导航:首页 > 净水问答 > deae阴离子交换层析法

deae阴离子交换层析法

发布时间:2022-05-11 00:41:52

A. DEAE 层析原理是什么

给你找了以前的文章,你可以看一下。如下。。
层析技术是以离子交换纤维素或以离子交换葡聚糖凝胶为固定相,以蛋白质等样品为移动相,分离和提纯蛋白质、核酸、酶、激素、多糖等的一项技术。
在纤维素与葡聚糖分子上结合有一定的离子基团,当结合阳离子基团时,可换出阴离子,则称为阴离子交换剂。如二乙氨乙基(Dicthylaminoethyl,DEAE)纤维素。在纤维素上结合了DEAE,含有带正电荷的阳离子纤维素—O—C6 H14N+H,它的反离子为阴离子(如Cl-等),可与带负电荷的蛋白质阴离子进行交换。当结合阴离子基团时,可置换阳离子,称为阳离子交换剂,如羧甲基(Carboxymethy, CM)纤维素。纤维素分子上带有负电荷的阴离子(纤维素-O-CH2-COO一),其反离子为阳离子(如Na+等),可与带正电荷蛋白质阳离子进行交换。
溶液的pH值与蛋白质等电点相同时,静电荷为0,当溶液pH值大于蛋白质等电点时,则羧基游离,蛋白质带负电荷。反之,溶液的pH值小于蛋白质等电点时,则氨基电离,蛋白质带正电荷。溶液的pH值距蛋白质等电点越远,蛋白质的电荷越多。反之则越少。血清蛋白质均带负电荷,但各种蛋白质带负电荷的程度有所差异,以白蛋白为最多,依次为 球蛋白, 球蛋白和 球蛋白。
在适当的盐浓度下,溶液的pH值高于等电点时,蛋白质被阴离子交换剂所吸附;当溶液的pH值低于等电点时,蛋白质被阳离子交换剂所吸附。由于各种蛋白质所带的电荷不同。它们与交换剂的结合程度也不同,只要溶液pH值发生改变,就会直接影响到蛋白质与交换剂的吸附,从而可能把不同的蛋白质逐个分离开来。
交换剂对胶体离子(如蛋白质)和无机盐离子(如NaCl)都具有交换吸附的能力,当两者同时存在于一个层析过程中,则产生竞争性的交换吸附。当Cl一的浓度大时,蛋白质不容易被吸附,吸附后也易于被洗脱,当Cl一浓度小时,蛋白质易被吸附,吸附后也不容易被洗脱。因此,在离子交换层析中,一般采用两种方法达到分离蛋白质的目的。一种是增加洗脱液的离子强度,一种是改变洗脱液的pH值。pH值增高时,抑制蛋白质阳离子化,随之对阳离子交换剂的吸附力减弱。pH值降低时,抑制蛋白质阴离子化,随之降低了蛋白质对阴离子交换剂的吸附。当使用阴离子交换剂时,增加盐离子,则降低pH值。当使用阳离子交换剂时,增加盐离子浓度,则升高溶液pH值。

B. 有谁用过deae-sephacel层析

deae-sephacel就是DEAE纤维素
和DEAE-Sepharose及DEAE-Sephacryl差不多
是弱的阴离子交换介质
参照一般的阴离子交换介质用法就可以了

C. 离子交换层析法原理是什么

是以离子交换剂为固定相,依据流动相中的组分离子与交换剂上的平衡离子进行可逆交换时的结合力大小的差别,而进行分离的一种层析方法

D. 求分离,纯化,鉴定γ球蛋白的具体方法(包括原理,步骤,预期结果,注意事项)谢谢

[原理]

血清中蛋白质按电泳法一般可分为五类:清蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白和γ-球蛋白,其中γ-球蛋白含量约占16%,100ml血清中约含1.2g左右。

首先利用清蛋白和球蛋白在高浓度中性盐溶液中(常用硫酸铵)溶解度的差异而进行沉淀分离,此为盐析法。半饱和硫酸铵溶液可使球蛋白沉淀析出,清蛋白则仍溶解在溶液中,经离心分离,沉淀部分即为含有γ-球蛋白的粗制品。

用盐析法分离而得的蛋白质中含有大量的中性盐,会妨碍蛋白质进一步纯化,因此首先必须去除。常用的方法有透析法、凝胶层析法等。本实验采用凝胶层析法,其目的是利用蛋白质与无机盐类之间分子量的差异。当溶液通过SephadexG--25凝胶柱时,溶液中分子直径大的蛋白质不能进入凝胶颗粒的网孔,而分子直径小的无机盐能进入凝胶颗粒的网孔之中.因此在洗脱过程中,小分子的盐会被阻滞而后洗脱出来,从而可达到去盐的目的。

脱盐后的蛋白质溶液尚含有各种球蛋白,利用它们等电点的不同可进行分离。α-球蛋白、β-球蛋白的PI<6.0;γ-球蛋白的PI为7.2左右。因此在PH6.3的缓冲溶液中,各类球蛋白所带电荷不同。经DEAE(二乙基氨基乙基)纤维素阴离子交换层析柱进行层析时,带负电荷的α-球蛋白和β-球蛋白能与DEAE纤维素进行阴离子交换而被结合;带正电荷的γ-球蛋白则不能与DEAE纤维素进行交换结合而直接从层析柱流出。因此随洗脱液流出的只有γ-球蛋白,从而使γ-球蛋白粗制品被纯化。其反应式如下:

用上述方法分离得到γ-球蛋白是否纯净,单一?可将纯化前后的γ-球蛋白进行电泳比较而鉴定之。

[操作]

(1)盐析――中性盐沉淀:取正常人血清2.0ml于小试管中,加0.9%氯化钠溶液2.0ml,边搅拌混匀边缓慢滴加饱和硫酸铵溶液乙4.0ml,混匀后于室温中放置10min,3000r/min离心10min。小心倾去含有清蛋白的上清液,重复洗涤一次,于沉淀中加入0.0175mol/L磷酸盐缓冲液(pH6.3)0.5~1.Oml使之溶解。此液即为粗提的γ-球蛋白溶液。

(2)脱盐――凝胶柱层析

①装柱

洗净的层析柱保持垂直位置,关闭出口,柱内留下约2.0ml洗脱液。一次性将疑胶从塑料接口加入层析柱内,打开柱底部出口,调节流速0.3ml/min。凝腔随柱内溶液慢慢流下而均匀沉降到层析柱底部,最后使凝胶床达20厘米高,床面上保持有洗脱液,操作过程中注意不能让凝胶床表面露出液面并防止层析床内出现“纹路”。在凝胶表面可盖一园形滤纸,以免加入液体时冲起胶粒。

②上样与洗脱:可以在凝胶表面上加圆形尼龙滤布或滤纸使表面平整,小心控制凝胶柱下端活塞,使柱上的缓冲液面刚好下降至凝胶床表面,关紧下端出口,用长滴管吸取盐析球蛋白溶液,小心缓慢加到凝胶床表面。打开下端出口,将流速控制在0.25ml/min使样品进入凝胶床内。关闭出口,小心加入少量0.0175mol/L磷酸盐缓冲液(pH6.3)洗柱内壁。打开下端出口,待缓冲液进入凝胶床后再加少量缓冲液。如此重复三次,以洗净内壁上的样品溶液。然后可加入适量缓冲液开始洗脱。

加样开始应立即收集洗脱液。洗脱时接通蠕动泵,流速为0.5ml/min,用部分收集器收集,每管1ml。

③洗脱液中NH4+与蛋白质的检查:取比色板两个(其中一个为黑色背底),按洗脱液的顺序每管取一滴,分别滴入比色板中,前者加20%磺基水杨酸溶液2滴,出现白色混浊或沉淀即示有蛋白质析出,由此可估计蛋白质在洗脱各管中的分布及浓度;于另一比色板中,加人奈氏试剂应用液l滴,以观察NH4+出现的情况。

合并球蛋白含量高的各管,混匀。除留少量作电泳鉴定外,其余用DEAE纤维素阴离子交换柱进一步纯化。

(3)纯化――DEAE纤维素阴离子交换层析:用DEAE纤维素装柱约8-10cm高度,并用0.0175mol/L磷酸盐缓冲液(pH6.3)平衡,然后将脱盐后的球蛋白溶液缓慢加于DEAE纤维素阴离子交换柱上,用同一缓冲液洗脱、分管收集。用20%磺基水杨酸溶液检查蛋白质分布情况。(装柱、上样、洗脱,收集及蛋白质检查等操作步骤同凝胶层析)。

(4)浓缩――经DEAE纤维素阴离于交换柱纯化的γ-球蛋白液往往浓度较低。为便于鉴定,常需浓缩。收集较浓的纯化的γ-球蛋白溶液2m1,按每ml加0.2~ 0.25gSephadex G一25干胶,摇动2~3min, 3000r/min 离心5min。上清液即为浓缩的γ-球蛋白溶液。

(5)鉴定――乙酸纤维素薄膜电泳 取乙酸纤维素薄膜2条,分别将血清、脱盐后的球蛋白、DEAE纤维素阴离子交换柱纯化的γ-球蛋白液等样品点上。然后参阅实验二十四:乙酸纤维薄膜电泳法进行电泳分离、染色。比较电泳结果。

[注意事项]

(1)凝胶及DEAE纤维处理期间,必须小心用倾泻法除去细小颗粒。这样可使凝胶及纤维素颗粒大小均匀,流速稳定,分离效果好。

(2)装柱是层析操作中最重要的一步。为使柱床装得均匀,务必做到凝胶悬液或DEAE纤维素混悬液不稀不厚,一般浓度为l:l,进样及洗脱时切勿使床面暴露在空气中,不然柱床会出现气泡或分层现象;加样时必须均匀,切勿搅动床面,否则均会影响分离效果。

(3)本法是利用γ-球蛋白的等电点与α-、β-球蛋白不同,用离子交换层析法进行分离的。因此层析过程中用的缓冲液pH要求精确。

(4)电泳注意事项见实验二十四。

(5)凝胶贮存:凝胶使用后如短期不用,为防止凝胶发霉可加防腐剂如0.02%叠氮钠。保存于4℃冰箱内。若长期不用,应脱水干燥保存。脱水方法:将膨胀凝胶用水洗净。用多孔漏斗抽干后,逐次更换由稀到浓的乙醇溶液浸泡若干时间,最后一次用95%乙醇溶液浸泡脱水,然后用多孔漏斗抽干后,于60~80℃烘干贮存。

(6)离子交换剂的再生和保存;离子交换剂的价格较贵,每次用后只需再生处理便能反复使用多次。处理方法是:交替用酸、碱处理,最后用水洗至接近中性。阳离子交换剂最后为Na型,阴离子以Cl型是最稳定型,故阴离子交换剂处理顺序为碱一水一酸一水。由于上述交换剂都是糖链结构。容易水解破坏,因此须避免强酸、强碱长时间浸泡和高温处理,一般纤维素浸泡时间为3-4h。

离子交换剂容易长霉引起变质,不用时,需洗涤干净,加防腐剂置冰箱内保存。常用0.02%叠氮钠防腐。叠氮钠遇酸放出有毒气体,也是剧毒与易爆的危险品。使用时要加倍小心。

除用凝胶层析法去除无机盐类外,最常用的去盐法就是透析。细的透析袋效率高,所需时间短。将透析袋一端折叠,用橡皮筋结扎,试验是否逸漏,然后倒入待透析的蛋白质溶液。勿装太满,将袋的上端也结扎好,即可进行透析。开始可用流动的自来水,待大部分盐被透析出后,再改为生理盐水、缓冲液或蒸馏水。透析最好在较低的温度下,并在磁力搅拌器上进行。此法简单,易操作,仪器及试剂要求不高,但不如凝胶层析法效率高。

浓缩γ-球蛋白粗提液除上述方法外还可用透析袋浓缩。将待浓缩的蛋白质溶液放入较细的透析袋中,置入搪瓷盘内。透析袋周围可撒上聚乙二醇6000(PEG6000),或聚乙烯吡咯酮,或蔗糖。以上物质在使用后(吸了大量水)都可以通过加温及吹风而回收;将装有蛋白质溶液的透析袋悬挂起来,用电风扇高速吹风(10℃以下),也可达到浓缩目的,以上两法虽不如 SephadexG一25干胶快,但价格较便宜,方法也不烦琐。

[试剂]

(1)饱和硫酸铵溶液:称固体硫酸铵(分析纯)850g,置于1000ml蒸馏水中,在70一80℃水温中搅拌溶解。将酸度调节至pH7.2,室温中放置过夜,瓶底析出白色结晶,上清液即为饱和硫酸铵溶液。

(2)葡聚糖凝胶G一25的处理:按每100ml凝胶床体积需要葡聚糖凝胶G一25干胶 25g。称取所需量置于锥形瓶中。每克干胶加入蒸馏水约30ml,用玻璃棒轻轻混匀,置于90~100℃水温中时时搅动,使气泡逸出。1h后取出,稍静置,倾去上清液细粒。也可于室温中浸泡24h,搅拌后稍静置,倾去上清液细粒,用蒸馏水洗涤2~3次,然后加0.017mol/L磷酸盐缓冲液(pH6.3)平衡,备用。

(3)DEAE一32(二乙基氨基乙基一32)纤维素的处理:按100ml柱床体积需DEAE纤维素14g称取,每克加0.5mol/L盐酸溶液15ml,搅拌。放置30min(盐酸处理时间不可太长,否则DEAE纤维素变质)。加约l0倍量的蒸馏水搅拌,放置片刻,待纤维素下沉后,倾弃含细微悬浮物的上层液。如此反复数次。静置30min,虹吸去除上清液(也可用布氏漏斗抽干),直至上清液pH>4为止。加等体积lmol/L氢氧化钠溶液,使最终浓度约为0.5mol/L氢氧化钠,搅拌后放置30min,以虹吸除去上层液体。同上用蒸馏水反复洗至pH<7为止。虹吸去除上层液体,然后加入0.0175mol/L磷酸盐缓冲液(pH6.3)平衡,备用。

(4)0.0175mol/L磷酸盐缓冲液(pH6.3)

A液:称取磷酸二氢钠(NaH2PO4.2H20)2.730g溶于蒸馏水中,加蒸馏水稀释至1000ml。

B液:称取磷酸氢二钠(Na2HPO4.12H20)6.269g,溶于蒸馏水中,加蒸馏水稀释至 1000mL。

取A液77.5ml,加于B液22.5ml,混匀后即成。

(5)20%磺基水杨酸溶液

(6)奈氏(Nessler)试剂应用液

①贮存液;称取碘化钾(KI)7.58于250ml三角烧瓶中,用蒸馏水5ml溶解,再加入碘(I2) 5.5g溶解,加7~7.5gHg用力振摇10min(此时产生高热,须冷却),直至棕红色的碘转变成带绿色的碘化汞钾液为止,过滤上清液倾入100ml容量瓶,洗涤沉淀,洗涤液一并倒入容量瓶内,用蒸馏水稀释至100ml。

②应用液:取贮存液75ml加10%NaOH 350ml,加水至500mL。

(7)0.9%氯化钠溶液

(8)乙酸纤维素薄膜电泳有关试剂(见实验二十四)

(四)亲和层析

生物体中许多高分子化合物之间具有专—性可逆结合的特征,例如:酶蛋白和辅酶,抗原和抗体,激素与受体,核糖核酸与互补的脱氧核糖核酸等。生物分子间的这种专一性结合能力称为亲和力,根据生物分子间亲和力大小产生吸附和解吸作用而建立的层析方法称为亲和层析。

亲和层析的基本过程如下:具有亲和力的一对分子,其中一种分子作为配基,固定化结合在不溶性载体上装入层析柱成亲和柱,当含有另—种分子的混合液作为流动相流入亲和柱时,能与配基亲和结合的分子被吸附,其它杂质直接流出,再改变流动相的溶液,使配基与其亲和物解离从而解吸出待分离的分子来。

亲和层析中最常用的具有亲和力的生物体系有:

酶:底物、抑制剂、辅酶

抗体:抗原、病毒、细胞

外源凝集素:受体、载体蛋白

细胞:细胞表面特异蛋白,外源性凝集素

E. 请问羧甲基纤维素和DEAE纤维素分离蛋白有什么区别

羧甲基纤维素是弱阳离子交换填料,要求使用时的pH值要低于目的蛋白质等电点起码0.5个pH值单位,为了达到较好的分离效果,实际使用时最好是低于1个以上pH值单位。在低pH值下,有的不耐酸的杂质蛋白质会变性,届时离心除去,可首先去除一部分杂质蛋白质。
DEAE纤维素是弱阴离子交换层析填料,要求使用时的pH值要高于目的蛋白质等电点起码0.5个pH值单位,为了达到较好的分离效果,实际使用时最好是高于1个以上pH值单位。大多数蛋白质的等电点在6.0左右,可以耐受8.0,所以依据pH提高使得某些杂质蛋白质变性的做法多数情况下不可行。
这两种填料的工作pH值不同,但都可以用氯化钠来洗脱。交换基团不同,分离效果也不同,可以先用一种来纯化,得到初步纯化的产物之后再用另一种来纯化。因为有些蛋白质不能耐受酸,所以我建议先用羧甲基纤维素弱阴离子交换层析,再用DEAE纤维素弱阳离子交换层析,产物的纯度比单用一种时更高。
在对蛋白质的破坏方面,弱交换填料比强交换填料好,有的蛋白质用强离子交换来纯化,蛋白质结合再交换之后会损失很多活力,但是弱离子交换则损失的活力较少。但是弱离子交换的分辨率比强离子交换差一些。如果纯化得不好,又有强离子交换的,就试一下吧。lxj341401(站内联系TA)一个是阳离子交换填料,一个是阴离子交换填料,用哪个跟蛋白值的等电点pI还有所用缓冲液的pH有关,pH>pI时带负电荷,蛋白质能吸附到阴离子交换填料,相反的用阳离子交换。所以能不能代替看具体情况了。悦迷008(站内联系TA)Originally posted by 冼亮淀粉酶 at 2011-07-15 06:00:21:
这两个填料虽然都是离子交换用的,但一个是弱阴一个是弱阳,效果不同,没有一个能代替另一个的说法。

F. 用过的sephadex G-25层析柱和DEAE纤维素离子交换柱再生的方法为什么不一样

飞秒检测发现sephadex G-25层析柱填料是葡聚糖交联的凝胶柱,G-X, X:(1)交联度。X越小,交联度越大,网孔越小,适用于分离低分子量产品,反之亦然。(2)吸水量。为凝胶得水值的10倍.例如,G-25为每克凝胶膨胀时吸水2.5克.凝胶柱使用一次后,必须反冲疏松一次,平衡后再使用。若使用数次,就需要再生处理。用0.1mol/L NaOH-0.5mol/L NaCl溶液浸泡,然后用蒸馏水洗至中性备用。若实验完毕,将再生后的凝胶在布氏漏斗上用蒸馏水洗涤抽干,再用95%乙醇洗两次,在60℃烘箱中烘干,回收保存。
DEAE-纤维素为二乙氨乙基纤维素,是阴离子交换剂。基质是由带有电荷的树脂或纤维素组成。离子交换层析中,基质是由带有电荷的树脂或纤维素组成。带有正电荷的称之阴离子交换树脂;而带有负电荷的称之阳离子树脂。离子交换层析同样可以用于蛋白质的分离纯化。由于蛋白质也有等电点,当蛋白质处于不同的pH条件下,其带电状况也不同。阴离子交换基质结合带有负电荷的蛋白质,所以这类蛋白质被留在柱子上,然后通过提高洗脱液中的盐浓度等措施,将吸附在柱子上的蛋白质洗脱下来。结合较弱的蛋白质首先被洗脱下来。反之阳离子交换基质结合带有正电荷的蛋白质,结合的蛋白可以通过逐步增加洗脱液中的盐浓度或是提高洗脱液的pH值洗脱下来。离子交换剂的再生与保存离子交换剂可在柱上再生。如离子交换纤维素可用2mol/:NaCl淋洗柱,若有强吸附物则可用0.1mol/LNaOH洗柱;若有脂溶性物质则可用非离子型去污剂洗柱后再生,也可用乙醇洗涤,其顺序为:0.5mol/LNaOH-水-乙醇-水-20%NaOH-水。保存离子交换剂时要加防腐剂。对阴离子交换剂宜用0.002%氯已定(洗必泰),阳离子交换剂可用乙基硫柳汞(0.005%)。有些产品建议用0.02%叠氮钠。
两种填料的抗酸碱性和抗腐蚀性能不同。

G. 离子交换层析的原理是什么 已解决

离子交换层析法是从复杂的混合物中,分离性质相似大分子的方法之一,依据的原理是物内质的酸碱性容,极性,所带阴阳离子的不同。电荷不同的物质,对管柱上的离子交换剂有不同的亲和力,改变冲洗液的离子强度和pH值,物质就能依次从层析柱中分离出来。

层析开始前,功能基团与反离子稳定结合,就与反离子发生可逆交换,与层析剂结合被固定下来。因为盐离子可以与底物竞争功能基团,盐浓度越高样品与层析剂结合越不紧密,易被洗脱下来。不同物质与层析剂结合程度不同,洗脱下来的时间不同,因此得以分开。

(7)deae阴离子交换层析法扩展阅读

离子交换剂的选择首重保持欲分离物质的生物活性,以及在不同pH值环境中,此物质所带的电荷和电性强弱,阴阳离子交换剂的选择若被分离物质带正电荷,这些碱性蛋白质,它们在酸性溶液中较稳定,亲和力强,故采用阳离子交换剂。

在碱性溶液中较稳定,则使用阴离子交换剂,如果欲分离的物质是两性离子,一般考虑在它稳定的pH范围带有何种电荷,作为交换剂的选择。离子交换剂的再生与保存离子交换剂可在柱上再生,若有脂溶性物质则可用非离子型去污剂洗柱后再生,也可用乙醇洗涤。

H. DEAE CL-6B 阴离子交换层析柱分离 β葡萄糖苷酶,酶一直洗脱不下来怎么办.提高ph有用吗

可以考虑上升洗脱液离子强度,但保证蛋白质不变性
另外让目标蛋白与介质结合的力度小一些; 改变环境的酸碱度,更换介质,更换缓冲液等

I. 蛋白质的分离方法有哪些它们各依据蛋白质的什么性质或特点

(一)水溶液提取法

稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。提取的温度要视有效成份性质而定。一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。
下面着重讨论提取液的pH值和盐浓度的选择。
1、pH值
蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH
范围内。用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液。
2、盐浓度
稀浓度可促进蛋白质的溶,称为盐溶作用。同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等中性盐,一般以0.15摩尔。升浓度为宜。缓冲液常采用0.02-0.05M磷酸盐和碳酸盐等渗盐溶液。
(二)有机溶剂提取法
一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。但必须在低温下操作。丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁醇亲脂性强,特别是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为6.6%)不会引起酶的变性失活。另外,丁醇提取法的pH及温度选择范围较广,也适用于动植物及微生物材料。
二、蛋白质的分离纯化
蛋白质的分离纯化方法很多,主要有:
(一)根据蛋白质溶解度不同的分离方法
1、蛋白质的盐析
中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。盐析时若溶液pH在蛋白质等电点则效果更好。由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。
影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行。一般温度低蛋白质溶介度降低。但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析。(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低。(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象)。因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在2.5-3.0%。
蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等。
其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为4.1M,即767克/升;0度时饱和溶解度为3.9M,即676克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性。硫酸铵溶液的pH常在4.5-5.5之间,当用其他pH值进行盐析时,需用硫酸或氨水调节。
蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行。此外也可用葡萄糖凝胶G-25或G-50过柱的办法除盐,所用的时间就比较短。
2、等电点沉淀法
蛋白质在静电状态时颗粒之间的静电斥力最小,因而溶解度也最小,各种蛋白质的等电点有差别,可利用调节溶液的pH达到某一蛋白质的等电点使之沉淀,但此法很少单独使用,可与盐析法结合用。
3、低温有机溶剂沉淀法
用与水可混溶的有机溶剂,甲醇,乙醇或丙酮,可使多数蛋白质溶解度降低并析出,此法分辨力比盐析高,但蛋白质较易变性,应在低温下进行。
(二)根据蛋白质分子大小的差别的分离方法
1、透析与超滤
透析法是利用半透膜将分子大小不同的蛋白质分开。
超滤法是利用高压力或离心力,强使水和其他小的溶质分子通过半透膜,而蛋白质留在膜上,可选择不同孔径的泸膜截留不同分子量的蛋白质。
2、凝胶过滤法
也称分子排阻层析或分子筛层析,这是根据分子大小分离蛋白质混合物最有效的方法之一。柱中最常用的填充材料是葡萄糖凝胶(Sephadex
ged)和琼脂糖凝胶(agarose gel)。
(三)根据蛋白质带电性质进行分离
蛋白质在不同pH环境中带电性质和电荷数量不同,可将其分开。
1、电泳法
各种蛋白质在同一pH条件下,因分子量和电荷数量不同而在电场中的迁移率不同而得以分开。值得重视的是等电聚焦电泳,这是利用一种两性电解质作为载体,电泳时两性电解质形成一个由正极到负极逐渐增加的pH梯度,当带一定电荷的蛋白质在其中泳动时,到达各自等电点的pH位置就停止,此法可用于分析和制备各种蛋白质。
2、离子交换层析法
离子交换剂有阳离子交换剂(如:羧甲基纤维素;CM-纤维素)和阴离子交换剂(二乙氨基乙基纤维素;DEAE?FONT
FACE="宋体"
LANG="ZH-CN">纤维素),当被分离的蛋白质溶液流经离子交换层析柱时,带有与离子交换剂相反电荷的蛋白质被吸附在离子交换剂上,随后用改变pH或离子强度办法将吸附的蛋白质洗脱下来。(详见层析技术章)
(四)根据配体特异性的分离方法-亲和色谱法
亲和层析法(aflinity
chromatography)是分离蛋白质的一种极为有效的方法,它经常只需经过一步处理即可使某种待提纯的蛋白质从很复杂的蛋白质混合物中分离出来,而且纯度很高。这种方法是根据某些蛋白质与另一种称为配体(Ligand)的分子能特异而非共价地结合。其基本原理:蛋白质在组织或细胞中是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质,因此蛋白质的分离(Separation),提纯(Purification)
和鉴定(Characterization)是生物化学中的重要的一部分,至今还没的单独或一套现成的方法能移把任何一种蛋白质从复杂的混合蛋白质中提取出来,因此往往采取几种方法联合使用。
细胞的破碎
1、高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。此法适用于动物内脏组织、植物肉质种子等。
2、玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。
3、超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌制备各种酶,常选用50-100毫克菌体/毫升浓度,在1KG至10KG频率下处理10-15分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施。对超声波敏感和核酸应慎用。
4、反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。
5、化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破坏,细菌细胞壁较厚,可采用溶菌酶处理效果更好。

无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入苯甲磺酰氟化物(PMSF)也能清除蛋白水解酥活力,但不是全部,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。
浓缩、干燥及保存
一、样品的浓缩
生物大分子在制备过程中由于过柱纯化而样品变得很稀,为了保存和鉴定的目的,往往需要进行浓缩。常用的浓缩方法的:
1、减压加温蒸发浓缩
通过降低液面压力使液体沸点降低,减压的真空度愈高,液体沸点降得愈低,蒸发愈快,此法适用于一些不耐热的生物大分子的浓缩。
2、空气流动蒸发浓缩
空气的流动可使液体加速蒸发,铺成薄层的溶液,表面不断通过空气流;或将生物大分子溶液装入透析袋内置于冷室,用电扇对准吹风,使透过膜外的溶剂不沁蒸发,而达到浓缩目的,此法浓缩速度慢,不适于大量溶液的浓缩。
3、冰冻法
生物大分子在低温结成冰,盐类及生物大分子不进入冰内而留在液相中,操作时先将待浓缩的溶液冷却使之变成固体,然后缓慢地融解,利用溶剂与溶质融点介点的差别而达到除去大部分溶剂的目的。如蛋白质和酶的盐溶液用此法浓缩时,不含蛋白质和酶的纯冰结晶浮于液面,蛋白质和酶则集中于下层溶液中,移去上层冰块,可得蛋白质和酶的浓缩液。
4、吸收法
通过吸收剂直接收除去溶液中溶液分子使之浓缩。所用的吸收剂必需与溶液不起化学反应,对生物大分子不吸附,易与溶液分开。常用的吸收剂有聚乙二醇,聚乙稀吡咯酮、蔗糖和凝胶等,使用聚乙二醇吸收剂时,先将生物大分子溶液装入半透膜的袋里,外加聚乙二醇复盖置于4度下,袋内溶剂渗出即被聚乙二醇迅速吸去,聚乙二醇被水饱和后要更换新的直至达到所需要的体积。
5、超滤法
超滤法是使用一种特别的薄膜对溶液中各种溶质分子进行选择性过滤的方法,不液体在一定压力下(氮气压或真空泵压)通过膜时,溶剂和小分子透过,大分子受阻保留,这是近年来发展起来的新方法,最适于生物大分子尤其是蛋白质和酶的浓缩或脱盐,并具有成本低,操作方便,条件温和,能较好地保持生物大分子的活性,回收率高等优点。应用超滤法关键在于膜的选择,不同类型和规格的膜,水的流速,分子量截止值(即大体上能被膜保留分子最小分子量值)等参数均不同,必须根据工作需要来选用。另外,超滤装置形式,溶质成份及性质、溶液浓度等都对超滤效果的一定影响。Diaflo
超滤膜的分子量截留值:
膜名称分子量截留值孔的大的平均直径
XM-300300,000140
XM-200100,00055
XM-5050,00030
PM-30 30,00022
UM-2020,00018
PM-1010,00015
UM-21,00012
UM05500 10

用上面的超滤膜制成空心的纤维管,将很多根这样的管拢成一束,管的两端与低离子强度的缓冲液相连,使缓冲液不断地在管中流动。然后将纤维管浸入待透析的蛋白质溶液中。当缓冲液流过纤维管时,则小分子很易透过膜而扩散,大分子则不能。这就是纤维过滤秀析法,由于透析面积增大,因而使透析时间缩短10倍。
二、干燥
生物大分子制备得到产品,为防止变质,易于保存,常需要干燥处理,最常用的方法是冷冻干燥和真空干燥。真空干燥适用于不耐高温,易于氧化物质的干燥和保存,整个装置包括干燥器、冷凝器及真空干燥原理外,同时增加了温度因素。在相同压力下,水蒸汽压随温度下降而下降,故在低温低压下,冰很易升华为气体。操作时一般先将待干燥的液体冷冻到冰点以下使之变成固体,然后在低温低压下将溶剂变成气体而除去。此法干后的产品具有疏松、溶解度好、保持天然结构等优点,适用于各类生物大分子的干燥保存。
三、贮存
生物大分子的稳定性与保存方法的很大关系。干燥的制品一般比较稳定,在低温情况下其活性可在数日甚至数年无明显变化,贮藏要求简单,只要将干燥的样品置于干燥器内(内装有干燥剂)密封,保持0-4度冰箱即可,液态贮藏时应注意以下几点。
1、样品不能太稀,必须浓缩到一定浓度才能封装贮藏,样品太稀易使生物大分子变性。
2、一般需加入防腐剂和稳定剂,常用的防腐剂有甲苯、苯甲酸、氯仿、百里酚等。蛋白质和酶常用的稳定剂有硫酸铵糊、蔗糖、甘油等,如酶也可加入底物和辅酶以提高其稳定性。此外,钙、锌、硼酸等溶液对某些酶也有一定保护作用。核酸大分子一般保存在氯化钠或柠檬酸钠的标准缓冲液中。
3、贮藏温度要求低,大多数在0度左右冰箱保存,有的则要求更低,应视不同物质而定。

阅读全文

与deae阴离子交换层析法相关的资料

热点内容
小米路由器提升带宽 浏览:292
废饮水机有什么用 浏览:888
含丙烯腈的废水戴什么防护手套 浏览:404
饮水机泵水器怎么装 浏览:934
油烟净化器火花怎么办 浏览:318
饱和水蒸气蒸馏 浏览:147
净水机应该怎么拆 浏览:968
简易净水器的蓬松棉有什么运用 浏览:510
低频波导除垢技术 浏览:409
污水处理水池爬梯 浏览:877
沙坪坝污水池淤泥清理 浏览:513
污染控制中如何进行废水排放管理 浏览:120
天花空调过滤网 浏览:312
psp模拟器如何提升最高画质 浏览:56
大孔树脂分离设备 浏览:149
食品过滤用活性炭 浏览:841
污水处理证4级什么意思 浏览:143
ro膜阻垢剂哪家便宜 浏览:599
净化器aia什么意思 浏览:193
大小区有多少污水井盖 浏览:670