这一般是指强酸阳树脂和强碱阴树脂的工作交换容量,比如在混床设计时,一般阳树脂装填体积量:阴树脂装填体积量为1:2,因为设计参数一般阳树脂001x7MB工作交换容量为900-1000mmol/L,阴树脂201x7MB工作交换容量为350-400mmol/L,为了尽量让阴阳树脂同时失效,所以采用调高阴树脂装填量,即使按阳:阴=1:2的比例,混床设备依然是阴树脂先失效,所以混床在线监测一般是先漏硅,后漏钠。同样的道理,在一级除盐水系统中,阳床和阴床的设备设计尺寸,也会根据阳阴树脂的工作交换容量差,作出相应调整,只是很多项目为了设备争气美观,采用了增加阴离子交换器的直径,而高度一般是统一的。
借此问题回答之际,呼吁国内离子交换树脂生产企业同行,将企业发展眼光放长远一些,尤其是个别企业(在此不方便一一点名),不要为了眼前的蝇头小利,生产那些偷工减料的产品,市场用户终究是会渐渐明白性价比的,国家也不会允许你们将三废如此偷排放的,因为你们的子孙后代终究还是需要这个地球,需要这份空气,需要一些干净的水源。
还有也顺便敬告广大用户,控制采购成本是需要专业技术为基础的,一味的打压供应商产品价格,您就不怕搬了石头砸自己的脚?买的终究没有卖的精,你那些所谓的节约降低采购成本,是否用专业数据统计过,您的使用成本?离子交换树脂最大的特点就是可以重复使用,如果在重复使用中,制水量不足,再生频率变高,酸碱耗水耗以及人工成本是否一一统计了?
最后呼吁国家废除现有招投标制度,因为现有的招投标法,已经严重被滥用,集体拍板也就是集体承担责任,其实也意味着没有人会去承担责任。国内市场持续十多年的低价恶性竞争,所谓的层层审批制度,这类制度成为了大众创新万众创业的拦路虎绊脚石,因为一些创新技术是需要终端市场去尝试的,其中必然存在失败的概率,而现如今,反腐让您怠工,招投标让您不愿去学习研究技术,长久如此下去,您的不进步,让我失去了为您提供服务的同时,也丧失了国内整个实体经济的良性有效持续发展的机会。
② 阴离子交换器(阴床)是如何处理水的
水处理中"阴床"(阴离子交换器),是吸附水中阴离子物质的一种离子交换设备…。华粼水质
③ 滤料是阴树脂,直径是2800的阴离子交换器最高产水是多少
∅2800mm的阴离子交换器,该阴床交换器每小时最大产水量应是153.8m³...。一杰水质
④ 阳床再生酸浓度如何确定
这是我的抄设计方案的简单计算,不知道对你有没有帮助?
强阳离子交换柱主要交换吸附废水中Ni2+、Na+及其他金属阳离子,同时置换出H+;强阴离子交换柱主要交换吸附废水中的阴离子,同时置换出OH-,H+和OH-反应生成H2O,保持透过液PH值呈中性,以便透过液回用。
⊙强阳离子交换器
设计流量:30m3/hr
树脂再生周期:7day
阳离子交换器树脂体积:▽ =1.66m3
阳离子交换器直径:D=1500mm
塔内流速:v=17m/h
树脂再生耗酸量:M=83000g
再生液体积:▽HCl=1621L
清洗水量:Q清洗=8.3m3/周期
⊙强阴离子交换器
设计流量:540m3/d=27m3/hr
再生周期:7day
阴离子交换器树脂体积:▽ =1.44 m3
阴离子交换器直径:D=1500mm
塔内流速:v=17m/h
树脂再生耗碱量:M=46900g
再生液体积:▽NaOH=889L
清洗水量:Q清洗=13m3/周期
⑤ 苏州普奇的阴离子交换器和阳离子交换器如何选型
单纯的离子交换器都是一样的,不一样的是交换器体内载体不同而已。至于交换器的选型,一个是氢型,另一个是氢氧型出厂...。
⑥ 水处理问题,
除碳器设在阳离子交换器后面和阴离子交换器的前面。
分析:当原水通过阳树脂时,水中的阳离子被吸附,树脂所带的H+被置换到水中,使水呈酸性,当PH<4时几乎全以二氧化碳气体形式存在,经过除碳器脱除后进入到阴床,而阴离子交换柱在酸性介质中易于交换;如果不脱除,二氧化碳气体与阴树脂反应,缩短阴树脂的交换容量,缩短工作周期,增加制水成本。但也不全是这样,根据原水的碱度的大小和所用树脂的品种不同可放置在不同位置:如原水碱度大或复床用强碱性阴树脂可放在阳床前;如原水碱度不大或复床用弱碱性阴树脂时可放在阴床后。
⑦ 阴阳离子交换器(混床)是什么东西
所谓混床,就是把一定比例的阳、阴离子交换树脂混合装填于同一交换装置中,对流体中的离子进行交换、脱除。运行前,先把它们分别再生生成OH 型和H 型,然后混合均匀。所以混床可以看作由许许多多阴阳树脂交错排列而组成的多级式复床。
所以混床中有两种树脂分别为阴离子交换树脂,阳离子交换树脂。
⑧ 什么是阴阳离子交换器(混床)
混床是将阴阳离子交换树脂按一定混合比例装填在同一个离子交换器内,由于混合离子交换后进入水中的H离子与OH离子立即生成电离度很低的水分子
⑨ 电厂化学制水运行监视哪些
这要看有哪些运行设备,目前多数用的是过滤器+超滤+反渗透+离子交换器。一般监视进出水流量、进出水压力、电机电流、进出水水质(根据报表)等。
⑩ 离子交换器的工作原理
工作原理就是离子的交换。
运行时:阳树脂(H-R)+(M+)-->:(M-R)+(H+)
阴树脂(OH-R)+(X-)-->:(X-R)+(OH-)
其中M+为金属离子,X-为阴离子。
再生过程为其逆过程。
离子交换器的失效控制
离子交换除盐水处理最简单的流程为 阳床-阴床 组成的一级复床除盐系统。有的一级复床除盐系统采用单元制,即每套一级复床除盐系统包括 阳床、(除碳器)、阴床各一台,在离子交换除盐运行过程中,无论是阳床还是阴床先失效,都是同时再生;还有的一级复床除盐系统采用母管制,即阳床与阳床或阴床与阴床是并联运行的,哪一台交换器失效就再生哪一台。
1 检测和控制原理
强酸性阳树脂对水中各种阳离子的吸附顺序为:Fe3+>Al3+>Ca2+>Mg2+>Na+>H+. ;由此可知,水中金属离子Na+被吸附的能力最弱,所以当离子交换时树脂层的各种离子吸附层逐渐下移,H+.最后被其他阳离子置换下来,当保护层穿透时,首先泄漏的是最下层的Na+;因此监督阳离子交换器失效是以漏钠为标准的;其反应方程为(A代表金属阳离子,R为树脂基团):
An+ +nRH=RnA+n H+
HCO3- + H+ =H2O+CO2↑
强碱性阴树脂对水中各种阴离子的吸附顺序为:SO42->NO3->Cl->OH->HCO3->HSiO3- 。由此可知,HSiO3-的吸附能力最弱,所以当离子交换时树脂层的各种离子吸附层逐渐下移,OH-.被其他阴离子置换下来,当保护层穿透时,首先泄漏的是最下层的HSiO3-;因此监督阴离子交换器失效是以漏硅为标准的;其反应方程为(B代表酸根阴离子,R为树脂基团):
Bm- +mROH=RmB+mOH-
2 控制点和控制方法
由于母管制系统包含了单元制系统,而且它具有能充分使用树脂、提高交换器的出水能力、降低酸碱消耗等优点,我们在研究中主要讨论以这种结构为基础的离子交换除盐水处理系统。
以成都生物制品研究所蛋白分离车间纯水站为例,该系统为母管制水处理系统,系统的结构为:砂滤-活性炭过滤-粗滤-阳床- 一阴-二阴-混床-精滤-纯水罐,系统产水能力为5 t/h,在系统的失效控制研究中,我们提出单元失效控制概念,也就是充分利用了母管制制水系统的优点对系统进行失效控制。
(1)RO对各有机溶质的去除率大于NF膜。(2)不同有机溶质的去除率不相同,有的甚至相差很大(例如,RO和NF膜对乙酸的吸光度去除率分别为95.34%、81.45%,而对苯胺的吸光度去除率则分别为61.50%、46.82%)。
3 出水水质
原水经一级复床除盐后,电导率(25℃)低于10μS/cm,水中硅含量低于100μg/L。