Ⅰ 用于分离或提纯物质的方法有哪几种
553956861已经回答的很全面了,在他基础上在补充两种:
第十四种,气体扩散法,利用不同气体的相对分子质量不同而导致的扩散速度不同,从而分离出不同气体的方法。对铀235的分离提纯就用该方法。
第十五种,电解分离提纯法,从天然水中分离提纯重水用的就是该方法,由于普通水H2O比重水D2O容易电解,所以经过长时间的电解后,最后剩下的水中重水的含量很高,电解的越久,重水含量越高,越纯。
还有,说明一下,重结晶就是多次结晶的意思,也是分离提纯的一种结晶方法。会使提纯的物质更纯。
望采纳553956861的!支持它!
Ⅱ 六氯磷酸锂原材料有那些
锂盐。
六氟磷酸锂是一种无机物,化学式为LiPF6,白色结晶或粉末。易溶于水、还溶于低浓度甲醇、乙醇、丙酮、碳酸酯类等有机溶剂。是电解液成分最重要的组成部分,约占到电解液总成本的43%。氟化工行业中,虽然传统产品同比降幅明显,但高端产品需求增长保持了强劲势头。
尤其是六氟磷酸锂产销继续保持良好态势。随着未来新能源领域的持续扩张,六氟磷酸锂望迎来持续爆发。未来其它的新型锂盐有望取代六氟磷酸锂。
如果遵照规格使用和储存则不会分解。避免接触氧化物。易溶于水,还溶于低浓度甲醇、乙醇、丙醇、碳酸酯等有机溶剂。暴露空气中或加热时分解。
六氟磷酸锂主要原材料:
六氟磷酸锂合成工艺主要有气-固反应法、氢氟酸溶剂法、有机溶剂法、离子交换法等,目前大规模工业生产主要采用氢氟酸溶剂法。
1)气-固反应法:美国科学家早在1950年就提出气-固反应法,该方法是将经过处理的过孔LiF固体与PF5气体直接反应,生成LiPF6,该反应在高温高压下进行,未使用任何溶剂,该方法的优点是反应步骤少,操作简单。缺点是反应过程中需要使用干燥惰性气体进行保护,因此对反应容器的密封性要求高,反应只是在固体表面进行,LiF转化效率低,最终剩余大量未有反应的LiF,分离纯化较为复杂,很难得到高纯度的产品。目前该方法没有在大规模的工业化生产,部分实验室有使用。
(2)氢氟酸溶剂法:是将卤化锂溶解在无水氟化氢中,再通入高纯PF5气体进行反应,生成六氟磷酸锂晶体,再经过分离、干燥得到六氟磷酸锂产品。反应化学式如下:5HF+产六氟磷酸锂的主要方法之一。
(3)有机溶剂法:有机溶剂使用的有机溶剂主要有碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)等。该方法将LiF固体悬浮于有机溶剂中,然后通入纯化后的PF5气体。反应生成的LiPF5直接溶解在有机溶剂中,所得溶液可直接用作锂离子电池的电解液。该方法避免了使用氟化氢,生产过程中不会污染到产品,同时降低危险性,操作相对安全,降低了对设备的防腐要求;反应速度快,产品纯度高,所得电解液也可直接用于锂离子电池,产率较高。工艺相对简单工况条件温和,装备投资少,生产过程中无污染无产生。缺点是反应原料会和部分有机溶剂发生聚合、分解等反应,很难获得高纯度产品,适用于制备六氟磷酸锂液体溶剂产品。
(4)离子交换法:是将六氟磷酸盐与含锂化合物在有机溶剂中发生离子交换反应,得到六氟磷酸锂的方法。根据六氟磷酸锂理化特性,六氟磷酸锂产品要尽量避免受热,以免不稳定,受热分解,且遇水易吸潮分解,生产六氟磷酸锂时均应尽量在无水的环境中进行,原料进行无水处理。该方法所制备的产品纯度不高,六氟磷酸锂比较容易吸水,必须使用安全无水的溶剂,对溶剂的要求高,相对的原料成本也较高
Ⅲ 日常生活中通过对物质进行分离,提纯,混合等手段实现的有哪些
1.
物理方法
(1)过滤:它是利用混合物各组分在同一溶剂中溶解度的差异,使不溶固体与溶液分离开来的一种方法。如粗盐的提纯。
(2)蒸发浓缩:它是用于分离溶于溶剂中的溶质的一种方法。如分离食盐溶液中的nacl。
(3)结晶、重结晶:它是利用混合物中各组分在某种溶剂中的溶解度随温度变化不同的性质来分离提纯物质的一种方法。如nacl和kno3混合物的分离。重结晶实际上是反复进行溶解、结晶的操作。
(4)蒸馏与分馏:它是利用几种互溶的液体各自沸点差别较大的性质来分离物质的一种方法。如从石油中分离各种馏分,再如c2h5oh和h2o混合物的分离。
(5)分液:它是利用两种互不相溶的液体,且密度不同的性质来分离物质的一种方法。如分离c6h6和h2o混合物的分离。
(6)浮选法:它是利用物质密度的不同来分离均不溶于水溶剂的固体混合物。如用水在沙里淘金。
(7)萃取:它是利用某种物质在两种互不相溶的溶剂中溶解度的不同来分离物质的一种方法。如用ccl4萃取碘水中的i2。
(8)升华:它是利用混合物中某些成分在一定温度下可直接转化为气体,冷却又直接转化为固体将混合物分开的一种方法,其实就是利用升华的性质来分离混合物的。如从nacl和i2的混合物中分离提纯i2。
(9)液化:它是利用各种气体的沸点不同,先使其液化,然后再气化,从而将混合物分离开的一种方法。如从空气中分离n2和o2。
(10)水洗:它是利用各组分气体在水中溶解度的不同来分离提纯物质的一种方法。如从h2和hcl气体的混合物中除去hcl气体。
(11)渗析法:此法是利用半透膜,使离子或小分子从胶体溶液里分离出来的一种方法。如把ki从淀粉中分离出来。
(12)盐析:它是利用某些物质在加入某些无机盐时,其溶解度降低而形成沉淀的性质将其分开的一种方法。如从皂化液中分离肥皂、甘油,再如蛋白质的盐析。
(13)纸上层析:它是利用滤纸或其它具有毛细作用的物质,在展开剂的作用下,将含有微量物质的混合物进行分离和鉴别的方法。如分离含有少量fe3+和cu2+的混合物。
2.
化学方法
(1)热分解法:它是利用混合物中各组分稳定性的不同,将其进行加热或灼热处理,从而分离物质。如除去na2co3中混有的nahco3。
(2)酸、碱处理法:它是是利用混合物中各组分酸碱性质的不同,用碱或酸处理,从而将物质分离开的一种方法。如分离al2o3和fe2o3的混合物。
(3)沉淀法:它是利用混合物中某成分与溶液反应生成沉淀来进行分离或提纯物质的一种方法。如加入适量agno3溶液的方法除去kno3中少量的kcl。
(4)氧化还原法:它是利用混合物中某组分能被氧化(或被还原)的性质来分离或提纯物质的一种方法。如除去苯中混有的甲苯。
(5)络合法:它是利用组分中某一成分可以形成络合物的性质来分离提纯物质的一种方法。例如分离al2o3和zno的混合物。
(6)电解法:它是利用电解的原理来分离提纯物质的一种方法,如电解冶炼铝。
(7)离子交换法:是用离子交换剂来分离提纯物质的一种方法。如硬水的软化。
Ⅳ 离子交换分离法
磺酸型阳离子交换树脂在稀盐酸介质中,可吸附锆氧离子,经1~2mol/LHCl淋洗,仅钍和稀专土留在属交换柱上,钛则部分分离,其他多数元素均能分离。再用4mol/LHCl淋洗,即可使锆与钍和稀土分离。
此外,在盐酸-过氧化氢溶液中,锆(铪)均可吸附于阳离子交换柱上,再用柠檬酸或草酸淋洗可进行定量分离。
某些阴离子交换树脂在盐酸溶液中,能吸附锆、铪、铀和铈,钍不被吸附。在氢氟酸介质中,锆被吸附而与铝、铁分离。
Ⅳ 氢氟酸用什么吸附剂
一种超高纯氢氟酸的提纯方法,包括以下工艺步骤:将工业氟化氢液体通入精馏釜,加入0.16-1重量%高锰酸钾,搅拌,静止;然后加入0.16-1重量%过氧化氢,搅拌,静止;升温至60-80℃,氟化氢液体气化生成纯化的氟化氢气体;将出精馏釜的纯化的氟化氢气体通入冷却器进行冷却和过滤;吸收塔内注入去离子水,吸收塔底部设置布气盘管,将出冷却器的氟化氢气体通入吸收塔底部的布气盘管,由布气盘管管壁上在布气孔喷出后再由去离子水吸收制成氢氟酸半成品;出吸收塔的氢氟酸半成品通入0.05μm的过滤器后得到超高纯氢氟酸成品。本例方法制备的产品纯度高,产量高,符合环保要求。你可以参考一下
Ⅵ 稀土冶炼需要用到哪些化学物质草酸、液碱、小苏打这些有么还有其他的么
稀土冶炼方法有两种,即湿法冶金和火法冶金。
湿法冶金属化工冶金方式,全流程大多处于溶液、溶剂之中,如稀土精矿的分解、稀土氧化物、稀土化合物、单一稀土金属的分离和提取过程就是采用沉淀、结晶、氧化还原、溶剂萃取、离子交换等化学分离工艺过程。现应用较普遍的是有机溶剂萃取法,它是产业分离高纯单一稀土元素的通用工艺。湿法冶金流程复杂,产品纯度高,该法出产成品应用面广阔。
火法冶金工艺过程简朴,出产率较高。稀土火法冶炼主要包括硅热还原法制取稀土合金,熔盐电解法制取稀土金属或合金,金属热还原法制取稀土合金等。火法冶金的共同特点是在高温前提下出产。
1.稀土精矿的分解
稀土精矿中的稀土,一般呈难溶于水的碳酸盐、氟化物、磷酸盐、氧化物或硅酸盐等形态。必需通过各种化学变化将稀土转化为溶于水或无机酸的化合物,经由溶解、分离、净化、浓缩或灼烧等工序,制成各种混合稀土化合物如混合稀土氯化物,作为产品或分离单一稀土的原料,这样的过程称为稀土精矿分解也称为前处理。
分解稀土精矿有良多方法,总的来说可分为三类,即酸法、碱法和氯化分解。酸法分解又分为盐酸分解、硫酸分解和氢氟酸分解法等。碱法分解又分为氢氧化钠分解或氢氧化钠熔融或苏打焙烧法等。一般根据精矿的类型、品位特点、产品方案、便于非稀土元素的回收与综合利用、利于劳动卫生与环境保护、经济公道等原则选择相宜的工艺流程。
碳酸稀土和氯化稀土的出产:
这是稀土产业中最主要的两种低级产品,一般地说,目前有两个主要工艺出产这两种产品。
一个工艺是浓硫酸焙烧工艺,即把稀土精矿与硫酸混合在回转窑中焙烧。经由焙烧的矿用水浸出,则可溶性的稀土硫酸盐就进入水溶液,称之为浸出液。然后往浸出液中加入碳酸氢铵,则稀土呈碳酸盐沉淀下来,过滤后即得碳酸稀土。
另一种工艺叫烧碱法工艺,简称碱法工艺。一般是将60%的稀土精矿与浓碱液搅匀,在高温下熔融反应,稀土精矿即被分解,稀土变为氢氧化稀土,把碱饼经水洗除去钠盐和多余的碱,然后把水洗过的氢氧化稀土再用盐酸溶解,稀土被溶解为氯化稀土溶液,调酸度除去杂质,过滤后的氯化稀土溶液经浓缩结晶即制得固体的氯化稀土。
2.稀土元素的分离
目前,除Pm以外的16个稀土元素都可提纯到6N(99.9999%)的纯度。由稀土精矿分解后所得到的混合稀土化合物中,分离提掏出单一纯稀土元素,在化学工艺上是比较复杂和难题的。其主要原因有二个,一是镧系元素之间的物理性质和化学性质十分相似,多数稀土离子半径居于相邻两元素之间,非常相近,在水溶液中都是不乱的三价态。稀土离子与水的亲和力大,因受水合物的保护,其化学性质非常相似,分离提纯极为难题。二是稀土精矿分解后所得到的混合稀土化合物中伴生的杂质元素较多(如铀、钍、铌、钽、钛、锆、铁、钙、硅、氟、磷等)。因此,在分离稀土元素的工艺流程中,不但要考虑这十几个化学性质极其相近的稀土元素之间的分离,而且还必需考虑稀土元素同伴生的杂质元素之间的分离。
现在稀土出产中采用的分离方法(湿法出产工艺)有:(1)分步法(分级结晶法、分级沉淀法和氧化还原法);(2)离子交换法;(3)溶剂萃取法。
(1)分步法
从1794年发现的钇(Y)到1905年发现的镥(Lu)为止,所有自然存在的稀土元素间的单一分离,还有居里夫妇发现的镭,都是用这种方法分离的。分步法是利用化合物在溶剂中溶解的难易程度(溶解度)上的差别来进行分离和提纯的。方法的操纵程序是:将含有两种稀土元素的化合物先以相宜的溶剂溶解后,加热浓缩,溶液中一部门元素化合物析出来(结晶或沉淀)。析出物中,溶解度较小的稀土元素得到富集,溶解度较大点的稀土元素在溶液中也得到富集。由于稀土元素之间的溶解度差别很小,必需重复操纵多次才能将这两种稀土元素分离开来,因而这是一件非常难题的工作。全部稀土元素的单一分离耗费了100多年,一次分离重复操纵竟达2万次,对于化学工作者而言,其艰辛的程度,可想而知。因此用这样的方法不能大量出产单一稀土。
(2)离子交换法
因为分步法不能大量出产单一稀土,因而稀土元素的研究工作也受到了阻碍,第二次世界大战后,美国原枪弹研制计划即所谓曼哈顿计划推动了稀土分离技术的发展,因稀土元素和铀、钍等放射性元素性质相似,为尽快推进原子能的研究,就将稀土作为其代用品加以利用。而且,为了分析原子核裂变产物中含有的稀土元素,并除去铀、钍中的稀土元素,研究成功了离子交换色层分析法(离子交换法),进而用于稀土元素的分离。
离子交换色层法的原理是:首先将阳离子交换树脂填充于柱子内,再将待分离的混合稀土吸附在柱子进口处的那一端,然后让淋洗液从上到下流经柱子。形成了络合物的稀土就脱离离子交换树脂而随淋洗液一起向下活动。活动的过程中稀土络合物分解,再吸附于树脂上。就这样,稀土离子一边吸附、脱离树脂,一边跟着淋洗液向柱子的出口端活动。因为稀土离子与络合剂形成的络合物的不乱性不同,因此各种稀土离子向下移动的速度不一样,亲和力大的稀土向下活动快,结果先到达出口端。
离子交换法的长处是一次操纵可以将多个元素加以分离。而且还能得到高纯度的产品。这种方法的缺点是不能连续处理,一次操纵周期花费时间长,还有树脂的再生、交换等所耗本钱高,因此,这种曾经是分离大量稀土的主要方法已从主流分离方法上退下来,而被溶剂萃取法取代。但因为离子交换色层法具有获得高纯度单一稀土产品的凸起特点,目前,为制取超高纯单一稀土产品以及一些重稀土元素的分离,还需用离子交换色层法分离制取。
(3)溶剂萃取法
利用有机溶剂从与其不相混溶的水溶液中把被萃取物提取分离出来的方法称之为有机溶剂液—液液萃取法,简称溶剂萃取法,它是一种把物质从一个液相转移到另一个液相的传质过程。
溶剂萃取法在石油化工、有机化学、药物化学和分析化学方面应用较早。但近四十年来,因为原子能科学技术的发展,超纯物质及稀有元素出产的需要,溶剂萃取法在核燃料产业、稀有冶金等产业方面,得到了很大的发展。我国在萃取理论的研究、新型萃取剂的合成与应用和稀土元素分离的萃取工艺流程等方面,均达到了很高的水平。
溶剂萃取法其萃取过程与分级沉淀、分级结晶、离子交换等分离方法比拟,具有分离效果好、出产能力大、便于快速连续出产、易于实现自动控制等一系列长处,因而逐渐变成分离大量稀土的主要方法。
溶剂萃取法的分离设备有混合澄清槽、离心萃取器等,提纯稀土所用的萃取剂有:以酸性磷酸酯为代表的阳离子萃取剂如P204、P507,以胺为代表的阴离子交换液N1923和以TBP、P350等中性磷酸酯为代表的溶剂萃取剂三种。这些萃取剂的粘度与比重都很高,与水不易分离。通常用煤油等溶剂将其稀释再用。
萃取工艺过程一般可分为三个主要阶段:萃取、洗涤、反萃取。
【所以稀土冶炼需要用到液碱,碳酸氢铵,苏打,硫酸等等】
Ⅶ 提纯工艺及设备
一、概述
天然矿物原料由于杂质矿物的混杂、浸染、结构镶嵌,有时还夹有碳质及有机质,往往不能满足工业生产要求,例如:用于核反应堆中子减速剂的鳞片石墨,要求石墨纯含量为99.995%;凝胶材料用膨润土,要求其中蒙脱石含量达99%;造纸涂料级高岭土,要求白度为90,粒度<2μm占90%;天然硅藻土的主腔孔道常易被粘土、碎屑堵塞,影响助滤性能,需对被堵塞腔孔进行疏通处理等。
二、矿物原料的提纯
(一)物理提纯
利用不同矿物在物理性质上的差异,使目的矿物分选富集,如重、电、磁选等方法。
前面已述。
(二)化学提纯
矿物的化学提纯,是利用不同矿物在化学性质上的差异,采用化学方法或化学方法与物理方法相结合,改变杂质组分的化学组成或存在形态,实现矿物的分离或提纯。主要应用于一些纯度要求很高,且机械物理选矿方式又难以达到纯度要求的高附加值矿物的提纯。其作用分为:酸、碱、盐的溶解作用;助熔剂的熔融作用;活泼气体的氧化、还原作用;高温汽化形成挥发性物质等。总之,目的是将杂质转化为可溶性的新物质或挥发性物质加以除去。
1.矿物的酸、碱处理
非金属矿物的酸、碱处理,主要是在相应酸、碱等药剂作用下,把可溶性矿物组分(杂质矿物或有用矿物)浸出,使之与不溶性矿物组分(有用矿物或杂质矿物)分离的过程。浸出过程是通过化学反应来完成的。对不同的有用矿物和杂质矿物要采取相应的酸、碱及药剂,见表2-9。
(1)矿物的酸法浸出
酸法浸出常用硫酸、盐酸、硝酸、草酸、氢氟酸作浸出剂,其中以硫酸使用最多。
硫酸浸出浓硫酸为强氧化剂,在加热时几乎能氧化一切金属,且不释放氢气,因氧化的发生是借助于未离解的硫酸分子,可将大多数硫化物氧化为硫酸盐。用酸浸出铜、铁等可形成可溶性溶液,而铅、银、金、锑等则留在固态渣中,在200~250℃条件下,热浓硫酸还可分解某些稀有元素矿物,如独居石、钛铁矿等。
浓硫酸具有强烈的吸水作用,用它处理的粘土矿物可作吸水干燥剂。许多有机物,尤其是碳水化合物,一旦与浓硫酸接触,会同其吸水性而发生碳化作用。浓硫酸处理粘土矿物一般是在常压,100~105℃加热条件下进行。
表2-9 常用酸、碱处理应用范围
可采用硫酸浸出处理硅藻土以及制备高纯SiO2。
氢氟酸处理氢氟酸为无色液体,19.4℃沸腾。蒸气有刺激臭味、极毒,价格较贵。在水中可离解成离子。氢氟酸的特点是能溶解SiO2和硅酸盐,生成气态SiF4,故常用于制备高纯SiO2或除去矿物中的SiO2杂质等。
在浸出硅石(SiO2)中的金属杂质时,对某些包裹细密的杂质矿物,使用少量HF(低浓度)有助于SiO2部分溶解,以使杂质金属离子较易被其他药剂浸出,如采用0.02%~0.1%的稀氢氟酸和连二亚硫酸钠(0.02%~0.2%重量比),在常温下搅拌处理石英,可将其Fe2O3含量从0.15%降至0.028%。
借助HF能溶SiO2和硅酸盐的特点进行石墨提纯,除去其少量的硅酸盐矿物,原理过程为:将石墨和水按一定比例混合,根据石墨的灰分大小,加入氢氟酸,通入蒸汽加热,在特制的反应器内浸取若干小时,反应完成后,用NaOH溶液中和,经洗涤、脱水、烘干,即可除去其中的硅酸盐矿物杂质,获得纯度达99%以上的高纯石墨产品。
盐酸处理盐酸为HCl的水溶液,强酸之一。浓盐酸含HCl约37%,密度1.18g/mL,在水中可离解成离子。盐酸可与多种金属化合物反应,生成可溶性金属氯化物,其反应能力强于稀硫酸,可浸出某些硫酸无法浸出的含氧酸盐类矿物。同硫酸一样,在矿物加工工业中被大量应用。其缺点是对设备防腐要求较高。
石英砂的除铁提纯常采用盐酸法或盐酸与其他酸联合使用,用含18%的盐酸溶液,用量5%,处理石英砂,加热至50~80℃,作用时间2~3h,可将其Fe2O3含量降至0.015%。将盐酸溶液(浓度为1%~10%)和氟硅酸(浓度1%~10%)一起加入到含石英砂固体浓度为20%~80%的料浆中(或用盐酸处理,经水洗涤后,再用氟硅酸处理),在75℃至溶液沸点之间的温度下处理2~3h,滤出溶液,清洗去酸,可将石英砂中Fe2O3含量从0.059%降至0.0005%~0.0002%。
非金属矿物的酸处理浸出,亦可采用硝酸、草酸等,但工业上应用相对较少,其原理过程同硫酸、盐酸一致。
(2)矿物的碱处理及盐处理
氢氧化钠处理主要应用于硅酸盐、碳酸盐等碱金属与碱土金属矿物的浸出,如石墨、细粒金刚石精矿的提纯等。
石墨精矿(品位C>90%)和液态碱(浓度50%)按3∶1比例混均,在500~800℃温度下熔融,使硅酸盐矿物及钾、钠、镁、铁、铝等化合物熔融,冷却至100℃后水浸1h,水浸渣洗涤后加30%~40%的HCl,洗涤、脱水后的石墨品位可提高到99.0%以上,回收率可达88%~90%。该工艺对云母含量少的石墨精矿效果更好。
细粒金刚石用碱熔水浸出提纯原理过程与石墨相近。
碳酸钠及硫化钠处理碳酸钠溶液对矿物原料的分解能力较弱,但具有较高的选择性,且对设备的腐蚀性小,常用于粘土矿物的阳离子交换处理。
碳酸钠也可同氢氧化钠配合使用,去除金属氧化物效果更好。如在硅砂除铁中,在碳酸钠中加入浓度40%~50%的NaOH,加热100~110℃搅拌处理4~5h,经清洗、脱水后,Fe2O3含量从0.7%降至0.015%~0.025%。碳酸钠还可浸出矿石中的磷、钒、铝、砷等氧化物,成为可溶性钠盐。硫化钠溶液可分解砷、锑、锡、汞的硫化矿物,使它们生成相应的可溶性硫酸盐而转入浸出液中。
此外氯化钠、氯化铵亦可作为浸出剂脱除矿物中的金属杂质。
(3)矿物浸出工艺设备
用于矿物酸、碱处理的设备主要有三大类:渗滤浸出用渗滤浸出槽;常压搅拌浸出用机械搅拌浸出槽,空气搅拌浸出槽,流态化浸出塔;有压搅拌浸出用哨式加压釜、自蒸发器等。
渗滤浸出槽依处理量的大小,槽的外壳可用不同的材质制成。如处理量小,可用碳钢槽或桶;处理大时,用砖、石、水泥砌成,内衬以一定厚度的防腐层,并且不能漏液。为便于浸出液流动,底部略向浸出液出口方向倾斜,将出口塞住后,用人工或机械将矿石(≤10mm)均匀地装入槽内,加入配好的浸出剂,浸泡数小时或更长时间后再放液。生产中可采用多个渗滤槽同时操作。
常压搅拌浸出设备(机械搅拌浸出槽)可分为单桨和多桨搅拌两种,机械搅拌器可采用不同的形状,有桨叶式、旋桨式、锚式和涡轮式。机械搅拌浸出槽结构见图2-37。
搅拌器的材质要依浸出介质而定,酸浸时槽体可用碳钢,内衬橡胶、耐酸砖或聚四氟乙烯塑料;或不锈钢槽、搪瓷槽等。搅拌桨一般为碳钢衬胶、衬玻璃钢或由不锈钢制成。槽体为圆柱形,槽为圆环形或平底,中央有循环筒。搅拌浆装在循环筒下部。可采用电加热,夹套加热或蒸汽直接加热方式,以控制浸出过程的温度,蒸汽直接加热时,蒸汽的冷凝会使矿浆浓度和试剂浓度发生变化。搅拌槽的容积依生产规模而定,机械搅拌槽一般用于生产规模较小的厂矿。
有压搅拌浸出设备(哨式空气搅拌加压釜),其结构见图2-38。
图 2 -37 机械搅拌浸出槽
图 2 -38 哨式加压釜
矿浆自釜下端进入,与压缩空气混合后通过旋涡哨从喷嘴进入釜内,呈紊流状态在釜内上升,然后经出料管排出。釜内矿浆的加热或冷却,一般采用夹套间接传热方式,釜内装有事故排料管。经高压釜浸出后的矿浆,须将压力降至常压后才能送下一作业处理。
2.矿物的化学漂白
作为填料或颜料等在工业中应用的非金属矿物粉体材料,常对白度有较高的要求,在一定条件下,白度越高,应用范围越大,附加值越高。而原矿及物理方法提纯后的精矿往往难以满足要求,为此必须对矿物进行增白处理,较常用的是进行化学漂白。
目前,国内对非金属矿物粉体材料进行化学漂白多集中在高岭土矿种上,且已有工业规模的生产应用。其他一些矿物也已成为潜在的漂白处理对象,如伊利石、蒙脱石、累托石、凹凸棒石、泡泡石、硅藻土、硅石等。尤其是硅藻土的漂白,做的较多。
(1)矿物化学漂白的原理及方法
影响矿物白度的主要因素是矿物本身的染色杂质矿物污染,如铁、钛、硫矿物和有机杂质。为此矿物漂白前,首先须了解矿石中染色杂质的特征、含量及赋存状态。依据其染色成因不同,采用不同的漂白方式。
矿物化学漂白方法有还原漂白和氧化漂白两种。还原漂白主要是用还原剂对矿物漂白,常用亚硫酸盐、连二亚硫酸盐、硫酸氢铵等,如Na2SO3、Na2S2O4、ZnS2O4、NH4HSO4等,其他还有HCl、草酸及草酸盐等。氧化漂白是以氧化剂对矿物进行漂白处理,常用过氧化物、次氯酸盐、臭氧、高锰酸钾等。在工业中氧化漂白和还原漂白可单独使用,也可分段联合使用。
还原漂白多在酸性介质中进行,常以H2SO4调节酸度。其原理为矿物中的金属染色氧化物被还原生成可溶性的硫酸盐而被除去。
影响漂白的因素主要有:矿浆浓度、漂白剂用量、pH值、漂白剂添加次数、温度、漂白时间、添加剂等。当添加次数增至12次以后,漂白效果趋于稳定;温度以40℃左右为好;时间一般在两小时左右为好;添加剂主要包括分散剂、缓冲剂、整合剂等。
(2)工艺流程
原矿→磨矿→制浆→调浆→强烈搅拌→磁选→分级→磁选→浓缩→漂白→过滤→烘干→产品。
3.生物漂白
在自然界有一类微生物,可直接或间接地参与金属硫化矿物的氧化和溶解过程,这类微生物可在金属硫化矿和煤矿的矿坑水以及土壤中找到它们的踪迹。和矿物浸出有关的微生物大部分属于自养菌,这类微生物在生长和繁殖过程中,不需要任何有机营养,而是完全靠各种无机盐而生存。还有一类微生物则与之相反,它们需要提供现成的有机营养才能生存,叫做异养菌。某些异养菌也可以溶浸金属矿物,但研究比较充分、在生产中得到实际应用的主要是自养类微生物。
微生物浸出主要指氧化铁硫杆菌等自养细菌浸出,所以通常叫细菌浸出。如除铁漂白,是利用某些微生物(细菌,真菌)具有从氧化铁(褐铁矿、针铁矿)中溶解铁的能力。利用微生物这种溶解铁的能力,可将高岭土中所含铁杂质除去。微生物这种溶解铁的能力,情况很复杂,所涉及的一些主要反应过程和多数研究者所认可的主要反应机理有:细菌浸出直接作用说,细菌浸出间接作用说和细菌浸出复合作用说(王淀佐等,2003)。
(1)细菌浸出直接作用
在有水和空气的条件下,受氧化铁硫杆菌作用,金属硫化矿会发生如下反应:
非金属矿产加工与开发利用
(2)细菌浸出间接作用
黄铁矿在自然条件下缓慢氧化生成FeSO4和H2SO4,在有细菌的条件下,反应被催化快速进行:
非金属矿产加工与开发利用
最终生成Fe2(SO4)3和H2SO4,Fe2(SO4)3是一种很有效的金属矿物氧化剂和浸出剂,铜及其他多种金属矿物都可被Fe2(SO4)3浸出,浸出示例如下:
黄铁矿浸出:FeS2+7Fe2(SO4)3+8H2O→15FeSO4+8H2SO4
(3)细菌浸出复合作用
复合作用机制是指在细菌浸出当中,既有细菌的直接作用,又有通过Fe3+氧化的间接作用。有些情况下以直接作用为主,有时则以间接作用为主,但两种作用都不可排除,这是迄今为止绝大多数研究者都赞同的细菌浸出机制。实际上,大多数矿石中,总会多少存在一些铁的硫化矿,所以浸出中Fe3+的作用不可排除,上面提到的黄铁矿的浸出,就是两种机制都存在的例子。
4.热处理
(1)焙烧
焙烧是在适宜的气氛和低于矿物原料熔点的温度条件下,使矿物原料中的目的矿物发生物理和化学变化的工艺过程。该工艺过程表现为矿物(化合物)受热离解为一种组成更简单的矿物(化合物),或矿物本身发生晶形转变。在矿物的焙烧过程中,矿物组分将发生变化。
根据焙烧反应性质的不同,可将焙烧分为以下几种:
1)氧化焙烧:于氧化气氛中加热矿物,使炉气中的氧与矿物中可燃组分作用或矿物本身在氧化气氛中焙烧。
2)还原焙烧:在还原性气氛中使金属氧化物还原成低价氧化物(或金属形态)或矿物在还原气氛中进行焙烧。
3)氯化焙烧:在中性或还原性气氛中加热矿物,使之与氯气或固体氯化剂发生化学反应,生成可溶性金属氯化物或挥发性气态金属氯化物。
4)离析焙烧:于中性或弱还原性气氛中加热矿物,其中的有价组分与固态氯化剂(NaCl,CaCl2等)反应,生成挥发性气态金属氯化物,并随即沉积在炉料中的还原剂表面。
5)磁化焙烧:在弱还原性气氛中,使弱磁性赤铁矿焙烧并还原成强磁性的磁铁矿。
此外,还有硫酸化焙烧、加盐焙烧等。
应用于非金属矿物的主要是氧化焙烧、还原焙烧、氯化焙烧等。
(2)煅烧
煅烧是指矿物加热分解的过程,由一种固相热解为另一种固相和气相的分解反应过程,且气相在两种凝聚相内以及两凝聚相间均不形成固溶体。如碳酸盐矿物(菱铁矿、石灰石等)硫酸盐矿物如石膏等的煅烧。非金属矿物提纯加工方面,主要用于高岭土的煅烧。其他非金属矿如硅藻土、石膏、珍珠岩、蛭石等主要是应用煅烧技术来加工制品。
硅藻土采用焙烧工艺可达到提纯和活化的目的,将硅藻土粉加入回转窑中,在870~1100℃条件下,氧化焙烧2~5h除去杂质,经磨矿、分级后,可生产出不同级别用作助滤剂的产品。
石膏矿(CaSO4·2H2O)经低温(170~220℃)煅烧成为半水石膏,高温煅烧(300~800℃)则成无水石膏。
珍珠岩为火山玻璃质岩石,通常在700~1200℃煅烧后,其煅烧产品为膨胀珍珠岩。
蛭石经高温煅烧后体积迅速膨胀数倍至数十倍,形成膨胀蛭石,其平均容重为100~130kg/m3。
高岭土的煅烧
高岭土煅焙烧的目的主要是脱除有机碳提高白度,同时在煅烧过程中高岭岩羟基被脱除,造成一定的孔隙结构,使其活性增加,具备功能性材料的特性。
高岭土的煅烧,按煅烧温度划分,有低温煅烧(650℃以下)、中温煅烧(650~1050℃)、高温煅烧(1300~1525℃)等。不同的煅烧温度,所得产品性能及用途也有差别。
650℃温度以下脱羟煅烧的高岭土具有优良的电性能,用作电缆绝缘层的电性能改良剂,或用于橡胶制品及橡胶密封材料的填料。
700~860℃煅烧高岭土,其高岭石晶体在层间形成多孔结构,扩大了吸附能力及比表面积,活性好,用于制备合成沸石、农药载体或催化剂载体等。此时除对产品有较高白度要求外,对产品活性、细度及铝硅比亦有要求。
860~1050℃煅烧分为两种:950℃以下为不完全煅烧,1050℃为完全煅烧,前者活性好于后者,但白度较后者差,后者具有更高的白度和亮度、吸油值高、比表面积大、遮盖率好,作纸张填料具有良好的光学性能,可部分(表面改性后)代替钛白粉。
经过1300~1525℃煅烧的高岭土,高岭石晶体发生相变,形成莫来石化,可作为耐火材料或耐火制品的填料、陶瓷窑具等材料,其耐火度大于1770℃,莫氏硬度7~8。耐磨性、热稳定性及化学稳定性好。
非金属矿物焙烧或煅烧设备主要是隧道窑、回转窑、旋转立窑、倒焰窑、梭式窑等。
Ⅷ 提纯的步骤是什么啊!
针对不同的混合物类型提纯步骤有所不同,如下:
1、固—固混合分离型
提纯步骤:灼烧、热分解、升华、结晶(或重结晶)。
2、固—液混合分离型
提纯步骤:过滤、盐析、蒸发。
3、液—液混合分离型
提纯步骤:萃取、分液、蒸馏、渗析。
4、气—气混合分离型
提纯步骤:洗气。
(8)离子交换法提纯氢氟酸扩展阅读:
提纯方法
1、萃取
利用某溶质在互不相溶的溶剂中的溶解度不同,用一种溶剂把溶质从它与另一种溶剂组成的溶液中提取出来,再利用分液的原理和方法将它们分离开来。
2、过滤
它是利用混合物各组分在同一溶剂中溶解度的差异,使不溶固体与溶液分离开来的一种方法。如粗盐的提纯。
3、蒸发浓缩
它是用于分离溶于溶剂中的溶质的一种方法 。如分离食盐溶液中的NaCl。
4、结晶、重结晶
它是利用混合物中各组分在某种溶剂中的溶解度随温度变化不同的性质来分离提纯物质的一种方法。如NaCl和KNO3混合物的分离。重结晶实际上是反复进行溶解、结晶的操作。
5、沉淀法
它是利用混合物中某成分与溶液反应生成沉淀来进行分离或提纯物质的一种方法。如加入适量AgNO3溶液的方法除去KNO3中少量的KCl。
6、电解法
它是利用电解的原理来分离提纯物质的一种方法,如电解冶炼铝。
7、离子交换法
它是用离子交换剂来分离提纯物质的一种方法。如硬水的软化。
参考资料:网络-提纯
参考资料:网络-分离提纯
Ⅸ 离子交换分离
离子来交换分离法的基础,自几乎都是在氢氟酸介质中使金属氟化物被离子交换树脂或纤维素所吸附,然后用含有不同浓度氢氟酸的酮类溶液从离子交换树脂柱上将铌、钽有选择地淋洗出来。此方法不仅可以使铌、钽和其他元素分离,也可以使铌、钽互相分离。
Ⅹ 高一化学化合物分离和提纯的各种方法步骤、注意事项等
我很高兴能为您解答化学方面的题
混合物的分离和提纯,有物理和化学两种方法
首先说物理方法:利用物质的性质不同(如:熔沸点、凝固点、溶解性、颜色、气味、密度)来加以判断常见的方法有:蒸馏法(根据沸点不同提纯物质)、过滤(分离固体和液体混合物)、萃取、倾析、溶解、结晶、分馏、吸附、升华
重要的是化学方法,首先说一下原则(不引入新杂质、不消耗被提纯物质的量、实验应该简便易行)
化学方法:1.生成沉淀法(例子:课本上的粗盐提纯)
2.生成气体法
3.氧化还原法
4.正盐和酸式盐转化法
5.离子交换法
若有不清楚的地方请及时提问