❶ 布隆过滤器和替代算法
布隆过滤器和替代算法:但是布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。
但是包含查找的数据项的数据文件它一定是会返回的,key-value系统中bloom filter返回的数据文件还是需要查看里面的内容才能知道是否存在所需的数据的,这就保证了执行结果的正确性和完整性。
只是多访问一些数据文件而已。在数据量很大key-value系统中,建立统一的B+树索引的代价是非常大的,维护成本也很高,因此综合起来bloom filter的性能是最好的。
缺点:
但是布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。常见的补救办法是建立一个小的白名单,存储那些可能被误判的元素。但是如果元素数量太少,则使用散列表足矣。
另外,一般情况下不能从布隆过滤器中删除元素。我们很容易想到把位列阵变成整数数组,每插入一个元素相应的计数器加1, 这样删除元素时将计数器减掉就可以了。
❷ 布隆过滤器既然有错误率,为什么还能应用在key-value系统中
bloom filter的特点是会出现误报,但不会漏报,也就是说对于bloom filter验证的一个数据内文件,可能不包含容你查找的数据项,但是包含你查找的数据项的数据文件它一定是会返回的,key-value系统中bloom filter返回的数据文件还是需要查看里面的内容才能知道是否存在所需的数据的,这就保证了执行结果的正确性和完整性。因此key-value系统不会因此而出错的,只是多访问一些数据文件而已。在数据量很大key-value系统中,建立统一的B+树索引的代价是非常大的,维护成本也很高,因此综合起来bloom filter的性能是最好的。
❸ 该怎么解决 Redis 缓存穿透和缓存雪崩问题
缓存雪崩: 由于缓存层承载着大量请求,有效地 保护了存储层,但是如果缓存层由于某些原因不能提供服务,比如 Redis 节点挂掉了,热点 key 全部失效了,在这些情况下,所有的请求都会直接请求到数据库,可能会造成数据库宕机的情况。
预防和解决缓存雪崩问题,可以从以下三个方面进行着手:
1、使用 Redis 高可用架构:使用 Redis 集群来保证 Redis 服务不会挂掉
2、缓存时间不一致: 给缓存的失效时间,加上一个随机值,避免集体失效
3、限流降级策略:有一定的备案,比如个性推荐服务不可用了,换成热点数据推荐服务
缓存穿透: 缓存穿透是指查询一个根本不存在的数据,这样的数据肯定不在缓存中,这会导致请求全部落到数据库上,有可能出现数据库宕机的情况。
预防和解决缓存穿透问题,可以考虑以下两种方法:
1、缓存空对象: 将空值缓存起来,但是这样就有一个问题,大量无效的空值将占用空间,非常浪费。
2、布隆过滤器拦截: 将所有可能的查询key 先映射到布隆过滤器中,查询时先判断key是否存在布隆过滤器中,存在才继续向下执行,如果不存在,则直接返回。布隆过滤器有一定的误判,所以需要你的业务允许一定的容错性。
❹ 布隆过滤器的优点
相比于其它的数抄据结袭构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数。另外, Hash函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。
布隆过滤器可以表示全集,其它任何数据结构都不能;
k和m相同,使用同一组Hash函数的两个布隆过滤器的交并差运算可以使用位操作进行。
布隆过滤器
❺ 什么是缓存穿透
缓存穿透的概念很简单,用户想要查询一个数据,发现redis内存数据库没有,也就是缓存没有命中,于是向持久层数据库查询。
发现也没有,于是本次查询失败。当用户很多的时候,缓存都没有命中,于是都去请求了持久层数据库。
这会给持久层数据库造成很大的压力,这时候就相当于出现了缓存穿透。
解决方案
1、对请求参数做校验,例如可以用正则;
2、缓存空对象, 当存储层不命中后,即使返回的空对象也将其缓存起来,同时会设置一个过期时间,之后再访问这个数据将会从缓存中获取,保护了后端数据源;
但是这种方法会存在两个问题:
2.1、 如果空值能够被缓存起来,这就意味着缓存需要更多的空间存储更多的键,因为这当中可能会有很多的空值的键;
2.2、即使对空值设置了过期时间,还是会存在缓存层和存储层的数据会有一段时间窗口的不一致,这对于需要保持一致性的业务会有影响。
❻ 布隆过滤器的介绍
布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。
❼ 缓存穿透有哪些解决办法
具体有哪些解决办法?
最基本的就是首先做好参数校验,一些不合法的参数请求直接抛出异常信息返回给客户端。比如查询的数据库 id 不能小于 0、传入的邮箱格式不对的时候直接返回错误消息给客户端等等。
1)缓存无效 key : 如果缓存和数据库都查不到某个 key 的数据就写一个到 redis 中去并设置过期时间,具体命令如下:SET key value EX 10086。这种方式可以解决请求的 key 变化不频繁的情况,如何黑客恶意攻击,每次构建的不同的请求key,会导致 redis 中缓存大量无效的 key 。很明显,这种方案并不能从根本上解决此问题。如果非要用这种方式来解决穿透问题的话,尽量将无效的 key 的过期时间设置短一点比如 1 分钟。另外,一般情况下我们是这样设计 key 的: 表名:列名:主键名:主键值。
2)布隆过滤器:布隆过滤器是一个非常神奇的数据结构,通过它我们可以非常方便地判断一个给定数据是否存在与海量数据中。我们需要的就是判断 key 是否合法,有没有感觉布隆过滤器就是我们想要找的那个“人”。具体是这样做的:把所有可能存在的请求的值都存放在布隆过滤器中,当用户请求过来,我会先判断用户发来的请求的值是否存在于布隆过滤器中。不存在的话,直接返回请求参数错误信息给客户端,存在的话才会走下面的流程。总结一下就是下面这张图(这张图片不是我画的,为了省事直接在网上找的):
❽ 如何用python写布隆过滤器
下面的是网络上找到的python的布隆过滤器的实现.
#!/usr/local/bin/python2.7
#coding=gbk
'''
Createdon2012-11-7
@author:palydawn
'''
importcmath
fromBitVectorimportBitVector
classBloomFilter(object):
def__init__(self,error_rate,elementNum):
#计算所需要的bit数
self.bit_num=-1*elementNum*cmath.log(error_rate)/(cmath.log(2.0)*cmath.log(2.0))
#四字节对齐
self.bit_num=self.align_4byte(self.bit_num.real)
#分配内存
self.bit_array=BitVector(size=self.bit_num)
#计算hash函数个数
self.hash_num=cmath.log(2)*self.bit_num/elementNum
self.hash_num=self.hash_num.real
#向上取整
self.hash_num=int(self.hash_num)+1
#产生hash函数种子
self.hash_seeds=self.generate_hashseeds(self.hash_num)
definsert_element(self,element):
forseedinself.hash_seeds:
hash_val=self.hash_element(element,seed)
#取绝对值
hash_val=abs(hash_val)
#取模,防越界
hash_val=hash_val%self.bit_num
#设置相应的比特位
self.bit_array[hash_val]=1
#检查元素是否存在,存在返回true,否则返回false
defis_element_exist(self,element):
forseedinself.hash_seeds:
hash_val=self.hash_element(element,seed)
#取绝对值
hash_val=abs(hash_val)
#取模,防越界
hash_val=hash_val%self.bit_num
#查看值
ifself.bit_array[hash_val]==0:
returnFalse
returnTrue
#内存对齐
defalign_4byte(self,bit_num):
num=int(bit_num/32)
num=32*(num+1)
returnnum
#产生hash函数种子,hash_num个素数
defgenerate_hashseeds(self,hash_num):
count=0
#连续两个种子的最小差值
gap=50
#初始化hash种子为0
hash_seeds=[]
forindexinxrange(hash_num):
hash_seeds.append(0)
forindexinxrange(10,10000):
max_num=int(cmath.sqrt(1.0*index).real)
flag=1
fornuminxrange(2,max_num):
ifindex%num==0:
flag=0
break
ifflag==1:
#连续两个hash种子的差值要大才行
ifcount>0and(index-hash_seeds[count-1])<gap:
continue
hash_seeds[count]=index
count=count+1
ifcount==hash_num:
break
returnhash_seeds
defhash_element(self,element,seed):
hash_val=1
forchinstr(element):
chval=ord(ch)
hash_val=hash_val*seed+chval
returnhash_val
'''
#测试代码
bf=BloomFilter(0.001,1000000)
element='palydawn'
bf.insert_element(element)
printbf.is_element_exist('palydawn')'''
#其中使用了BitVector库,python本身的二进制操作看起来很麻烦,这个就简单多了
如果解决了您的问题请采纳!
如果未解决请继续追问
❾ 布隆过滤器的缺点
但是布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的专元素数量增加,属误算率随之增加。但是如果元素数量太少,则使用散列表足矣。
另外,一般情况下不能从布隆过滤器中删除元素。我们很容易想到把位列阵变成整数数组,每插入一个元素相应的计数器加1, 这样删除元素时将计数器减掉就可以了。然而要保证安全的删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面. 这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。
在降低误算率方面,有不少工作,使得出现了很多布隆过滤器的变种。
❿ 看过的视频让用户不再观看为什么使用布隆过滤器而不是直接使用setBit与getBit进行取值比对呢
不行。
因为布隆过滤器的原理是用多个hash函数对id进行hash后得到一系列值,而在布隆数组中看这些值回对应答的位上是否命中,如果都命中说明这个值重复。
用id不经过hash直接去对比,乍一想好像可以,但是你想想,假如id是10位,并且我们只用数字,那么布隆过滤器的长度只有10位(0123456789),这个长度的过滤器几乎没法使用,容量太低,误差率太高。即使算上大小写字母,也只有62个,看似62很多,但是这里定死了id必须用这62个字符,而假如中间加一层hash,那id用什么字符和我布隆过滤器用什么字符以及过滤器的长度都可以自由指定,灵活很多。