 9 10 11 12 13
酶液/mL 0.0 0.05 0.20 0.50 0.05 0.20 0.50 0.05 0.20 0.50 / / /
H2O/mL 0.6 0.55 0.40 0.10 0.55 0.40 0.10 0.55 0.40 0.10 0.8 0.4 0.2
乙酸缓冲液0.2mol/L,pH4.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 / / /
葡萄糖2mmol/L / / / / / / / / / / 0.2 0.6 0.8
蔗糖0.25mol/L 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 / / /
加入蔗糖,立即摇匀开始记时,室温准确反应5min后,立即加1mL 0.1M NaOH中止反应
二硝基水杨酸溶液 mL 1.0
用保鲜膜封口,扎眼,沸水浴加热5min,立即用水冷却3分钟。
H2O/mL 4.0
A520
稀释后酶活力 /
原始酶活力 /
5. 考马斯亮兰法测定各级分蛋白质含量
(1) 蛋白质标准曲线制作
取14支试管,分两组按下表平行操作。
表2 蛋白质标准曲线制作
试管编号/mL 0 1 2 3 4 5 6
标准蛋白溶液/mL
0.02mol/L Tris-HCl缓冲液/mL
考马斯亮兰试剂/mL
摇匀,1h内以0号试管为空白对照,在595nm处比色
A595nm
(2) 各级分蛋白质含量测定
考马斯亮兰G-250在酸性溶液时呈茶棕色,最大吸收峰在465nm。当与蛋白质结合后变成深蓝色,最大吸收峰转至595nm,在10~100μg/mL蛋白质浓度范围内成正比。因此在测定各级分蛋白质含量时应稀释适当倍数,使其测定值在标准曲线的直线范围内。根据所测定的A595nm值,在标准曲线上查出相当于标准蛋白的量,从而计算出未知样品的蛋白质浓度(mg/mL)。
6. 计算各级分的比活力、纯化倍数及回收率
为了测定和计算下面表3中的各项数据,对各个级分都必须取样,每取一次样,对于下一级分来说会损失一部分量,因而要对下一个级分的体积进行校正,以使回收率的计算不致受到不利的影响。
1活力单位(U)=酶在室温,pH=4.6条件下,每分钟水解产生1μmol葡萄糖所需酶量。比活力=活力单位/mg蛋白。
表3 各级分的比活力、纯化倍数及回收率
级
分 记录
体积
(m1) 校正
体积
(m1) 蛋白质
(mg/m1) 总蛋白
(mg) Unit
(s/m1) 总活力
(U) 比活力
(Units
/mg) 纯化
倍数 回收率
(%)
Ⅰ 1.0 100
Ⅱ
Ⅲ
下面表4是对假定的各级分记录体积进行校正计算的方法和结果:
表4 实验记录表
级分 记录体积 (m1) 校正体积计算 取样体积
(m1) 校正后体积
(m1)
Ⅰ 15 15 1.5 15.00
Ⅱ 5 5×(15/13.5) 1.5 5.5
Ⅲ 6 6×(15/13.5)×(5/3.5) 1.5 9.5
五、 结果
在同一张图上画出所有管的酶活力、光吸收值A280的曲线和洗脱梯度线。得出各级分的活力,比活力,提纯倍数以及回收率。
六、 注意事项
从上样开始收集,可能有两个活性峰,梯度洗脱开始前的第一个峰是未吸附物,本实验取用梯度洗脱开始后洗下来的活性峰。
七、 作业
1.为什么酶的提取需要低温操作?
2.热处理的根据是什么?
去除热敏感蛋白。
参考文献
1.邵雪玲,毛歆,郭一清.生物化学与分子生物学实验指导.武汉:武汉大学出版社,2003
2.张龙翔.高级生物化学实验选编.北京:高等教育出版社,1989
3.许培雅,邱乐泉.离子交换柱层析纯化蔗糖酶实验方法改进研究.实验室研究与探索,2002,21(3):82~84
编著者——陈彦,李绍飞
Ⅷ 试述酶的分离纯化和纯度鉴定的实验方法及其原理。
分离蛋白质混合物的各种方法主要是根据蛋白质在溶液中的以下性质:1)分子大小;2)溶解度;3)电荷;4)吸附性质;5)对其它分子的生物学亲和力等进行分离. 常见的分离提纯蛋白质的方法有:1、盐析与有机溶剂沉淀:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析.常用的中性盐有:硫酸铵、氯化钠、硫酸钠等.盐析时,溶液的pH在蛋白质的等电点处效果最好.凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀.2、电泳法:蛋白质分子在高于或低于其pI的溶液中带净的负或正电荷,因此在电场中可以移动.电泳迁移率的大小主要取决于蛋白质分子所带电荷量以及分子大小.3、透析法:利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开.4、层析法:利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相)之间的分布不同而进行分离.主要有离子交换层析,凝胶层析,吸附层析及亲和层析等,其中凝胶层析可用于测定蛋白质的分子量.5、分子筛:又称凝胶过滤法,蛋白质溶液加于柱之顶部,任其往下渗漏,小分子蛋白质进入孔内,因而在柱中滞留时间较长,大分子蛋白质不能进入孔内而径直流出,因此不同大小的蛋白质得以分离.6、超速离心:利用物质密度的不同,经超速离心后,分布于不同的液层而分离.超速离心也可用来测定蛋白质的分子量,蛋白质的分子量与其沉降系数S成正比.
Ⅸ 给出一种酶,如何设计其纯化方案
如果是蛋白质酶,可以考虑
1、沉淀,
2、电泳:蛋白质在高于或低于其等电点的溶液中是专带电属的,在电场中能向电场的正极或负极移动。根据支撑物不同,有薄膜电泳、SDS-PAGE、凝胶分离电泳,HPLC等。
3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。
4、层析:
a.离子交换层析,利用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。
b.分子筛,又称凝胶过滤。小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出。
5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。不同蛋白质其密度与形态各不相同而分开。