1. 粘土矿物的性质
晶体结构与晶体化学特点决定了它们的如下一些性质。①离子交换性。具有吸着某些阳离子和阴离子并保持于交换状态的特性。一般交换性阳离子是Ca2+、Mg2+、H+、K+、(NH4)+、Na+,常见的交换性阴离子是(SO4)2-、Cl-、(PO4)3-、(NO3)-。高岭石的阳离子交换容量最低,5~15毫克当量/100克;蒙脱石、蛭石的阳离子交换容量最高,100~150毫克当量/100克。产生阳离子交换性的原因是破键和晶格内类质同象置换引起的不饱和电荷需要通过吸附阳离子而取得平衡。阴离子交换则是晶格外露羟基离子的交代作用。②粘土-水系统特点。粘土矿物中的水以吸附水、层间水和结构水的形式存在。结构水只有在高温下结构破坏时才失去,但是吸附水、层间水以及海泡石结构孔洞中的沸石水都是低温水,经低温(100~150℃)加热后就可脱出,同时象蒙皂石族矿物失水后还可以复水,这是一个重要的特点。粘土矿物与水的作用所产生的膨胀性、分散和凝聚性、粘性、触变性和可塑性等特点在工业上得到广泛应用。③粘土矿物与有机质的反应特点。有些粘土矿物与有机质反应形成有机复合体,改善了它的性能,扩大了应用范围,还可作为分析鉴定矿物的依据。如蒙脱石中可交换的钙或钠被有机离子取代后形成有机复合体,使层间距离增大,从原有亲水疏油转变为亲油疏水,利用这种复合体可以制备润滑脂、油漆防沉剂和石油化工产品的添加剂。其他如蛭石、高岭石、埃洛石等也能与有机质形成复合体。此外,粘土矿物晶格内离子置换和层间水变化常影响光学性质的变化。蒙皂石族矿物中的铁、镁离子置换八面体中的铝,或者层间水分子的失去,都使折光率与双折射率增大。
2. 含蛭石晶层间层矿物的阳离子交换容量及酸浸研究
彭同江 刘福生 张宝述 孙红娟
(西南科技大学矿物材料及应用研究所,四川绵阳 621010)
摘要 对采自新疆尉犁蛭石矿、河南灵宝-陕西潼关蛭石矿的工业蛭石矿物样品进行了可交换性阳离子、交换容量和酸处理试验研究。结果发现新疆尉犁蛭石矿金云母-蛭石中的可交换性阳离子主要为Na+和Ca2+,其次有Mg2+和K+、Ba2+和Sr2+。而河南灵宝-陕西潼关蛭石矿工业蛭石样品主要为Ca2+和Mg2+,其次为Na+、K+等。金云母-蛭石和绿泥石-蛭石间层矿物的阳离子交换容量随间层结构中蛭石晶层的含量增加而增大,一般在56.92~98.95 m mol/100 g之间,仅为蛭石最大阳离子交换容量的一半。金云母-蛭石样品阳离子交换容量大小与K2O含量呈负相关关系,与(Na2O+CaO)含量呈正相关关系。层间可交换性阳离子的氧化物CaO和Na2O的酸浸取率最高,层间不可交换性阳离子的氧化物 K2O次之,八面体中阳离子的氧化物MgO、Fe2O3和Al2O3具有较高的酸浸取率,而四面体阳离子的氧化物SiO2的酸浸取率最低;金云母-蛭石间层矿物中蛭石晶层含量高的样品酸浸取率高,金云母-蛭石间层矿物的耐酸蚀性能不如金云母。
关键词 金云母-蛭石;间层矿物;阳离子交换容量;酸浸取物;酸浸取率。
第一作者简介:彭同江,男,1958年4月出生,博士,教授,矿物晶体化学专业。E-mail:[email protected]。
一、含蛭石晶层间层矿物的阳离子交换容量
(一)原理
根据工业蛭石样品的化学成分研究,蛭石晶层中可交换性阳离子的种类主要有:K+、Na+、Ca2+、Mg2+、Ba2+、Sr2+等。用醋酸铵(NH4Ac)作为淋洗剂,
中国非金属矿业
相关系数为0.90。
图1 金云母-蛭石样品阳离子交换容量(CEC) 随K2O 和Na2O+CaO 含量(质量分数) 的变化
可以看出,随着K2O含量的增加,样品的阳离子交换容量减小;随(Na2O+CaO)含量的增加,阳离子交换容量增加。从而表明,随K2O含量的增加,蛭石晶层的含量降低;随(Na2O+CaO)含量的增加,蛭石晶层的含量增加。由此可以得出,在金云母变化为金云母-蛭石的过程中,溶液中富含Na+和Ca2+离子组分。
对于金云母-蛭石样品来说,我们发现其阳离子交换容量的大小与样品的粉末X射线衍射谱特征有一定关系。一般说来,阳离子交换容量小于75 m mol/100 g的样品,其粉末X射线衍射图上发现有较强的金云母的衍射峰;高于95 m mol/100 g样品,发现有蛭石的衍射峰。这进一步表明对样品阳离子交换容量的贡献主要来自于间层结构中蛭石晶层的含量。蛭石晶层的含量越高,间层矿物的阳离子交换容量越大。
二、酸浸实验研究
(一)酸处理实验与酸浸取物分析
酸处理试验步骤与实验方法如下:
1)将烧杯在100℃下烘干1 h后称重。
2)分别在烧杯中加0.5 g样品。
3)将盛样品的烧杯放在烘箱中在100℃下烘干2 h。
4)从烘箱中取出烧杯在干燥器中凉至室温后称重,计算出样品除去吸附水后的质量。
5)将烧杯中分别加入0.5 mol/L,1.0 mol/L,1.5 mol/L,2.0 mol/L稀盐酸30 mL,搅拌均匀后静止作用12 h。
6)过滤、洗涤、定溶后用原子吸收光谱法测定滤液中K、Na、Mg、Si、Fe、Al的含量。
利用上述方法对所选的3个样品进行了酸处理和酸浸取物的分析。测定结果转换成氧化物百分含量后列入表2中。
表2 不同浓度的稀盐酸对样品不同氧化物的腐蚀量(wB/%)
注:X为盐酸溶液的浓度,单位mol/L。
(二)酸蚀量与酸浸取物的变化规律
由表2可以看出,在不同盐酸浓度溶液的情况下金云母样品主要氧化物的酸蚀量都大大低于金云母-蛭石样品主要氧化物的酸蚀量,这表明金云母的耐酸性能高于金云母-蛭石间层矿物。
金云母-蛭石间层矿物两个样品不同氧化物的酸浸取率大致相同。按氧化物的酸浸取率的大小可分为三种情形。
(1)处于蛭石晶层层间域中的水化阳离子
刘福生等(2002)给出的金云母-蛭石间层矿物样品的可交换性阳离子氧化物的含量(不考虑H2O+)分别为,Wv-6a:CaO 0.612%,Na2O 1.30%;Wv-16:CaO 0.394%,Na2O 1.79%,考虑所含H2O+后样品的可交换性阳离子氧化物的含量分别为,Wv-6a:CaO 0.580%,Na2O 1.231%;Wv-16:CaO 0.375%,Na2O 1.702%,这些数值与表2中CaO和Na2O的腐蚀量非常相近(其差别来源于对样品进行不同的处理及分析的误差)。由于水化阳离子与结构层间的结合最弱,故CaO和Na2O的酸浸取率最高,其中CaO几乎全部浸出,Na2O的浸取率在82.27%~89.24%之间。
(2)在结构中以离子键相结合的阳离子
在结构中与阴离子呈离子键结合的阳离子主要有:K+、Mg2+、Fe2+、Al3+。相应氧化物酸浸取率分别为 K2O 6.33%~13.80%,Al2O33.67%~12.45%,Fe2O34.44%~11.75%,MgO 3.44%~10.03%。离子键的结合力高于蛭石晶层层间水化阳离子与结构层之间的结合力,而又小于硅氧四面体内的共价键结合力,因此,以离子键结合的阳离子氧化物的酸浸取率低于层间水化阳离子氧化物,而又高于以共价键结合的阳离子氧化物。
(3)在结构中以共价键结合的阳离子
在结构中与阴离子呈共价键结合的阳离子只有Si4+,SiO2的酸浸取率最低,为2.15%~3.02%。
蛭石晶层的水化阳离子最容易被酸淋滤出来,即使在低浓度的盐酸溶液中,且它们的酸蚀量随盐酸浓度的增大变化很小;其次是处于金云母晶层的层间K+离子。MgO、Fe2O3和Al2O3也具有较高的酸蚀量百分数,其中MgO、Al2O3的酸蚀量随盐酸浓度的增大而急剧增大,Fe2O3酸蚀量随盐酸浓度的增大而缓慢增大;SiO2的酸蚀量最低,且酸蚀量随盐酸浓度的增大变化很小。
金云母-蛭石样品与金云母样品相比较,层间阳离子、八面体阳离子、四面体阳离子都具有较高的氧化物酸蚀量百分数。这表明金云母-蛭石的结构稳定性较金云母差,即使是金云母-蛭石间层结构中的金云母晶层也是如此。这一结果与热分析所得出的结果(彭同江等,1995)是完全一致的。
(三)金云母-蛭石间层矿物酸蚀机理
对于蛭石及含蛭石晶层的间层矿物酸蚀机理的研究不多。但对于蒙脱石酸活化机理研究已经很深入,并得出比较一致的结论。即当用酸处理蒙脱石时 蒙脱石层间的可交换性阳离子(如Ca2+、Mg2+、Na+、K+等)可被氢离子交换而溶出,同时随之溶出的还有蒙脱石八面体结构中的铝离子及羟基。因此,活化后的蒙脱石比表面积增大,形成多孔活性物质,使其吸附性及离子交换性进一步增强(张晓妹,2002)。下面结合前面的试验与分析结果对金云母-蛭石间层矿物酸蚀机理进行讨论。
1.酸浸取反应机理
金云母-蛭石间层矿物中蛭石晶层的结构和阳离子占位与蒙脱石的大致相同,只是蛭石晶层八面体中的阳离子主要是Mg2+,而蒙脱石则主要是Al3+,而与蛭石晶层相间排列的还有金云母晶层。因此,金云母-蛭石间层矿物的酸蚀机理可以看成是蛭石晶层和金云母晶层分别与酸进行作用。
蛭石晶层与盐酸产生离子交换反应和酸腐蚀反应,后者导致结构的局部破坏。其中离子交换反应是氢离子将样品中蛭石晶层的层间可交换阳离子如K+、Na+、Ca2+、Mg2+等置换出来。
氢质蛭石晶层在酸的继续作用下结构产生局部破坏,溶出八面体中的阳离子及羟基,硅氧四面体转化为偏硅酸。
金云母晶层与盐酸产生酸腐蚀反应,产生局部结构被破坏,溶出层间阳离子、八面体中的阳离子及羟基,硅氧四面体转化为偏硅酸。
上述反应可归三类:H+离子与蛭石晶层层间可交换阳离子的交换反应;H+离子与结构中八面体片上的(OH)-和四面体片中Si-OH上的(OH)-中和形成H2O的反应;阳离子从结构上解离形成盐和偏硅酸的反应。
2.酸浸取规律的晶体化学分析
金云母-蛭石间层矿物属三八面体层状硅酸盐矿物。由金云母的晶体结构特点可知,结构中阳离子与阴离子结合有两种化学键,即离子键和共价键。其中,四面体阳离子(主要为 Si4+)与阴离子(氧)的化学键主要为共价键,因而在结构中的联结力最强;八面体阳离子(主要为Mg2+)以离子键与阴离子(氧和羟基)结合,联结力相对较强;层间阳离子位于层间域内与底面氧以弱离子键结合,联结力较弱。金云母-蛭石间层矿物结构中金云母晶层的情形与金云母相类似,蛭石晶层的八面体和四面体两种位置的化学键特点与金云母的情形也相类似。在金云母-蛭石间层结构中联结力相对最弱的位置是蛭石晶层层间水化阳离子的位置,由于水分子的存在,层间阳离子与结构层的联结力比金云母的更弱。
上述晶体化学特点决定了四面体阳离子Si4+的酸浸取率最小,八面体阳离子Mg2+、Al3+、Fe2+酸浸取率较大,层间可交换性阳离子Na+、Ca2+最大。
因此,金云母-蛭石间层矿物样品不同氧化物酸浸取率的大小取决于晶体结构的强度和阴阳离子之间的化学键强度的大小。
3.酸蚀作用历程与结构破坏
根据酸蚀试验和分析结果,结合金云母-蛭石的晶体结构特点,得出金云母-蛭石酸蚀作用和结构破坏的过程如下。
酸蚀过程中各种酸蚀反应首先沿矿物颗粒边缘和结构缺陷部位进行。H+离子与层间可交换阳离子产生交换反应,形成氢质蛭石,交换出来的阳离子Na+、Ca2+、K+等形成盐;H+离子与八面体中的(OH)-作用,形成H2O,其结果导致与(OH)-呈配位关系的Mg2+和其他阳离子随(OH)-的解离而裸露于外表面并变得不稳定,从而脱离结构表面并进入溶液形成盐;H+离子与四面体片边缘的Si-O(或OH)作用,中和后形成H2O,并使Si4+裸露,进一步使Si4+解离并形成偏硅酸配阴离子;伴随着H+离子的这些反应,还会导致金云母晶层边缘的层间阳离子(主要为K+)从结构中解离出来;整个结构的破坏程度和酸蚀量随H+浓度增大和反应时间的增长而增大。酸蚀反应主要发生在结构层的边缘、层间域和结构缺陷部位。
X射线分析结果表明,金云母-蛭石间层矿物具有较好的耐酸蚀性能,层间可交换性阳离子的氢交换反应和边缘与缺陷部位离子的解离和浸取,没有导致金云母-蛭石间层结构的破坏。但结合酸浸取物和酸浸取残留物的研究,金云母-蛭石间层矿物的耐酸蚀性能不如金云母。
三、结论
金云母-蛭石间层矿物具有良好的阳离子交换性。因此,它可用于环保,吸附水中的重金属离子或有机污染物,回收有用物质;在农业上用作储水和储肥载体,改良土壤等等。含蛭石晶层矿物结构中的Ca、Mg、K、Fe等元素在酸性条件下易被淋滤出来。因此,它可在农业上用作储水和储肥载体,同时又是长效肥料。一方面可为植物提供K、Mg、Ca、Si、Fe等有用元素;另一方面可以起到改良土壤的作用,即增加土壤的保水,保肥性能,降低土壤的密度,提高土壤的透气性能等等。
酸浸取的结果导致金云母-蛭石间层矿物中蛭石晶层的可交换性阳离子几乎全部被淋滤交换出来,同时也在结构层边缘和结构缺陷部位淋滤出其他组分。其结果导致金云母-蛭石间层矿物比表面积增大,形成多孔活性物质,使其吸附性及离子交换性进一步增强(Suquet et al.,1991;Suquet et al.,1994)。因此,酸处理后的金云母-蛭石间层矿物可用于环保方面作污水处理剂。
An Experimental Study on Cation Exchange Capacity and Acid Soaking of Vermiculite Containing Interstratified Minerals
Peng Tongjiang,Liu Fusheng,Zhang Baoshu,Sun Hongjuan
(The Research Institute of Mineral Materials and Their Application,Southwest University of Sciences and Technology,Mianyang Sichuan 621010,China)
Abstract:The changeable cations,the exchange capacity and acid erodibility of instrial vermiculite samples from Weli Mine,Xinjiang Autonomous Region,Lingbao Mine,Henan Province,and Tongguan Mine,Shanxi Province are studied.It is found that the changeable cations of phlogopite-vermiculite samples from Weli Mine are mainly Na+,Ca2+,and Mg2+,K+,Ba2+,Sr2+in the next place.The changeable cations of phlogopite vermiculite samples from Tongguan Mine are mainly Mg2+,Ca2+,and Na+,K+in the next place.The cation exchange capacity of phlogopite-vermiculite and chlorite-vermiculite increases with the increase of content of ver miculite crystal layer in interstratified structure.The cation exchange capacity is commonly between 56.92 m mol/100 g and 98.95 m mol/100 g,which is only a half of the maximal value of cation exchange capacity of vermiculite.The cation exchange capacity of phlogopite-vermiculite is negatively related to the content of K2O and positively related to the content of Na2O and CaO.The acid soak-out ratios of CaO and Na2O are the highest and that of K2O is lower slightly,the acid soak-out ratios of MgO,Fe2O3and Al2O3are relatively higher,but the acid soak-out ratios of SiO2are the lowest.The acid corroding contents of the samples with more vermiculite layer are higher.The acid-resistant property of the phlogopite-vermiculite interstratified mineral is not as good as the phlogopite.
Key words:phlogopite-vermiculite,interstratified minerals,cation exchange capacity,acid soak-out-substances,acid soak-out-ratio.
3. 影响土壤阳离子交换量大小的因素有哪些
不同土壤的阳离子交换量不同,主要影响因素:a,土壤胶体类型,不同类型的土版壤胶体其阳离子交换量权差异较大,例如,有机胶体>蒙脱石>水化云母>高岭石>含水氧化铁、铝。b,土壤质地越细,其阳离子交换量越高。c,对于实际的土壤而言,土壤黏土矿物的SiO2/R2O3比率越高,其交换量就越大。d,土壤溶液pH值,因为土壤胶体微粒表面的羟基(OH)的解离受介质pH值的影响,当介质pH值降低时,土壤胶体微粒表面所负电荷也减少,其阳离子交换量也降低;反之就增大。土壤阳离子交换量是影响土壤缓冲能力高低,也是评价土壤保肥能力、改良土壤和合理施肥的重要依据。
4. 井壁不稳定的原因分析
井壁不稳定的实质是力学不稳定。当井壁岩石所受的应力超过其本身的强度就会发生井壁不稳定。其原因十分复杂,就其主要原因可归纳为力学因素、物理化学因素和工程技术措施3个方面,但后两个因素最终均因影响井壁应力分布和井壁岩石的力学性能而造成井壁不稳定。
3.3.1 力学因素
3.3.1.1 原地应力状态
原地应力状态是指在发生工程扰动之前就已经存在于地层内部的应力状态,也简称为地应力。一般认为它的三个主应力分量是铅垂应力分量、最大水平主应力分量和最小水平主应力分量。
地应力的铅垂应力分量通常称为上覆岩层压力,主要由上部地层的重力产生的。国内外研究表明,水平地应力的大小受上覆岩层压力、地层岩性、埋藏深度、成岩历史、构造运动情况等诸多因素的影响。其中上覆岩层压力的泊松效应和构造应力是主要影响因素。
由于多次构造运动的结果,在岩石内部形成了十分复杂的构造应力场。根据地质力学的观点,构造应力大多以水平方向为主,设两个主构造应力分量分别为σh、σH。则总的水平主应力分量为上覆岩层压力泊松效应产生的压应力与构造应力之和。
若没有构造运动,水平地应力仅由上覆岩层压力的泊松效应引起,为均匀水平地应力状态。一般情况下存在构造运动,且两个水平主方向上构造应力的大小不等。因此,在一般情况下,地应力的三个主应力分量的大小是不相等的。由声发射法、差应变法等室内实验方法和应力释放法、水力压裂法等现场试验方法可以确定出地应力的大小和方向。
3.3.1.2 地层被钻开后所引起的井眼围岩应力状态的变化
地层被钻开之前,地下的岩石受到上覆压力、水平方向地应力和孔隙压力的作用,井壁处的应力状态即为原地应力状态,且处于平衡状态。孔隙压力指地下岩石孔隙内流体压力。在正常沉积环境中,地层处于正常的压实状态,孔隙压力保持为静液柱压力,即为正常地层压力,压力系数为1.0。在异常的压实环境中,当孔隙压力大于正常地层压力时称为异常高压地层,压力系数大于1.0。
当井眼被钻开后,地应力被释放,井内钻井液作用于井壁的压力取代了所钻岩层原先对井壁岩石的支撑,破坏了地层和原有应力的平衡,引起井壁周围应力的重新分布。
进一步的研究表明,井眼围岩的应力水平与井眼液柱压力有关。若钻井液密度降低,井眼围岩差应力(径向应力减小,切向应力增大)水平就升高。当应力超过岩石的抗剪强度时,就要发生剪切破坏(对于脆性地层就会发生坍塌,井径扩大;而对于塑性地层,则发生塑性变形,造成缩径)。相反地,当钻井液密度升至一定值后,井壁处的切向应力就会变成拉应力,当拉伸应力大于岩石的抗拉强度时,就要发生拉伸破坏(表现为井漏)。
3.3.1.3 造成井壁力学不稳定的原因
钻井过程中保持井壁处于力学稳定的必要条件是钻井液液柱压力必须大于地层坍塌压力,且钻井液的实际当量密度低于与地层破裂压力对应的当量钻井液密度。坍塌压力是指井壁发生剪切破坏的临界井眼压力,此时的钻井液密度称为坍塌压力的当量钻井液密度。钻井过程中井壁出现力学不稳定而造成井塌的主要原因可归纳为以下几个方面。
(1)钻进坍塌地层时钻井液密度低于地层坍塌压力的当量钻井液密度
井壁不稳定包括缩径与井壁坍塌,其实质是力学问题。孔隙压力异常不仅发生在储层中,而且在我国大量所钻遇的泥页岩地层中也较普遍地存在。在地应力作用地区,非均质的地应力对井壁稳定会产生很大的影响。长期以来,地质部门设计钻井液密度均依据所钻遇油气水层时的压力系数,而未考虑易坍塌地层可能存在异常孔隙压力与地应力,以及所造成的高地层坍塌压力对井壁稳定的影响。在实际钻井过程中,同一裸眼井段部分地层的坍塌压力往往大于油气水层的孔隙压力。因此,依据地质设计所确定的钻井液密度在高坍塌压力地层钻进时,井筒中钻井液液柱压力就不足以平衡地层坍塌压力(对盐膏层和含盐膏泥岩则为发生塑性变形的压力),就会造成所钻地层处于力学不稳定状态,引起井壁坍塌。
(2)起钻时的抽吸作用造成作用于井壁的钻井液压力低于地层坍塌压力
在起钻过程中,由于未及时灌注钻井液、钻井液塑性黏度和动切力过高以及起钻速度过快等均会产生高的抽吸压力。这种抽吸作用使钻井液作用于井壁的压力下降,当其低于地层坍塌压力时就会发生井塌。此外,在裸眼井段,如果所钻的上部地层中存在大段含蒙脱石或伊蒙无序间层的泥岩,而在钻进下部地层时,如钻头在井下工作时间过长(超过两天以上)又没有起下钻,则含蒙脱石或伊蒙无序间层的泥岩就会吸水膨胀而造成井径缩小,起钻至此井段则发生“拔活塞”,环空灌不进钻井液,从而产生很大的抽吸压力并形成负压差,严重时便会抽塌下部地层。例如吉林油田乾安构造在钻探初期,绝大部分井均由于上部嫩3、4、5层段泥岩缩径(井径平均缩小6%~8%),起钻时发生严重抽吸,从而抽塌下部嫩2、1等层段的泥岩层,平均井径扩大率高达32%~84%,处理井塌时间长达半个多月。
(3)井喷或井漏导致井筒中液柱压力低于地层坍塌压力
钻井过程中如发生井喷或井漏,均会造成井筒中液柱压力下降。当此压力小于地层坍塌压力时,就会出现井塌。
(4)钻井液密度过低不能控制岩盐层、含盐膏软泥岩和高含水软泥岩的塑性变形
当岩盐层、含盐膏软泥岩和高含水的软泥岩等地层被钻开后,如所使用的钻井液密度过低,就会发生塑性变形。由于上述地层均是具有塑性特点的地层,当其埋藏较深而被钻穿后,它们的高度延展性能几乎可以传递上覆地层的全部覆盖负荷的重量。若当时的钻井液液柱压力不足以控制住这种作用时,就会引起塑性变形,使井径缩小,这就是上述岩层所具有的蠕变特性。所谓蠕变是指材料在恒应力状态下应变随时间延长而增加的现象。通常岩石的弹性变形也会引起缩径,但弹性变形的时间较短,且变形量小。岩盐在深部高温高压作用下,由于具有蠕变特性,即使井壁上的应力仍处于弹性范围,也会导致井眼随时间而逐渐缩小。根据国内外对岩盐蠕变的研究,可将其分为以下3个阶段(图3.5):
图3.5 岩石的广义蠕变曲线
1)初始蠕变(又称过渡蠕变)。此阶段在应变时间曲线上,岩石初始蠕变速率很高,随后速率变缓,其原因是应变硬化速度大于材料中晶粒的位错运动速度。
2)次级蠕变(又称稳态蠕变)。此阶段硬化速度和位错速度达到平衡。对于岩盐层,井眼的收缩是最重要的蠕变阶段。
3)第三阶段蠕变(又称不稳定蠕变)。当应力足够大时,会在晶粒界面及矿物颗粒界面发生滑动,这一变形的结果使蠕变曲线向较大变形的一侧反弯,进入不稳定状态,最后使晶界松散、脱落,导致材料的破裂。
一般认为,岩盐层的塑性变形在低温状态是以晶层滑动为主,而在高温下则在滑动面出现多边形结构和再结晶。由于岩盐层的塑性变形(蠕变)引起井眼缩径,常导致起下钻遇阻卡、卡钻。例如中原油田文-218井使用密度为1.79g/cm3钻井液,钻进岩盐层至3912m时,从电测得知在3856~3899m井段井径缩小18%~23%(比钻头直径小40~50mm)。继续电测时又发生遇阻,下钻划眼至3912m,后上提遇卡。又如南疆库喀-1井在电测时曾多次在2735~2732m遇阻,经反复划眼后测得井径仅为135mm(钻头直径为215mm)。因此,岩盐层的蠕变或塑性变形是钻进该类地层时造成井下复杂情况的一个重要原因。
此外,盐膏层中的泥岩即使在上覆盖层压力与井温作用下,黏土表面所吸附的四层水会逐渐被挤出成为孔隙水。由于泥岩表面吸附水的密度可高达1.40~1.70g/cm3,故当这些层间水变为孔隙水时,体积增大40%~70%。若泥岩被盐层所封闭,而盐层不具备渗透性能,水无处可排,因而会导致在两个盐层之间的泥岩孔隙中形成异常压力带。钻开此类地层时,如果钻井液液柱压力低于此类泥岩发生塑性变形的压力,泥岩就会缩径,导致井下复杂情况。由于此类泥岩含盐,盐在高温高压下所发生的塑性变形亦会对含盐泥岩带来影响。因此,盐膏层塑性变形不仅发生在岩盐中,而且还会发生在含盐泥岩中。
(5)钻井液密度过高
钻井过程中,如所采用的钻井液密度过高,大大超过地层孔隙压力,就会对井壁形成较大的压差,从而会有更多的钻井液滤液进入地层,加剧地层中黏土矿物水化,引起地层孔隙压力增加及围岩强度降低,最终导致地层坍塌压力增大。当坍塌压力的当量密度超过钻井液密度,井壁就会发生力学不稳定,造成井塌。特别是在钻入高破碎性地层时,如所使用的钻井液密度合适,则围绕井壁的应力集中,闭合了所有的径向接合面,因此封闭了井壁,钻井液不能进入到裂隙网内;但如果钻井液密度增高并超过了临界值,径向接合面逐渐由闭合状态变为开启状态,与此同时切向接合面闭合。此时由于钻井液进入,引起地层孔隙压力增高,一部分裂隙网变得易被钻井液侵入,相应的结合面被增压,单元变得松散,这样岩石就容易受到钻井液和井底钻具组合的冲击而坍塌。由上述原因所引起的井壁不稳定大多发生在深部地层,与岩性关系不大。例如,柯深1井古近-新近系地层是砂泥岩互层,其5200~5750m井段的孔隙压力系数为1.50~1.60g/cm3,坍塌压力的压力系数为1.60~1.70g/cm3;5750~5900m井段的孔隙压力系数为1.15~1.35g/cm3,坍塌压力的压力系数为1.40~1.60g/cm3。该井田244mm技术套管下至5025.08m。四开钻进时,由于误判5009m出现的高压盐水层(压力系数为1.89g/cm3)没有封死,为了对付地质预告5600m的高压气层,采用密度为1.95~2.02g/cm3的钻井液钻进。钻至5441m时,钻进过程出现大的塌块,下钻遇阻划眼,返出大的塌块。从此之后每次下钻均遇阻划眼,划眼井段均为新钻井眼。当钻至5829m时,发生压差卡钻。解卡后,为了防止再卡钻,降低钻井液密度至1.75~1.80g/cm3,并增加钻井液中高软化点低磺化度磺化沥青、氯化钾、SMP和硅酸钾的加量,以提高钻井液封堵与抑制能力,井塌缓解。
3.3.2 物理化学因素
3.3.2.1 地层的岩性
井壁不稳定可以发生在各种岩性的地层中。一般来讲,岩石均由非黏土矿物(如石英、长石、方解石、白云石、黄铁矿等)、晶态黏土矿物(如蒙脱石、伊利石、伊蒙间层、绿泥石、绿蒙间层、高岭石等)和非晶态黏土矿物(如蛋白石等)所组成,但不同岩性地层所含的矿物类型和含量不完全相同。对井壁稳定性产生影响的主要组分是地层中所含的黏土矿物。
3.3.2.2 钻井液滤液对地层的侵入
当地层被钻开后,在井筒中钻井液与地层孔隙流体之间的压差、化学势差(取决于钻井液与地层流体之间的活度差和地层的半透膜效率)和地层毛细管力(取决于岩石的表面性质)的驱动下,钻井液滤液进入井壁地层,引起地层中黏土矿物水化膨胀,导致井壁不稳定。
通过大量室内试验,目前已证实在使用水基钻井液时,低渗透泥页岩表面的确存在着非理想的半透膜,但其膜效率低于1。其值高低取决于钻井液的组成、地层的渗透率和孔喉尺寸,并随钻井液与岩石接触时间增长而降低。盐水的膜效率仅为1%~10%,聚合醇类水基钻井液具有较高的膜效率,地层中的黏土矿物与水接触发生水化膨胀是由两种水化所造成,即表面水化和渗透水化。
(1)影响水化的因素
影响地层水化作用的主要因素有以下方面:
1)地层中黏土矿物及其可交换阳离子的类型和含量。由于蒙脱石、伊利石、高岭石、绿泥石各种黏土矿物的组构特征不同,其可交换阳离子组成亦各不相同,因而其水化膨胀程度差别很大。如蒙脱石的阳离子交换容量高,易水化膨胀,分散度也较高;而高岭石、绿泥石、伊利石都属于低膨胀型黏土矿物,不易水化膨胀。同种黏土矿物,当其交换性阳离子不同时,水化膨胀特性也不相同,如钠土的膨胀比钙土、钾土大得多。各种黏土矿物膨胀能力的顺序如下:蒙脱石>伊蒙间层矿物>伊利石>高岭石>绿泥石。
由此看来,地层的水化作用强弱主要取决于地层中所含黏土矿物及其可交换阳离子的类型及含量。此外,由于地层中非晶态黏土矿物的类型及含量会影响阳离子交换容量的大小,因此它们对地层水化作用亦有较大的影响。
2)地层中所含无机盐的类型及含量。如地层中含有石膏、氯化钠和芒硝等无机盐,则会促使地层发生吸水膨胀。当地层中含有无水石膏时,由于密度为2.9g/cm3的CaSO4能通过吸水转变为密度为2.3g/cm3的CaSO4·2H2O,其体积增加约26%,因而含膏泥岩的膨胀性与其中无水石膏含量有密切关系。
含氯化钠的泥岩的初始膨胀率较高,在5~7h达到最大值。随着盐的溶解,膨胀率反而下降。中原油田文203-12井3250m的含盐泥岩,2h的膨胀率为31%,但24h的膨胀率降为26%。用胜利油田红层中的含盐泥岩进行吸水试验,然后用淡水洗去泥岩中的盐再次吸水,其结果显示含盐泥岩的吸水量大大高于不含盐泥岩。
3)地层中层理裂隙发育程度。地层中存在着层理裂隙,部分微细裂缝在井下高有效应力作用下会发生闭合。但当与水接触时,水仍然会沿着这条裂缝进入地层深处,使井壁周围地层中的黏土矿物发生水化,因而井壁也容易坍塌。
4)温度和压力。流体进、出泥页岩是受泥页岩和流体的偏摩尔自由能之差来控制的,而偏摩尔自由能的大小与温度和压力有关。因此,温度和压力对泥页岩的水化膨胀会产生一定影响。随着温度升高,黏土的水化膨胀速率和膨胀量都明显增高。压力增高可抑制黏土水化膨胀。各种黏土矿物的膨胀率均随预负荷或井眼压力的增大而急剧下降。
5)时间。显然,黏土水化膨胀随地层中的黏土矿物与钻井液滤液接触时间的增长而加剧,这对于科学超深井取心钻探来说,减少起下钻的次数和时间对井壁稳定十分有利。
6)钻井液的组成与性能。钻井液中所含有机处理剂和可溶性盐的类别及含量、滤液的pH值等均会影响黏土的水化膨胀,这些影响对于科学超深井来说是至关重要的研究课题之一。
(2)地层水化膨胀对井壁稳定的影响
钻井过程中,钻井液与井壁地层之间的接触会产生非常复杂的物理化学作用。概括起来,钻井液对地层的影响主要表现在以下方面:
1)孔隙压力升高。钻井液滤液进入地层后,由于压力传递和滤液与地层黏土矿物之间通过水化作用产生水化应力,均会引起井壁地层孔隙压力的升高。
2)地层含水率升高。近井壁地带地层力学性质发生变化钻井液滤液进入地层后,会引起地层中含水量升高,从而导致地层的力学性质发生一系列的变化。如弹性模量随地层含水量的增大而急剧降低;泊松比值随地层含水量的增大而增加;地层的强度参数黏聚力和内摩擦角则随地层含水量的增大而下降。
综上所述,由于地层中所含的黏土矿物吸水发生水化膨胀,产生水化应力,改变了井筒周围地层的孔隙压力与应力分布,从而引起井壁岩石强度降低,地层坍塌压力发生变化。当井壁岩石所受到的周向应力超过岩石的屈服强度时,就会发生井壁不稳定。因此可以说,井壁不稳定是物理化学因素与力学因素共同作用所导致的结果。
3.3.3 钻井工程措施
钻井工程措施也对井壁稳定性产生影响。
(1)井内激动压力过大
钻井过程中,如果起下钻速度过快、钻井液静切力过大、开泵过猛、钻头泥包等原因,均可能发生强的抽吸作用,产生过高的抽吸压力,从而降低钻井液作用于井壁的压力,造成井塌。
(2)井内液柱压力大幅度降低
钻井过程中如果发生井喷、井漏或起钻没灌满钻井液均可能造成井内液柱压力大幅度下降,造成井壁岩石受力失去平衡而导致井塌。
(3)钻井液对井壁的冲蚀作用
如果钻井液环空返速过高,在环空形成紊流,则会对井壁产生强烈的冲蚀作用。此作用随环空返速增大而加剧。对于含大量蒙脱石或伊蒙无序间层且成岩程度低、胶结差的软泥岩,钻进过程中会因吸水膨胀而造成井径缩小,此时若提高环空返速,采用紊流钻进,及时冲刷掉缩径的岩石,使井径不至于小于钻头直径,可有效地防止缩径卡钻。但是,当钻进破碎性地层或层理裂隙发育的地层时,如果钻井液的环空返速过高导致形成紊流,则对井壁的冲刷力有可能超过被钻井液浸泡后的岩石强度,这时就会造成井壁坍塌。例如华北二连的阿南构造和吉林的乾安构造,均采用钾基聚合物和钾盐防塌钻井液钻进。在钻至易坍塌层段时,钻井液在环空处于层流时的平均井径扩大率小于10%;而处于紊流状态时,则由于井塌,井径扩大率高达30%以上。
(4)井身质量差
如井眼方位变化大,狗腿度过大,易造成应力集中,加剧井塌的发生。
(5)对井壁过于严重的机械碰击
钻进易塌地层时,如转速过高、起钻用转盘卸扣,由于钻具剧烈碰击井壁,从而加速井塌。
综上所述,在钻井过程中,如果影响井壁稳定性的一些工程措施不当,有可能降低钻井液作用在井壁上的压力和岩石强度,导致井壁不稳定。
5. 常见的黏土矿物有哪几种结合水膜的厚度有什么差异
常见的黏土矿物有:油类、树脂类、其他类。粘土矿物主要包括高岭石族、伊利石族、蒙脱石族、蛭石族以及海泡石族等矿物。
结合水膜的厚度差异:不同厚度的PVA水转印膜主要是和要做水转印工件的外壳形状有关,厚度越大,PVA膜在水中溶解后所形成的可拉伸强度就越大。
活化剂喷涂之后也就越容易保持图画不变形的印刷到大坡度和陡面工件上了请酌情参考。常见PVA空白膜一般是20-45um,45um厚度的膜需要溶解的时间最长,但是下膜后印刷的清晰度也最好。
性质
晶体结构与晶体化学特点决定了它们的如下一些性质。离子交换性。具有吸着某些阳离子和阴离子并保持于交换状态的特性。一般交换性阳离子是Ca2+、Mg2+、H+、K+、(NH4)+、Na+,常见的交换性阴离子是(SO4)2-、Cl-、(PO4)3-、(NO3)-。高岭石的阳离子交换容量最低,5~15毫克当量/100克;蒙脱石、蛭石的阳离子交换容量最高,100~150毫克当量/100克。
6. 离子交替吸附作用
离子交替吸附作用主要发生在具有固定电荷的固体矿物表面,无论是阳离子还是阴离子,均可发生交替吸附作用,但目前研究得较多的是阳离子交替吸附作用。离子交替吸附作用的一个重要特点就是,伴随着一定量的一种离子的吸附,必然有等当量的另一种同号离子的解吸(图2-5-4)。离子交替吸附作用之所以具有这样的特点,主要是由于吸附剂通常都具有一定的离子交换容量,因此这里首先对离子交换容量予以讨论。
图2-5-3 有机质表面的负电荷
图2-5-4 阳离子交替吸附作用图解
2.5.2.1 离子交换容量
离子交换容量包括阳离子交换容量(CEC—Cation Exchange Capacity)和阴离子交换容量(AEC—Anion Exchange Capacity),我们主要讨论阳离子交换容量,它被定义为每100 g干吸附剂可吸附阳离子的毫克当量数。例如,在蒙脱石的结晶格架中,铝八面体中的三价铝可被二价镁所置换,根据测定,每摩尔蒙脱石中镁的含量为0.67 mol,即蒙脱石的分子式为:Si8Al3.33Mg0.67O20(OH)4。已知蒙脱石的分子量是734 g,因此这种蒙脱石的阳离子交换容量为:
水文地球化学
在实际中,通常都是通过实验来测定吸附剂的阳离子交换容量。尤其是对于野外所采取的土样或岩样,由于其中含有多种吸附剂,实验测定往往是唯一可行的方法。阳离子交换容量的实验测定在多数情况下都是用pH为7的醋酸铵溶液与一定量固体样品混合,使其全部吸附格位被所饱和,然后用其他溶液(例如NaCl溶液)把被吸附的全部交换出来,达到交换平衡后,测定溶液中Na+的减少量,据此便可计算样品的阳离子交换容量。表252列出了一些粘土矿物及土壤的阳离子交换容量,由表可见,与土壤相比,矿物的阳离子交换容量有更大的变化范围。
松散沉积物的阳离子交换容量受到了多种因素的影响,主要有:
(1)沉积物中吸附剂的种类与数量。例如,我国北方土壤中的粘土矿物以蒙脱石和伊利石为主,因此其CEC值较大,一般在20 meq/100 g以上,高者达50 meq/100 g以上;而南方的红壤,由于其有机胶体含量少,同时所含的粘土矿物多为高岭石及铁、铝的氢氧化物,故CEC较小,一般小于20 meq/100 g。
表2-5-2 一些粘土矿物及土壤的阳离子交换容量
(2)沉积物颗粒的大小。一般来说,沉积物的颗粒越小,其比表面积越大,CEC值越高。例如,根据一河流沉积物的粒径及其CEC的实测结果,随着沉积物的粒径为从4.4μm增至1000μm,其CEC从14~65 meq/100 g变到4~20 meq/100 g,最终减小到0.3~13 meq/100 g。
(3)水溶液的pH值。一般来说,随着水溶液pH值的增加,土壤表面的可变负电荷量增多,其CEC相应增加;相反,随着水溶液pH值的减小,土壤表面的可变负电荷量不断减少,其CEC也随之减小。
2.5.2.2 阳离子交换反应及平衡
阳离子交换反应的一般形式可写为:
水文地球化学
式中:Am+、Bn+表示水溶液中的A、B离子;AX、BX表示吸附在固体表面的A、B离子。上述反应的平衡常数可写为:
水文地球化学
式中:a标记溶液中组分的活度;{}表示表示吸附在固体表面上的离子的活度。对于水溶液中的离子,其活度可使用表2-1-1中的公式进行计算;但对于吸附在固体表面上的离子,其活度的计算至今还没有满意的方法。目前主要采用两种替代的方法来处理这一问题,一种是Vanselow惯例,另一种是Gaines-Thomas惯例。Vanselow惯例是由Vanselow于1932年提出的,他建议使用摩尔分数来代替式(2-5-7)中的{AX}和{BX}。若固体表面仅吸附了A离子和B离子,在一定重量(100 g)的吸附剂表面A、B的含量(mmol)依次为qA和qB,则吸附剂表面A、B的摩尔分数分别为:
水文地球化学
显然,xA+xB=1。这样式(2-5-7)可改写为:
水文地球化学
Gaines-Thomas惯例是由Gaines和Thomas于1953年提出的,他们建议采用当量百分数来代替式(2-5-7)中的{AX}和{BX}。若用yA和yB分别表示吸附剂表面A、B的当量百分数,则有:
水文地球化学
同样,yA+yB=1,这样式(2-5-7)变为:
水文地球化学
目前,这两种惯例都还在被有关的研究者所使用,各有优点,互为补充。事实上,离子交换反应的平衡常数并不是一个常数,它往往随着水溶液的成分、pH值及固体表面成分的变化而变化,因此许多研究者认为将其称为交换系数(Exchange Coefficient)或选择系数(Selectivity Coefficient)更合适一些(Appelo,1994;Deutsch,1997;Benefield,1982;Kehew,2001)。
若已知两种不同离子与同一种离子在某种吸附剂中发生交换反应的交换系数,则可计算出这两种离子发生交换反应的交换系数。例如,若在某种吸附剂中下述反应:
水文地球化学
交换系数分别为KCa-Na和KK-Na,则在该吸附剂中反应:
水文地球化学
的交换系数为:
水文地球化学
这是因为(以Vanselow惯例为例):
水文地球化学
故有:
水文地球化学
表2-5-3列出了不同离子与Na+发生交换反应的交换系数(Vanselow惯例),据此便可按照上述的方法求得这些离子之间发生交换反应时的交换系数。
需要说明的是,在表2-5-3中,I离子与Na+之间交换反应的反应式为:
水文地球化学
表2-5-3 不同离子与Na+发生交换反应时的交换系数
其交换系数的定义式如下:
水文地球化学
【例】在某地下水系统中,有一段含有大量粘土矿物、因此具有明显阳离子交换能力的地段,假定:
(1)该地段含水层的阳离子交换容量为100 meq/100 g,含水层中的交换性阳离子只有Ca2+和Mg2+,初始状态下含水层颗粒中Ca2+、Mg2+的含量相等;
(2)在进入该地段之前,地下水中的Ca2+、Mg2+浓度相等,均为10-3 mol/L;
(3)含水层的孔隙度为n=0.33,固体颗粒的密度为ρ=2.65 g/cm3;
(4)含水层中发生的阳离子交换反应为:
水文地球化学
不考虑活度系数的影响,其平衡常数(Vanselow惯例)为:
水文地球化学
试使用阳离子交换平衡关系计算,当地下水通过该地段并达到新的交换平衡后,水溶液中及含水层颗粒表面Ca2+、Mg2+浓度的变化。
【解】:设达到新的交换平衡后,含水层颗粒中Ca2+的摩尔分数为y、水溶液中Ca2+的浓度为x(mmol/L),则这时含水层颗粒中Mg2+的摩尔分数为1-y、水溶液中Mg2+的浓度为2-x(mmol/L),故有:
水文地球化学
整理得:
水文地球化学
已知含水层的CEC=100 meq/100g,因此对于二价阳离子来说,含水层颗粒可吸附的阳离子总量为50 mmol/100 g=0.5 mmol/g。若用z表示达到交换平衡后1 g含水层颗粒中Ca2+的含量,则有:
水文地球化学
以式(2-5-25)带入式(2-5-24)得:
水文地球化学
为了计算上述变化,需要对1 L水所对应的含水层中Ca2+的质量守恒关系进行研究。已知含水层的孔隙度为0.33,显然在这样的含水层中,1 L水所对应的含水层颗粒的体积为0.67/0.33(L),相应的含水层颗粒的质量为:
水文地球化学
故吸附作用前后1 L水所对应的含水层中Ca2+的质量守恒关系为:
水文地球化学
式中的0.25为吸附作用前1 g含水层颗粒中Ca2+的含量(mmol),由式(2-5-27)可得:
水文地球化学
以式(2-5-26)带入式(2-5-28)并整理得:
水文地球化学
这是一个关于z的一元二次方程,求解该方程可得:z=0.2500627 mmol/g。代z入式(2-5-25)和式(2-5-26)可得达到新的交换平衡后含水层颗粒中Ca2+的摩尔分数为0.5001254,水溶液中Ca2+的浓度为0.75 mmol/L,故这时含水层颗粒中Mg2+的摩尔分数为0.4998746、水溶液中Mg2+的浓度为1.25 mmol/L。由此可见,地下水通过该粘性土地段后,尽管Ca2+、Mg2+在含水层颗粒中的含量变化很小,但它们在地下水中的含量变化却较大,Mg2+从原来的1 mmol/L增加到了1.25 mmol/L,Ca2+则从原来的1 mmol/L减少到了0.75 mmol/L。
2.5.2.3 分配系数及离子的吸附亲和力
除了交换系数,还有一个重要的参数需要介绍,这就是分配系数(Separation Factor)(Benefield,1982)。对于反应(2-5-6),它被定义为:
水文地球化学
式中cA和cB分别为水溶液中A、B离子的摩尔浓度。显然,若不考虑活度系数的影响,对于同价离子间的交换反应,QA-B=KA-B。式(2-5-29)可改写为:
水文地球化学
由式(2-5-30)可见,QA-B反映了溶液中B与A的含量之比与吸附剂表面B与A的含量之比之间的相对关系。当QA-B=1时,说明达到交换平衡时B与A在水溶液中的比例等于其在吸附剂表面的比例,因此对于该吸附剂,A和B具有相同的吸附亲和力;当QA-B>1时,说明达到交换平衡时B与A在水溶液中的比例大于其在吸附剂表面的比例,因此A与B相比具有更大的吸附亲和力;当QA-B<1时,说明达到交换平衡时B与A在水溶液中的比例小于其在吸附剂表面的比例,因此B与A相比具有更大的吸附亲和力。
事实上,即使对于同一阳离子交换反应,其分配系数也会随着水溶液性质的变化而变化(Stumm and Morgan,1996)。图2-5-5给出了Na—Ca交换反应的分配系数随Na+浓度的变化。沿着图中的虚线,QNa-Ca=1,这时Na+和Ca2+具有相同的吸附亲和力。但在稀溶液中,例如[Na+]=10-3 mol/L和10-2 mol/L,Ca2+在吸附剂中的比例要远大于其在水溶液中的比例,因此在这种情况下Ca2+具有更强的吸附亲和力。随着Na+浓度的增大,Ca2+的吸附亲和力逐渐减弱,Na+的吸附亲和力则逐渐增强,当[Na+]=2 mol/L时,Na+已经变得比Ca2+具有更强的吸附亲和力。Na—Ca交换反应分配系数的这种变化对于解释一些实际现象具有重要的意义,根据这种变化,我们可以推断淡水含水层中通常含有大量的可交换的Ca2+,而海水含水层中通常含有大量的可交换的Na+。这种变化关系也解释了为什么硬水软化剂能够选择性地去除Ca2+,同时通过使用高Na+浓度的卤水溶液进行冲刷而再生。
图2-5-5 溶液中Ca2+的含量对吸附作用的影响
根据离子交换反应的分配系数,可以定量地评价离子的吸附亲和力。一般来说,离子在土壤中的吸附亲和力具有下述的规律:
(1)高价离子比低价离子具有更高的吸附亲和力。例如,Al3+>Mg2+>Na+;>。这是因为离子交换反应从本质上说是一个静电吸引过程,离子价越高,所受到的静电吸引力就越大,它就越容易被吸附剂所吸附。
(2)同价离子的吸附亲和力随着离子水化半径的减小而增大。例如,Ca2+>Mg2+>Be2+;>K+>Na+>Li+。这是因为离子的水化半径越小,它越容易接近固体表面,从而也就越易于被固体所吸附。
Deutsch(1997)根据Appelo和Postma(1994)的资料,对二价阳离子的吸附亲和力进行了研究,他所得到了吸附亲和力顺序如下:
水文地球化学
在常见的天然地下水系统中,Ca2+和Mg2+通常为地下水中的主要阳离子,它们在水溶液中相对较高的含量将使其成为含水层颗粒表面的主要吸附离子,尽管一些微量元素可能更紧密地被吸附在含水层颗粒表面上。但在污染地下水系统中,若吸附亲和力更强的Pb2+和Ba2+的含量与Ca2+、Mg2+的含量在同一水平上,则含水层颗粒表面的主要吸附离子将变为Pb2+和Ba2+,这将大大地影响Pb2+和Ba2+在地下水中的迁移能力。
综合来讲,阳离子和阴离子的吸附亲和力顺序分别为(何燧源等,2000):
水文地球化学
可见,阳离子中Li+和Na+最不易被吸附,阴离子中Cl-和最不易被吸附。
离子交换对地下水质产生重要影响的一种常见情况就是海水入侵到淡水含水层中。当在沿海地带大量抽取含水层中的淡水时,海水将对含水层进行补给。初始状态下含水层颗粒表面吸附的主要是Ca2+和Mg2+,海水中的主要阳离子为Na+,阴离子为Cl-。这样入侵的海水将导致含水层中发生下述的阳离子交换反应:
水文地球化学
由于Cl-通常不易被吸附,也不参与其他的水岩作用过程。所以相对于Cl-来说,该过程将使得Na+的迁移能力降低。
地下水系统中另一种常见的情况与上述过程相反,这就是Ca2+置换被吸附的Na+,反应式如下:
水文地球化学
人们在大西洋沿岸的砂岩含水层(Zack and Roberts,1988;Knobel and Phillips,1988)以及北美西部的沉积盆地中(Thorstenson等,1979;Henderson,1985)均发现了这种天然的软化过程。该反应发生的前提条件是:含水层中含有碳酸盐矿物,CO2的分压较高,含水层颗粒中含有大量的可交换的Na+。
7. 水岩作用
一、吸附与解吸附
吸附作用就是介质固体表面对溶解在水中的成分进行吸附去除;解吸附则是吸附的逆反应,即已被固体表面吸附的成分又回到水溶液中。
如果吸附固体不发生迁移,那么吸附作用可以使水中被吸附成分得到阻滞,其浓度会降低;如果吸附剂是悬浮在地下水中的胶体,可随水流运动的话,那么这样的吸附作用不会阻止被吸附溶质的迁移,只有当胶体沉淀发生时,溶质才能够从地下水中去除。
吸附、解吸附作用最典型的是离子交换反应。在地下环境中,粘土矿物是最常见的吸附剂。粘土矿物表面净电荷呈负性,所以容易对阳离子进行吸附。阳离子交换容量(CEC)用来描述粘土离子交换的能力,一般表示为每100g干物质样品中吸附阳离子的当量数。一般来说,在粘土矿物中,阳离子交换容量由大到小顺序依次为:蒙脱石、伊利石、高岭石。其中蒙脱石的CEC可达80~100 meq/100 g,而高岭石只有3~15 meq/100 g。粘土的阳离子交换能力同时还受pH值的影响,pH值低时,不利于粘土对阳离子的吸附;但随着pH值增加,氢离子活度降低,增大了阳离子交换能力。
有机物是地下环境中另一个主要的离子交换吸附来源。在天然状态下主要是一些腐殖物质,呈负电性,其吸附作用同样受pH条件的控制。一般认为,腐殖质的阳离子交换总容量要比硅酸盐粘土矿物大很多,其数量级可达200 meq/100 g。
在粘土矿物中,阴离子交换作用也可以存在,但由于矿物表面总体呈负电性,所以阴离子交换作用远不如阳离子吸附交换作用。但是,当矿物表面吸附了H+以后,可以产生正电性,发生如下反应:
现代水文地质学
其中≡M表示矿物格架中的金属离子。这样就可以对阴离子进行吸附:
现代水文地质学
式中:SI称为矿物的饱和指数;K矿物为含水层中地下水实际温度下反应的平衡常数。
SI=0;矿物与水达到了化学平衡;
SI<0;水中矿物处于非饱和状态,有利于矿物的溶解作用;
SI>0;水中矿物超饱和,会发生沉淀。
在实际判定溶解沉淀反应时,其关键是求得系统中的化学反应方程式和反应过程,如果系统比较复杂的话,需要进行仔细的分析判断。考虑到水样分析、活度计算、平衡常数计算等方面的误差,在评价时允许SI有一定的范围,一般为SI=0±0.5。
8. 土壤阳离子交换量的检出限是多大
根据我来国最新的土壤环境质量标源准(GB 15618-1995),并为对土壤阳离子交换量做出限检。
但通常来说土壤中有机胶体(腐殖质)的CEC(cmol(+)/kg)最大,含量在200~500范围内波动。蛭石为100~150;蒙脱石矿物为主的土壤CEC为70~95;伊利石矿物为主的土壤CEC为10~40;高岭石矿物为主的土壤CEC为3~15;半倍氧化物为主的土壤CEC为2~4
我找了《土壤学》这本书第110页找的答案,够认真吧,求采纳~
9. 什么叫黏土的阳离子交换容量其大小与水化性能有何关系
不同土壤来的阳离子源交换量不同,主要影响因素:a,土壤胶体类型,不同类型的土壤胶体其阳离子交换量差异较大,例如,有机胶体>蒙脱石>水化云母>高岭石>含水氧化铁、铝。b,土壤质地越细,其阳离子交换量越高。c,对于实际的土壤而言,土壤黏土矿物的SiO2/R2O3比率越高,其交换量就越大。d,土壤溶液pH值,因为土壤胶体微粒表面的羟基(OH)的解离受介质pH值的影响,当介质pH值降低时,土壤胶体微粒表面所负电荷也减少,其阳离子交换量也降低;反之就增大。土壤阳离子交换量是影响土壤缓冲能力高低,也是评价土壤保肥能力、改良土壤和合理施肥的重要依据。
10. 影响土壤阳离子交换量大小的因素有哪些
土壤溶液中的阳离子进行交换,称为阳离子的交换作用。影响因素有——(1)阳离子的代换能力随离子价数的增加而增大,因为高价阳离子的电荷量大、电性强所以代换能力也大,各种阳离子代换力的大小顺序:na+