导航:首页 > 净水问答 > 离子交换法是化学变化吗

离子交换法是化学变化吗

发布时间:2021-01-05 02:52:12

① 把水软化软水是化学变化还是物理变化

树脂处理过的软化水是化学变化。详见下面第三条

硬水又分为暂时硬水和永久硬水。
处理硬水使之变成软水主要有三种途径:

1. 煮沸法(只适用于暂时硬水)
煮沸暂时硬水时的反应:
Ca(HCO3)2 =CaCO3 ↓+H2O+CO2↑
Mg(HCO3)2 =MgCO3↓ +H2O+CO2↑

2. 石灰——纯碱法 (工业用)

===========================================
3. 离子交换

离子交换软化法主要是依靠钠离子交换器中的交换树脂进行软化处理。由于交换树脂吸附能力强,能将游离在水中的钙、镁离子吸附,从而把水软化。

离子交换法

目前广泛采用的是离子交换法,即用离子交换剂来软化硬水的方法。过去曾用过磺化煤、泡沸石来软化硬水,目前普遍使用的离子交换剂是高分子离子交换树月旨,它是有交换离子能力的高分子化合物。它是由不溶于水的交换剂本体及能在水中解离的活性交换基团两个基本部分组成。根据可交换的离子是阳离子或阴离子而分别称为陌离子交换树脂和阴离子交换树脂,如通常使用的苯乙烯型离子交换树脂,它的交换剂本体是由苯乙烯与部分对苯二乙烯共聚而成的不溶性高聚物。当本体上连有磺酸基(一SO-3Na+)或季铵基[一N+ (CH3)3Cl-]后则分别具有交换阳离子或阴离子的能力。
用离子交换树脂软化硬水分为两步:处理工程和再生工程。
当硬水通过阳离子交换树脂时,水中的钙、镁离子与阳离子交换树脂上的活性基团钠离 —B子发生交换并被吸附,使水软化:
口一(S03Na)2+Ca2+——>口一(SO3)2·Ca+2Na+ (处理工程)
当阳离子交换树脂上的钠离子几乎全部被钙、镁离子所交换时就失去了交换离子的能力;必须通过再生恢复它的交换能力。通常使用食盐为再生剂,再生过程中先用清水洗涤离子交换树脂,然后通人质量分数为10%的食盐水浸泡而使离子交换树脂吸附的钙、镁离子解吸下来,然后随废液排出。
口一(S03)2Ca+2Na+——>口一(S03Na)2+a2+ (再生工程)
在离子交换过程中,不仅钙、镁离子会被交换,水中含有的铁、锰、铝等金属离子也可同旧寸被交换去除。当硬水先后通过阳、阴离子交换树脂后;水中的电解质阳、阴离子基本均可被去除,这种方法得到的软水叫去离子水。

所以是化学变化
===========================================

参考资料 http://..com/question/1339220.html?fr=qrl3

水的硬度(也叫矿化度)是指溶解在水中的钙盐与镁盐含量的多少。含量多的硬度大,反之则小。1升水中含有10mmgCaO(或者相当于10mmgCaO)称为1度。软水就是硬度小于8的水,如雨水,雪水,纯净水等;硬度大于8的水为硬水,如矿泉水,自来水,以及自然界中的地表水和地下水等。

硬水又分为暂时硬水和永久硬水。暂时硬水的硬度是由碳酸氢钙与碳酸氢镁引起的,经煮沸后可被去掉,这种硬度又叫碳酸盐硬度。永久硬水的硬度是由硫酸钙和硫酸镁等盐类物质引起的,经煮沸后不能去除。以上两种硬度合称为总硬度。

当水滴在大气中凝聚时,会溶解空气中的二氧化碳形成碳酸。碳酸最终随雨水落到地面上,然后渗过土壤到达岩石层,溶解石灰(碳酸钙和碳酸镁)产生暂时硬水。一些地区的溶洞和溶洞附近的硬水就是这样形成的。

硬水有许多缺点:1.和肥皂反应时产生不溶性的沉淀,降低洗涤效果。(利用这点也可以区分硬水和软水)2.工业上,钙盐镁盐的沉淀会造成锅垢,妨碍热传导,严重时还会导致锅炉爆炸。由于硬水问题,工业上每年因设备、管线的维修和更换要耗资数千万元。3.硬水的饮用还会对人体健康与日常生活造成一定的影响。没有经常饮硬水的人偶尔饮硬水,会造成肠胃功能紊乱,即所谓的“水土不服”;用硬水烹调鱼肉、蔬菜,会因不易煮熟而破坏或降低食物的营养价值;用硬水泡茶会改变茶的色香味而降低其饮用价值;用硬水做豆腐不仅会使产量降低、而且影响豆腐的营养成分。

那么硬水毫无是处了吗?不对,否则怎么会有那么多的人买矿泉水喝呢 。原来钙和镁都是生命必需元素中的宏量金属元素。科学家和医学家们调查发现,人的某些心血管疾病,如高血压和动脉硬化性心脏病的死亡率,与饮水的硬度成反比,水质硬度低,死亡率反而高。其实,长期饮用过硬或者过软的水都不利与人体健康。我国规定:饮用水的硬度不得超过25度 。

硬水经过处理后可以转化为软水。下面介绍硬水软化的三种主要方法:

1. 煮沸法(只适用于暂时硬水)

煮沸暂时硬水时的反应:

Ca(HCO3)2 =CaCO3 ↓+H2O+CO2↑

Mg(HCO3)2 =MgCO3↓ +H2O+CO2↑

由于CaCO3不溶,MgCO3 微溶,所以碳酸镁在进一步加热的条件下还可以与水反应生成更难溶的氢氧化镁:

MgCO3 +H2O = Mg(OH)2 ↓+CO2↑

由此可见水垢的主要成分为CaCO3和Mg(OH)2

2. 石灰——纯碱法 (工业用)

在这种方法中,暂时硬度加入石灰就可以完全消除,HCO3-都被转化成CO32-。而镁的永久硬度在石灰的作用下会转化为等物质的量的钙的硬度,最后被去除。反应过程中,镁都是以氢氧化镁的形式沉淀,而钙都是以碳酸钙的形式沉淀。

Ca2+(aq) --石灰-苏打法--> CaCO3(s)

Mg2+(aq)--石灰-苏打法--> Mg(OH)2(s)

3. 离子交换法

这种方法中用到的离子交换剂,有无机和有机两种。无机离子交换剂,如沸石等;有机离子交换剂包括:碳质离子交换剂——磺化酶,阴阳离子交换树脂等。而且一般的离子交换剂在失效后还可以再生。

② 工业上常用饱和食盐水的方法制去H2,CL2,和NAOH,请写出反应的化学方程式

工业上用电解饱和NaCl溶液的方法来制取NaOH、Cl2和H2,并以它们为原料生产一系列化工产品,称为氯碱工业。氯碱工业是最基本的化学工业之一,它的产品除应用于化学工业本身外,还广泛应用于轻工业、纺织工业、冶金工业、石油化学工业以及公用事业。
一、电解饱和食盐水反应原理
电解饱和食盐水的原理与前面学过的电解CuCl2 溶液的原理是相类似的。
【实验3】 在U型管里装入饱和食盐水,用一根碳棒作阳极,一根铁棒作阴极(如右图)。同时在两边管中各滴入几滴酚酞试液,并把湿润的碘化钾淀粉试纸放在阳极附近。接通直流电源后,注意观察管内发生的现象及试纸颜色的变化。
从实验可以看到,在U型管的两个电极上都有气体放出。阳极放出的气体有刺激性气味,并且能使湿润的碘化钾淀粉试纸变蓝,说明放出的是Cl2;阴极放出的气体是H2,同时发现阴极附近溶液变红,这说明溶液里有碱性物质生成。
为什么会出现这些实验现象呢?
这是因为NaCl是强电解质,在溶液里完全电离,水是弱电解质,也微弱电离,因此在溶液中存在Na+、H+、Cl-、OH-四种离子。当接通直流电源后,带负电的OH-和Cl-向阳极移动,带正电的Na+和H+向阴极移动。在这样的电解条件下,Cl-比OH-更易失去电子,在阳极被氧化成氯原子,氯原子结合成氯分子放出,使湿润的碘化钾淀粉试纸变蓝。
阳极反应:2Cl--2e-=Cl2↑(氧化反应)
H+比Na+容易得到电子,因而H+不断地从阴极获得电子被还原为氢原子,并结合成氢分子从阴极放出。
阴极反应:2H++2e-=H2↑(还原反应)
在上述反应中,H+是由水的电离生成的,由于H+在阴极上不断得到电子而生成H2放出,破坏了附近的水的电离平衡,水分子继续电离出H+和OH-,
H+又不断得到电子变成H2,结果在阴极区溶液里OH-的浓度相对地增大,使酚酞试液变红。因此,电解饱和食盐水的总反应可以表示为:
工业上利用这一反应原理,制取烧碱、氯气和氢气。
在上面的电解饱和食盐水的实验中,电解产物之间能够发生化学反应,如NaOH溶液和Cl2能反应生成NaClO、H2和Cl2混合遇火能发生爆炸。在工业生产中,要避免这几种产物混合,常使反应在特殊的电解槽中进行。
二、离子交换膜法制烧碱
目前世界上比较先进的电解制碱技术是离子交换膜法。这一技术在20世纪50年代开始研究,80年代开始工业化生产。
离子交换膜电解槽主要由阳极、阴极、离子交换膜、电解槽框和导电铜棒等组成,每台电解槽由若干个单元槽串联或并联组成。右图表示的是一个单元槽的示意图。电解槽的阳极用金属钛网制成,为了延长电极使用寿命和提高电解效率,钛阳极网上涂有钛、钌等氧化物涂层;阴极由碳钢网制成,上面涂有镍涂层;阳离子交换膜把电解槽隔成阴极室和阳极室。阳离子交换膜有一种特殊的性质,即它只允许阳离子通过,而阻止阴离子和气体通过,也就是说只允许Na+通过,而Cl -、OH-和气体则不能通过。这样既能防止阴极产生的H2和阳极产生的Cl2相混合而引起爆炸,又能避免Cl2和NaOH溶液作用生成NaClO而影响烧碱的质量。下图是一台离子交换膜电解槽(包括16个单元槽)。
精制的饱和食盐水进入阳极室;纯水(加入一定量的NaOH溶液)加入阴极室。通电时,H2O在阴极表面放电生成H2,Na+穿过离子膜由阳极室进入阴极室,导出的阴极液中含有NaOH;Cl-则在阳极表面放电生成Cl2。电解后的淡盐水从阳极导出,可重新用于配制食盐水。
离子交换膜法电解制碱的主要生产流程可以简单表示如下图所示:
电解法制碱的主要原料是饱和食盐水,由于粗盐水中含有泥沙、
精制食盐水时经常加入Na2CO3、NaOH、BaCl2等,使杂质成为沉淀过滤除去,然后加入盐酸调节盐水的pH。例如:
加入Na2CO3溶液以除去Ca2+:
加入NaOH溶液以除去Mg2+、Fe3+等:
Mg2++2OH-=Mg(OH)2↓
Fe3++3OH-=Fe(OH)3↓
以除去过量的Ba2+:
这样处理后的盐水仍含有一些Ca2+、Mg2+等金属离子,由于这些阳离子在碱性环境中会生成沉淀,损坏离子交换膜,因此该盐水还需送入阳离子交换塔,进一步通过阳离子交换树脂除去Ca2+、Mg2+等。这时的精制盐水就可以送往电解槽中进行电解了。
离子交换膜法制碱技术,具有设备占地面积小、能连续生产、生产能力大、产品质量高、能适应电流波动、能耗低、污染小等优点,是氯碱工业发展的方向。
三、以氯碱工业为基础的化工生产
NaOH、Cl2和H2都是重要的化工生产原料,可以进一步加工成多种化工产品,广泛用于各工业。所以氯碱工业及相关产品几乎涉及国民经济及人民生活的各个领域。
由电解槽流出的阴极液中含有30%的NaOH,称为液碱,液碱经蒸发、结晶可以得到固碱。阴极区的另一产物湿氢气经冷却、洗涤、压缩后被送往氢气贮柜。阳极区产物湿氯气经冷却、干燥、净化、压缩后可得到液氯。
以氯碱工业为基础的化工生产及产品的主要用途见下图。
随着人们环境保护意识的增强,对以氯碱工业为基础的化工生产过程中所造成的污染及其产品对环境造成的影响越来越重视。例如,现已查明某些有机氯溶剂有致癌作用,氟氯烃会破坏臭氧层等,因此已停止生产某些有机氯产品。我们在充分发挥氯碱工业及以氯碱工业为基础的化工生产在国民经济发展中的作用的同时,应尽量减小其对环境的不利影响。
我国氯碱工业的发展
我国最早的氯碱工厂是1930年投产的上海天原电化厂(现上海天原化工厂的前身),日产烧碱2t。到1949年解放时,全国只有少数几家氯碱厂,烧碱年产量仅1.5万吨,氯产品只有盐酸、液氯、漂白粉等几种。
近年来,我国的氯碱工业在产量、质量、品种、生产技术等方面都得到很大发展。到1990年,烧碱产量达331万吨,仅次于美国和日本,位于世界第三位。1995年,烧碱产量达496万吨,其中用离子交换膜电解法生产的达56.2万吨,占总产量的11.3%。预计到2000年,烧碱年产量将达540 万吨,其中用离子膜电解法生产的将达180万吨,占33.3%。
参考资料:http://www.ltyz.net/xueke/huaxue/gao34/2shi.htm

③ 盐酸盐与钠盐进行离子交换反应,最后形成什么化学键

这需要看情况回答。
离子交换反应原则上是在(水)溶液中进行的。那么盐酸盐与专钠盐反应,需要属生成难溶物质或弱电解质(气体在这里的可能性不是很大)。最后形成的NaCl和另一种新盐,由于在水溶液中,实际上的状态是溶液中的阴阳离子均被水分子包裹,因此不能说有离子键。只有沉淀,以及将溶液蒸发后形成的晶体内,是(新的)离子键。

④ 离子交换树脂为什么可以作为许多化学反应的催化剂

因为许多化学反应的催化剂是酸或者是碱。而离子交换树脂通常可以处理成酸型(阳离子树脂)或者碱型(阴离子树脂)。

⑤ 用化学方程式说明什么是离子交换反应

NaOH+HCl=NaCl+H2O

⑥ 离子交换树脂再生原理,电厂化学中的知识,简单描述就行,谢谢各位好人啦。

电厂中用到离子交换树脂主要是去除锅炉水中的杂质离子吧。
阳离子交换树脂吸附水专中的主要的Ca2+和Mg2+离子属,H+被置换下来。树脂再生需要加入强酸,使H+置换下交换树脂上的Ca2+和Mg2+离子。
阴离子交换树脂吸附水中的主要的Cl-和CO32-、SO42-(当然水中的这部分离子是少量的)。OH--被置换下来。树脂再生需要加入强碱,使OH-置换下交换树脂上的各种阴离子。
当然具体的树脂类型需要不同的再生剂,而且根据生产类型的不同使用的树脂也不同。

⑦ 求电极反应方程式,如何判断阴阳离子交换膜

阴阳离子交换膜的判断通过两极反应式判断 你可以先把两极反应式写出来 再判断

不过这道题其实不需要这么麻烦
SO2变成H2SO4显然是得到氢离子
所以肯定是阳离子交换膜

如果你不会写两极方程式可以再追问

⑧ 电化学知识是化学反应原理的重要部分,以下是常见的电化学装置:某兴趣小组同学模拟工业上用离子交换膜法

①电解时,阳极上失电子发生氧化反应,溶液中的氢氧根离子的放电能力大于版硫酸根离子的放电能权力,所以阳极上氢氧根离子失电子生成水和氧气4OH--4e-=2H2O+O2↑,故答案为:4OH--4e-=2H2O+O2↑;
②电解时氢离子在阴极得电子生成氢气,则氢氧化钾在阴极生成,所以在D口导出;2L浓度为0.25mol/L的KOH溶液与2L0.025mol/L的硫酸溶液混合后,
c(OH-)=

2×0.25?2×0.025×2
2+2
=0.1,c(H+)=
1×10?14
0.1
=10-13,pH=13,故答案为:D;13;
③阳极氢氧根离子放电,因此硫酸根离子向阳极移动,阴极氢离子放电,因此钠离子向阴极移动,所以通过相同电量时,通过阴离子交换膜的离子数小于通过阳离子交换膜的离子数;故答案为:小于;
④燃料原电池中,燃料在负极上失电子发生氧化反应,氧化剂在正极上得电子发生还原反应,该燃料原电池中,氧气是氧化剂,所以氧气在正极上得电子和氢离子结合生成水,电极反应式为4H++O2+4e-═2H2O,故答案为:4H++O2+4e-═2H2O.

⑨ 工业制烧碱化学方程式

工业制烧碱化学方程式如下:

(9)离子交换法是化学变化吗扩展阅读:

氢氧化钠为常用的化学品之一。其应用广泛,为很多工业过程的必需品:常用于制造木浆纸张、纺织品、肥皂及其他清洁剂等,另也用于家用的水管疏通剂。

氢氧化钠具有强碱性和有很强的吸湿性。易溶于水,溶解时放热,水溶液呈碱性,有滑腻感;腐蚀性极强,对纤维、皮肤、玻璃、陶瓷等有腐蚀作用。与金属铝和锌、非金属硼和硅等反应放出氢;与氯、溴、碘等卤素发生歧化反应;与酸类起中和作用而生成盐和水。

⑩ 谁有电厂化学离子交换系统的原理的课件吗我急需!

你好,为你找了些问答题可能有用
151、 什么叫离子交换树脂?
答:离子交换树脂是人工合成的,具有高分子聚合物骨架和活性基团的物质,因外形呈树脂状,故常称为离子交换树脂。
163、在水处理实际应用中,离子交换树脂选择顺序如何?有什么规律?
答:阳离子交换树脂在稀溶液中的的选择性顺序如下:Fe3+>A13+>Ca2+>Mg2+>K+≈NH4+>Na+>H+
这可归纳为①离子所带电荷越大,越易被吸着;②当离子所带电荷量相同时,离子水合半径较小的易被吸着。
弱酸性阳树脂对H+的选择性向前移动,羧酸型树脂对H+的选择性居于Fe3+之前。
在浓溶液中选择顺序有所不同,某些低价离子会居于高价离子前面。
阴离子交换树脂的选择顺序:在淡水的离子交换除盐处理系统中,即进水是稀酸溶液时,阴离子的选择顺序为SO42-(+HSO4-)>CL->HCO3->HSiO-;
当OH型离子交换树脂失效后,用碱进行再生时,即对于进水是浓碱溶液,阴离子的选择性顺序为:CL—>SO42—>CO32->HSiO3—;
据此,可以推知,OH型离子交换树脂对于水中常见阴离子的选择顺序,遵循以下三条规则:
(1)在强弱酸混合的溶液中,OH型离子交换树脂易吸着强酸阴离子。
(2)浓溶液与稀溶液,前者利于低价离子被吸着,后者利于高价离子被吸取。
(3)在浓度和价数等条件相同的情况下,选择性系数大的易被吸着。
164、试述弱酸阳离子交换树脂的特性。
答:弱酸阳离子交换树脂在水中的特性类似弱酸。它与中性盐类作用的能力较弱(例如SO42—、CL—等强酸阴离子)。它仅能与弱酸性盐类(具有碱度的盐类)反应,反应后产生的是弱酸。用强酸H型离子交换树脂可处理碱度大的水,将水中的碱度所对应的阴离子除去后,再用强酸H型交换树脂来除去强酸根所对应的那部分阴离子。
由于弱酸性阳树脂对H+的亲和力较大,很容易再生,因此它可用强酸H型阴离子交换树脂的再生废液来进行再生。
弱酸性阳树脂的交换容量很大,约为强酸性阳树脂的2倍。由于弱酸性阳树脂的交联度低,所以其机械强度比强酸性阳树脂的要低。
盐型弱酸性阳树脂具有水解能力。
165、简述弱碱性阴离子交换树脂的特性。
答:OH型的弱碱性阳离子交换树脂在水中类似弱碱,其分解中性盐的能力很弱,,其在中性盐溶液中不能和盐类反应,因此只能在酸性溶液中与SO42—、CL—、、NO3—等强酸根进行交换,对弱酸根HCO3—的吸着力很弱,对更弱的HSiO3—则不能吸着。
弱碱性阳树脂对OH—的亲和力较大,很容易再生,可用强碱性阴树脂的再生废液进行再生。
弱碱性阴树脂的交换容量大,相当于强碱性阴树脂的3倍。由于弱碱性阴树脂的交联度低、孔隙大,其机械强度比强碱性阴树脂的要低。但弱碱性阴树脂在运行时吸着的有机物,在再生时易被解吸出来。
盐型的弱碱性阴树脂在水中具有水解能力。
166、 为什么新树脂在使用前应进行预处理? 离子交换树脂如何进行预处理?
答: 因为新树脂中含有少量的低聚合物和未参与聚合,缩合反应的单体。当树脂与水、酸、碱、盐等溶液接触时,上述物质就会转入溶液中,影响出水水质。除了这些有机物外,新树脂往往含有铁、铝、铜等无机杂质。在水质要求较高时,应对新树脂进行预处理。
进行予处理时,如树脂脱水需要食盐水处理:将树脂转入交换器中,用大余树脂体积的10%的食盐溶液浸泡1—2小时。浸泡完后放掉食盐水,用水冲洗树脂,直到排出的水不呈黄色为止。再进行反洗,以除去混在树脂中的机械杂质和细碎树脂粉末。
阳树脂: 用2—4%NaOH溶液浸泡4—8小时,然后进行小流量反洗,至排水澄清、耗氧量稳定为止。再用5%盐酸浸泡4—8小时,进行正洗,至排水氯含量与进水相接近为止。
阴树脂:用5%盐酸浸泡4—8小时,用氢离子交换器出水进行小流量反洗,至排水氯离子含量与进水相接近为止。然后再用4%NaOH溶液浸泡4—8小时,正洗排水接近中性为止。。
167、离子交换树脂如何转型?
答:(1)阳离子交换树脂转型方法:
将阳离子交换树脂浸泡于2—4%的氢氧化钠溶液中,经4一8小时后进行小流量反洗(指器内预处理),至出水澄清,耗氧量稳定为止。然后再浸泡于5%的盐酸溶液中,经4—8小时后,进行正洗,至出水与进水氯根含量相近为止。
(2)阴离子交换树脂转型方法:
将阴离子交换树脂浸泡于5%的盐酸溶液内,经4—8小时后用氢离子交换水进行小流量反洗,直至出水与进水氯根含量相近为止。然后再浸泡于4%的氢氧化钠溶液中,经4—8小时后进行正洗,至出水接近中性为止。
168、如何对不同的树脂进行分离?
答:对混合在一起的不同树脂,主要是利用它们的比重不同进行分离,一种是借自下而上的水流进行树脂分层。另外一种办法是将混合树脂浸泡于一定比重的食盐溶液中,比重小的树脂会浮起来,与比重大的分离。例如,用饱和食盐水即可将强碱、强酸两种树脂分离开。
如果两种树脂的比重差小,分离起来有困难,可以先将树脂转型,再进行分离。这是由于树脂型型式不同,其比重也不同,例如OH型阴树脂的比重小于CL型。
169、试述影响阳离子交换速度的因素。
答:(1)树脂的交换基团:离子间的化学反应速度是很快的,所以一般来说树脂交换基团的不同并不影响到交换速度,但对于会形成弱电解质的离子交换树脂,情况就不同,象H型和盐型的交换速度就会有很大的差别。
(2)树脂的交联度:树脂的交联度大,网孔小,则其颗粒内扩散越慢,交换速度就慢。当水中的粒径较大的离子存在时,对交换速度的影响就更为显著。
(3)树脂的颗粒:树脂颗粒越小,交换速度越快。
(4)溶液的浓度:溶液浓度是影响扩散速度的重要因素,浓度越大扩散速度越快。
(5)水温:提高水温能同时加快内扩散和膜扩散。
(6)搅拌或提高流:在交换过程中的搅拌或提高水的流速,只能加快膜扩散,但不影响内扩散。
(7)离子的本性:离子水合半径越大,内扩散越慢;离子电荷数越多,内扩散越慢。
170、简述离子交换树脂的污染和氧化降解。
答:离子交换树脂在连续进行吸附交换,以及多次循环操作中,其本身也为水中各种杂质所污染;
(1)无机物污染:
阳离子交换树脂用盐酸再生时,银、铅等化合物会积累于树脂颗粒内部;当用硫酸再生时,钙、钡等化合物会积聚于树脂颗粒内部而造成树脂微孔阻塞。
铁离子对阴阳树脂都有污染。
(2) 有机物污染
阴阳树脂都会受到有机物污染。引起阳树脂污染的有油脂、含氮化合物、调节PH时用的有机胺类、微生物细菌等。引起阴树脂污染的物质有油脂、木质碳酸和腐植酸等高分子有机阴离子以及有机铁、微生物、细菌和阳树脂降解后溶出的高分子酸类等。
有机物是高分子有机阴离子,分子量很大,一般凝胶型树脂孔径较小,很容易被大分子的有机物堵住孔隙而使其交换容量下降。尤其是强碱阴树脂,非常容易受有机物污染。
有机物对离子交换树脂的污染与其含量及有机物的组成有关。有机物含量大的、高分子的易污染。树脂的结构对污染程度也有很大影响。
(3)硅酸根污染:
强碱阴离子交换树脂失效后,不及时还原而长期停放或阴离子交换树脂不能彻底还原均可造成硅酸根污染。胶体硅一般不被凝胶型树脂交换,但还有一部分被吸附。因此也会使阴树脂污染。
(4)树脂的氧化:
对于自来水为水源的电厂除盐系统树脂易受活性氯氧化。树脂氧化后,其外观色淡,透明度增加,体积增大,阻力增大,体积交换容量降低。
171、 什么叫树脂的复苏?
答: 树脂在长期的使用过程中,被有机物、铁、胶体等污染,使其交换容量降低甚至全部丧失,故采用酸、碱法或碱、食盐法等进行处理,以恢复其交换性能。这就是树脂的复苏。
172、如何保存需长期储存的离子交换树脂?
答:当要长期储存树脂时,最好把树脂转变成盐型,浸泡在水中,如储存过程中,树脂脱了水,也应先用浓(10%)食盐水浸泡,再逐渐稀释,以免树指急剧膨胀而破碎。储存温度一般在0—40℃为宜,以免冻裂。
173、当离子交换剂遇到电解质水溶液时,电解质对其双电层有哪两种作用?为什么?
答:离子交换树脂可看作是具有胶体型结构的物质,既在离子交换树脂的高分子表面上有许多和胶体表面相似的双电层,我们把它和内层离子符号相同的离子称作同离子,符号相反的称反离子。所以离子交换是树脂中原有反离子和溶液中其它反离子相互交换位置。当离子交换剂遇到含有电解质的水溶液时,电解质对其双电层有两方面的作用。一是交换作用:扩散层中反离子在溶液中的活动较自由,离子交换作用主要在此种反离子和溶液中其它反离子之间进行,因动平衡的关系,溶液中的反离子会先交换至扩散层,然后再与固定层中的反离子互换位置。二是压缩作用:当溶液中盐类浓度增大时,可使扩散层压缩,从而使扩散层中部分反离子变成固定层中的反离子,使得扩散层的活动范围变小。这就说明了为什么当再生溶液的浓度太大时,不仅不能提高再生效果,有时反使效果降低。
174、树脂使用时,应注意哪些问题?
答:保持水分,防止风干,密闭存放,运输和储存应在0℃以上,防止冻裂。使用中阳树脂应防止铁锈污染和活性氯等破坏树脂,阴树脂应防止油类和有机物等污染。
175、如何选择合适的离子交换树脂?
答:首先要根据水源水质所含各种离子的量及在水中的分布规律来选择。在水中强酸根阴离子的含量较大时,应考虑先采用弱碱阴树脂来除去水中大部分强酸根阴离子,而使强碱性阴树脂充分发挥其除硅性能。此外,还应根据水处理交换器的床型的不同而选用不同品种的树脂。同时还要根据树脂的物理及化学性能等综合考虑来选出最适宜的离子交换树脂。
176、如何降低树脂粉碎率?
答:降低压差,降低流速,在保证出水水质的前提下,适当降低树脂层高度,缩短运行周期,延长大反洗周期等。
177、阴树脂为何易变质?如何防止其变质?
答:因为阴树脂的化学稳定性比阳树脂差一些,所以它对氧化剂和高温的抵抗力比阳树脂要差,所以为防止其变质,需将进水中的氧化剂提前除去。
178、离子交换树脂交换容量为什么会下降?
答:树脂交换能力的下降取决于物理性能崩解,化学交换基团的分解,高分子有机物和金属氧化物的污染,如水中的微生物,铁杂质的污染,以及细菌的生长等。这与树脂品种、处理液种类、交换基团、循环基数、有无前置处理、温度高低、及酸性物质的存在等多种因素有关。
179、在使用弱碱性阴树脂处理水时,为什么对水的PH值有一定限制?使用弱碱树脂有什么好处?
答:当采用弱碱树脂处理水时,一般只能在水的PH<9的情况下进行交换。当水的PH值过大时,由于水中OH-离子浓度大,它抑制了树脂的电离,使树脂不再具有可交换的性能。也就是说,水中其它离子无法取代OH-离子。
使用弱碱树脂的好处是:它极易再生,再生剂量不需过大。对于降低碱耗具有很大意义。另外弱碱树脂吸着有机物能力较强,而且可在再生时被洗出来。同时弱碱树脂还具有交换容量大,交换速度快,膨胀性小,机械强度高的优点。
180、如何清洗树脂层所截留下来的污物?
答:有空气擦洗和超声波清洗两种方法。
(1)空气擦洗:即在装有污染树脂的设备中,重复性地通入空气,然后进行正洗。每次通入空气时间为0.5—1分钟,正洗时间为1—2分钟,重复次数为6—30次,空气由底部进入,目的在于疏松树脂层,并使树脂上的污物脱落。正洗时,脱落下的污物随水流由底部排出。空气擦洗应与树脂再生交错进行。
(2)超声波清洗法:可以清除树脂颗粒表面的污物,清洗时污染树脂由设备顶部进入,经中间超声波场后,由底部离开设备。冲洗水由底部进入上部流出,分离出污物及树脂碎屑,随水流由顶部流出。
第九节:除盐
181、简述阴、阳离子交换器的除盐原理。
答: 阴、阳离子交换器一般都联合使用达到其除盐的目的,在阳离子交换器中,阳离子交换反应可表示如下:
Na+ Na
RH + Ca2+ R Ca + H+
Mg2+ Mg
Fe3+ Fe

反应结果是水中阳离子被吸着而交换出的H+ 与水中原有的阴离子HCO3- 、Cl—、SO42- 等形成对应的酸溶液,。
这种阳床出水进入阴床时发生如下反应:
CL— CL
ROH + SO42- R SO4 + OH—
HSiO3- HSiO3
HCO3- HCO3

这样,水中所含盐份其阴、阳离子分别被阴阳树脂交换吸收,从而达到减少水中含盐量的目的。为减少阴床负担,在阳床之后加脱碳器除去碳酸。
182、什么叫“两床三塔+混床”除盐系统?
答:两床系指单元式除盐系统中的阳床和阴床。由于阳床又可称阳塔,阴床称阴塔;所以阳床、阴床,除碳塔,组成了三塔。“两床三塔+混床”为常见的单元式除盐系统。
183、常用的除盐系统有几种形式?各具有什么优缺点?
答:常用的除盐系统有单元式和母管式两种系统。
单元式,即由阳床、除碳器、中间水箱、阴床、混床组成一个单元。
主要优点是:(1)水质容易控制,出水质量好,可靠性高。一般以阴床导电度作为失效标准,再生时适当增加阴床碱量,可保证不“跑硅”。
(2)再生时与其它系统完全隔绝,减少了向除盐水箱和其它系统漏酸、漏碱的危险。
(3)由于是单元操作,易于实现程控和自动化。
缺点:(1)水处理转动设备(泵和风机)的台数较多。
(2)由于阴、阳床失效点不一致,但必须同时再生,单耗(主要是碱耗)较高。
母管式:所有阳床出水汇集到一条母管,阴床出水汇集到一条母管。
优点:(1)各台阳、阴床可以单独进行操作,设备利用率高。
(2)转动设备少。
(3)酸碱单耗相对较低。
缺点:(1)不容易实现程控和自动化。
(2)再生时,向除盐水箱和系统漏酸、漏碱可能性比单元式大
(3)为严格控制水质,必须对阴床出水二氧化硅勤分析
184、混床设备内树脂组合有哪几种方式?其各自的工艺特点是什么?
答:混合床中阴阳树脂有以下几种组合方式:
(1)强酸、强碱式:这种组合方式出水质量最高,导电度小于0.2us/cm。硅酸根低于20ug/L.
(2)强酸、弱碱式:这种组合方式出水质量低,不能除去硅酸根、碳酸根等弱酸离子,出水导电度在0.5—2.0us/cm。但其再生效率高,运行费用低。
(3)弱酸、强碱式:这种组合方式出水质量居中,可除去硅酸根,出水导电度在1—2us/cm,再生效率也较高。此外,某些场合在阴阳树脂间加装一层惰性树脂,构成三层混床,可避免再生时再生液污染异性树脂。·
185、一般软化和除碱离子交换处理方式其系统设计有哪些?
(1)采用强酸性H离子交换剂的H—Na离子交换,此系统又可以分并列H—Na离子交换和串联H—Na离子交换。
(2)采用弱酸性H离子交换剂的H—Na离子交换。
(3)H型交换剂采用贫再生方式的H—Na离子交换。
采用上述方式主要是能除去水中的硬度,又可降低水的碱度,且不增加水中的含盐量。
186、什么叫一级除盐? 二级除盐?
答: 原水经过一次强酸阳离子交换器和强碱阴离子交换系统,称为一级除盐;如果经过两次,称为二级除盐;如果系统中有混床,混床本身算作一级。
187、 什么是叫移动床? 什么叫混合床? 什么叫浮动床?
答: 交换器中的树脂周期性地在交换塔,再生塔和清洗塔之间循环,并分别在各塔中同时完成离子的交换,再生和清洗过程,这种离子交换器称为移动床;混合床就是在一个离子交换器内按一定比例装有阴、阳离子两种树脂的离子交换设备;浮动床是指当水流自下而上经过离子交换器的树脂层时,如水流速度足够大,则整个树脂层向上浮动托起的离子交换设备。
188、什么叫离子交换器的自用水率?
答: 离子交换器每周期中反洗、再生、置换、清洗过程中耗用水量的总和,与其周期制水量的比称为自用水率。
189、混合床一般都设有上、中、下三个窥视窗,它们的作用是什么?
答:上部窥视窗一般用来观察反洗时树脂的膨胀情况;中部窥视窗用于观察设备中树脂的水平面,确定是否需要补充树脂;下部窥视窗用来检测树脂床准备再生前阴阳离子交换树脂的分层情况。
190、说明离子交换除盐再生原理?
答:交换器失效后,需要对树脂进行再生,实际上再生过程是除盐制水过程的的逆反应。
(1)阳树脂的再生。失效的阳树脂用3—5%的盐酸再生,用盐酸再生的反应如下:

Na+ Na
R Ca2+ + HCl RH + Ca CL
Mg2+ Mg
Fe3+ Fe
树脂大部转型为H型,而酸液变为含有残余酸的氯化物或硫酸盐(当用硫酸再生时)混合溶液被排入地沟。
(2)阴树脂的再生,失效的阴树脂用2—4%的NaOH溶液再生,其反应式为
CL Cl
R SO4 + NaOH ROH+Na SO4
HSiO3 HSiO3
HCO3 HCO3
反应结果,树脂大部转型为OH型,而碱液变为含有残余碱的钠盐混合液被排入地沟。
191、 什么叫逆流再生? 什么叫顺流再生?
答: 逆流再生是指制水时,水流方向和再生时再生液流动方向相反的再生方式。顺流再生是指制水时,水流的方向和再生液流动的方向一致。通常流向都是由上向下的再生方式。
192、逆流再生具有什么优点?为什么?
答:逆流再生的主要优点是出水质量好,再生酸碱耗低。这是由于逆流再生时,再生液从底部进入,首先接触的是尚未失效的树脂,这时由于再生液浓度较高,从树脂中交换下的被再生离子浓度很小,可以使树脂得到“深度再生”。再生液到上部时,虽然再生液浓度降低,杂质离子含量增高了,但由于树脂是深度失效的(饱和度高),所以仍然可以获得较好的再生效果,这样再生剂可以得到比较充分的利用。再生结果是,上部树脂再生得差一些,下部树脂再生得比较彻底。
在运行的情况下,水首先接触上部再生度较低的树脂,但此时由于水中杂质离子浓度含量大,所以可发生离子交换。当水进入底部时,虽然水中离子杂质也大为减少,但由于接触的是高再生度的树脂,仍可以进一步除去水中的杂质离子,使水得到深度净化。
193、为什么逆流再生对再生剂纯度要求较高?
答:从离子交换平衡理论可知,再生剂的纯度将会影响到树脂的再生度,从而影响到树脂的交换容量,逆流再生的特点是再生液首先接触出水区树脂,所以再生剂纯度对逆流再生影响较大,若出水区树脂再生度降低,将会直接影响出水水质。
194、逆流再生为什么要进行定期大反洗?
答:在进行逆流再生的设备中,为保证底层树脂始终维持较高的再生度,每次再生时不应将原树脂层打乱,只进行小反洗,既对中排装置上的压脂层进行反洗,而对于中排装置以下的绝大部分树脂不进行反洗。但为避免下部树脂被污染和清除其中的破碎树脂,以及防止因长期运行,树脂被压实结块、粘结等增加了阻力,影响出水流量,而使床内在运行时产“偏流”,或者影响再生效果。一般经15—20个周期需大反洗一次。由于大反洗后原有的树脂层分布遭到破坏,所以大反洗后应以2倍常量的酸、碱液进行再生。
195、顺流再生和逆流再生对再生液浓度的要求有什么不同?
答:一般说来,顺流再生时,再生液浓度应稍高一些,这是由于再生液首先与饱和度高的树脂接触,如果再生液浓度低,下部饱和度低的树脂无法得到充分再生,将会影响出水质量。
对逆流再生,再生液浓度可低一些。这是由于再生液首先与饱和度低的树脂接触,使底层树脂得到充分再生。随再生液向上移动,其浓度下降,但与其接触的是饱和度高的树脂,同样可以得到较好的再生。显然,再生液利用率也较高。
196、逆流再生固定床的中排装置有哪些类型?底部出水装置有哪些类型?
答:中排装置有:(1)母管支管式:母管与支管在同一平面及母管与支管不在同一平面 (2)管插式 (3)鱼刺式 (4)环管式。
底部出水装置有:(1)穹形多孔板加石英砂垫层(2)多孔板上加水帽或夹布形式(3)鱼刺形式(支管上开孔或装水帽)。
197、对逆流再生除盐设备中排管开孔面积有什么要求?
答:为使顶压空气和再生液不会在交换器内“堆积”,必须保证再生液及顶压空气从中排管顺利排出,方可保证再生时不发生树脂乱层。
一般说,中排管的开孔面积是进水面积的2.2—2.5倍,这也是白球压实逆流再生之所以不会乱层的重要保障。

阅读全文

与离子交换法是化学变化吗相关的资料

热点内容
污水带锁的井盖怎么打开 浏览:507
污水用途地埋防腐管道厂家多少钱 浏览:726
戴勒森空气滤芯怎么样 浏览:497
矿井涌水水处理工艺 浏览:741
鞍山蒸馏水厂家 浏览:482
草酸除垢剂哪里有卖 浏览:719
空压过滤器350AA表示 浏览:55
洗衣机废水怎么自动排出来 浏览:708
污水厂出水余氯标准 浏览:198
宽居空气净化器怎么样 浏览:412
污水水解速率常数 浏览:482
饮水机e2怎么回事 浏览:262
滞回区间有什么用 浏览:968
净水器选多少容量的 浏览:757
污水处理服务费交什么印花税 浏览:520
废水除氟新方法 浏览:777
乱倒厨余污水怎么处罚 浏览:788
污水处理盐度是什么 浏览:4
综合执法以什么凭据收污水 浏览:115
举报偷排污水是什么行为 浏览:850