导航:首页 > 净水问答 > 离子交换法测硫酸钙溶解度

离子交换法测硫酸钙溶解度

发布时间:2022-02-09 02:36:57

Ⅰ 硫酸钙溶度积测定一定条件下,交换速率为什么很关键

溶解后的硫酸钙一部分以未电离硫酸钙存在,一部分电离成硫酸根离子和钙离子
所以硫酸钙溶解度=钙或硫酸根离子浓度+溶解态的硫酸钙浓度
硫酸钙溶解度2g/l,即0.015mol/l
离子对解离方程
caso4(aq)==
ca2+(aq)
+
so42-(aq)
[ca2+][so42-]/[caso4]=5.2×10^-3
设钙离子浓度为x
mol/l(等于硫酸根离子浓度),离子对态的硫酸钙浓度就是0.015-x
mol/l,带入上面平衡方程:
x*x/(0.015-x)=5.2×10^-3
解得:x=6.6×10^-3
溶度积=[ca2+][so42-]=x*x=4.36×10^-5
我网上查了一下,硫酸钙溶度积相差比较大,有-7数量级也有-6数量级也有-5数量级的。我估计应该是-5数量级较合理一些,因为是微溶的。
另外,我根据热力学数据,推算出溶度积是7.1×10^-5
给你一个参考网站,溶度积与计算结果较为接近

Ⅱ 硫酸钙溶解度是什么

硫酸钙属微溶物质,也就是在常温下, 100g水中最多溶解的溶质质量在0.01g~~1g之间。如果是溶液中出来的微溶物质就加↓ 符号,如果反应物中已经有固体了,产生 的固体就不加 ↓ 符号,因此 CaO +H2O =Ca(OH)2 前面 CaO 是固体SO3 +Ca(OH)2=CaSO4 ↓+ H2O, 前面 Ca(OH)2是溶液形式,石灰水嘛

Ⅲ 为什么硫酸钙饱和溶液要在干过滤以后才能用(用离子交换树脂除去钙离子之前)

因为半水以及无水硫酸钙本身具有吸水性。
纯水中加入过量的固回体,经常搅拌,恒答定在一定的温度下足够长时间,分别制备不同温度下的饱和溶液。吸取一定体积的饱和溶液(经干过滤后的),加入到装有阳离子交换树脂的离子交换柱中。收集经充分交换和洗涤后的溶液,准确测定pH或H+离子的物质的量(可用滴定法),可进而计算硫酸钙的溶解度。
钙离子浓度测定,也可以采用其它测定方法。
至于对应的固体含几个结晶水,你该明白做法。
至于不同水合物的溶解度,结合数据可进行理论推算。

Ⅳ 测定硫酸钙的溶度积常数,为什么交换前交换洗涤后的流出液都要呈中性

这个实验的原理是把Ca2+在交换柱中转化为H+,H+的浓度即代表着Ca2+的浓度
交换前洗涤至中性——表明柱液中没有游离的H+,保证实验开始后流出的H+全部是由Ca2+交换得到的
交换后洗涤至中性——表明注重由Ca2+交换得到的H+已全部冲出
这样交换得到的H+才是全部的由Ca2+交换得到的。

Ⅳ 电导法测弱电解质的解离平衡常数和难溶盐的溶解度

2-7不溶性强电解质的溶度积溶度积测定实验



首先,实验的目的

了解很稀的溶液浓度测量方法;

了解难溶性盐溶度积的决心;

3,巩固活动,活动的浓度和相关系数的概念。

二,实验原理

??一些在一定温度下的离子平衡,电解质的不溶性盐的饱和溶液,在溶液中形成,并且一般表示式如下:

严格地说溶度积的平衡常数溶度积称为的溶度积,或简称为相应的离子的活性产物的溶液牵制的离子作用的溶度积,但认为几乎不含有电解质的饱和溶液的离子强度是非常小,可以的警告,而不是使用浓度活动。

在对氯化银

从上面的等式中,如果测得的饱和溶液中的不溶性的电解质离子浓度,可以计算出的溶度积的溶度积,。因此,测量最终测量的离子浓度。设计一种方法测定的浓度,发现测量方法的溶度积。

具体测量的浓度的方法,包括的滴定法测定(如AgCl溶解度产品),离子交换法(如硫酸铜的溶解性产物的测定),电导率(如AgCl的溶度积的测定),离子电极方法(如氯铅的测定的溶度积)时,电极电位的电极电位的方法(溶度积的关系),即分光光度法(例如氢碘酸铜的溶度积的测定),等,下面分别予以介绍。



Ⅰ,硫酸钙的溶度积的测定(离子交换法)



首先,实验的目的

1,练习使用离子交换树脂;

要了解离子交换所测得的硫酸钙的溶解度和溶度积的原则和方法。

进一步实践酸碱滴定法,大气中的滤波操作。

二,实验原理

离子交换树脂是一类合成,与其他物质的固体球形聚合物,含酸性基团可以与其他物质交换的离子交换包含特殊的反应性基团在分子中,阳离子是一种阳离子交换树脂含有碱性基团,其中可以与其它物质交换,阴离子的阴离子交换树脂。聚苯乙烯磺酸型树脂,最常用的是强酸性阳离子交换树脂,其结构式可表示为:

此实验是强酸性阳离子交换树脂(R-SO 3 H)(型号732)交换硫酸钙饱和溶液中的Ca2 +交换反应:

2R-SO3H +钙+→(R SO3)2的Ca + 2H +



硫酸钙是微溶盐,其溶解度以外的部分增加了Ca2 +和SO42-离子的硫酸钙饱和溶液中存在的离子对和简单离子之间的平衡:

硫酸钙(AQ)=内Ca2 + + SO42-

由于Ca2 +离子交换平衡向右侧移动时,该溶液流经交换树脂,硫酸钙(ag)的离解的结果都被交换为H +从流出物中[H +]计算值硫酸钙摩尔溶解度?:



[H +]的测量可用的pH计,并且还可以是一个标准的NaOH溶液滴定绘制这里介绍滴定。

让饱和的硫酸钙溶液的[Ca2 +] = C [SO42-] = C,然后按[硫酸钙(AQ)] = Y - C


KD,25℃,离子解离常数Kd = 5.2×10-3



由等式,C,并通过以下方式获得溶度积= [内Ca2 +] [SO 4 2 - ] = C2,所定义的溶度积Ksp。

第三,的实验步骤

1。填充柱离子交换柱(基本滴定管替代)洗少量的玻璃纤维或关闭棉脂肪填充的底部,说要带一定数目的732强酸性阳离子交换树脂放入小烧杯中,加蒸馏水浸泡和搅拌后与水一起除去的悬浮颗粒和杂质被转移到离子交换柱,交换柱旋钮剪辑的下端打开,使水慢慢流出,直到液位高于树脂约1cm,夹紧螺钉夹紧,如果气泡,使玻璃棒插入树脂以除去气泡,之后的操作过程中,应先浸泡在溶液中,使树脂。去掉气泡,添加少量的上述的树脂中的玻璃纤维(或棉花)。

2。过渡到确保的Ca2 +完全交换成H +和Na +型树脂,必须完全转换后的模制的H +,采取40毫升2mol / L的盐酸溶液分批加入交换柱中,控制每分钟80-85滴流量让通过交叉树脂HCl溶液流后,保持10分钟后。 [注意:如果使用的是一个很好的酸处理树脂,装柱后直接按治疗],用50-70ml的蒸馏水,漂洗树脂,直到流出物的pH值是6-7(pH试纸测试)。

3下游饱和硫酸钙1克分析纯硫酸钙固体的溶液放置约70毫升,煮沸后,冷却至室温的蒸馏水,搅拌10分钟后,静置5分钟,并用定量滤纸(过滤器过滤纸,一个漏斗和抽滤瓶应干燥),将滤液饱和硫酸钙溶液。

4。外汇吸取20.00毫升饱和硫酸钙溶液,注射远离交叉柱,控制交换柱流出物的20-25滴/分钟的速度,用洗涤的锥形烧瓶中进行污水。在树脂床层几乎完全的饱和溶液流入,在蒸馏水中洗涤树脂中加入(约50毫升水分批洗脱)流出的液体的pH为6-7。请注意不要将整个交换和浸出工艺废水损失。

5的氢离子浓度的测定在酸 - 碱滴定,污水加2滴溴百里酚酞指示剂,将溶液从黄色到明亮的蓝色用标准NaOH溶液滴定,滴定终点。准确地记录使用的NaOH溶液,在溶液中的氢离子浓度的下述式的体积。

数据记录和结果

硫酸钙的饱和液体温度


通过交换柱的饱和溶液的体积(mL)


NNaOH(MOL / L)


VNaOH(mL)的


[H +] mol / L的


硫酸钙溶解度?


硫酸钙溶度积Ksp



计算Kd值近似25°C的数据,计算过程写实验报告。

错误分析操作错误,根据文献值吗?硫酸钙的溶解度,并讨论错误的原因。

五问题

为什么操作来控制液体的流速是不是太快了?为什么不允许气泡的存在下的树脂层?如何避免?

2,计算得出的实验结果硫酸钙的溶解度产品?

制备的饱和溶液,硫酸钙,为什么您要使用的CO2的蒸馏水已被删除?

影响最终测定结果的因素?影响因素分析,你认为在整个操作中的关键步骤?

5,下面的实验结果有什么影响?

1)过渡,树脂不能完全转化为H +形式。

2)是不允许的硫酸钙的饱和溶液冷却至室温,在过滤器上。

3)过滤漏斗硫酸钙饱和液体和接收烧瓶中未干燥。

4)改造,洗脱液流出,低于中性停止浸出和交流。



附加硫酸钙溶度积的文学价值



T℃
?0
?10
?20
?30
?40

溶解性×102mol / L
?1.29
?1.43
?1.50
?1.54
?/

单位为克每百克(g/100g)
?0.1759
?0.1928
?/
?0.2090
?0.2097




阅读材料

离子交换技术

通过离子交换树脂的离子交换柱中的化合物,该方法由于交换的离子键,得到相应的产物被称为作为离子交换方法。该方法被广泛用于元素的分离,提取,纯化,有机脱色精制,水净化,并用作反应催化剂,等,离子交换法所需要的项目,包括相应的??离子交换树脂的离子交换柱。

离子交换树脂,包括天然的和合成的两类,其中较重要的是一种合成的有机树脂,它主要是作为树脂基体结构的聚合物的交联成的苯乙烯和二乙烯基苯的使用,然后连接相应上部反应性基团的和合成的。合成的离子交换树脂是一种不溶性聚合物,含有反应性基团的,具有网状结构的聚合物,有许多的网状结构的骨架可以被离子化和周围溶液中的一些离子交换活性基团,网状结构的离子交换树脂溶解在水或酸,碱溶液是极其困难的,对于大多数有机溶剂,氧化剂,还原剂,和热不发挥作用。

A.离子交换树脂的分类

发生纠纷组和不同的离子交换树脂的作用,可以划分为不同的类别,如阳离子交换反应用的阳离子交换树脂,阴离子交换树脂的离子交换树脂具有特殊的功能。

1。的阳离子交换树脂,阳离子交换树脂是用酸性的交换基团的树脂,这些酸性基团包括磺酸基(-SO 3 H),羧基(-COOH),酚性羟基基团(-OH)。在这些树脂中,它们的阳离子可以是在溶液中的阳离子交换,根据上的活性基团的强度,pH值,所述阳离子交换树脂被进一步细分为强酸性阳离子交换树脂(活性基团是-SO 3 H ),国内732树脂(新牌号001-100),中度酸性阳离子交换树脂(活性基团-PO3H2)和(#401-500)取得了新的成绩和弱酸性阳离子交换树脂(活性基团-CO 2 - C6H4OH等)(例如,724型,#101-200新牌号)等,这是最广泛使用的强酸性树脂。

2。的阴离子交换树脂含有一个基本的反应性基团的树脂,这种树脂的阴离子可以是溶液的阴离子交换。根据碱性强度差异中的活性基团的强碱性阴离子交换树脂(活性基团是季胺碱,如,711#,714#,等),和弱碱性阴离子交换树脂被分成(活性基团是伯胺,仲胺基和叔胺基团,如701#树脂,等等。)

3。具有特殊的功能性树脂,如螯合树脂,两性树脂,氧化还原树脂等(见表2-8)。

在使用中应根据该实验中,不同类型的离子交换树脂的具体要求。

II。离子交换的基本原则

?离子交换过程是在溶液中的离子通过扩散到颗粒内的树脂,在用树脂上的H +离子交换(或Na +等离子的活性基团),交换的H +离子扩散的解决方案,并已出院。因此,在离子交换过程是可逆的,阳离子交换树脂,更大的离子价交换电位越大,即与树脂结

表2-8中,离子交换树脂类型的

类型
?活动组
?类别
?案例

阳离子交换树脂
?强酸性
?磺酸基
H-型(R-SO 3 H)的Na型(R-竹红菌素衍生物)
?732,IR-120型

磷酸基团
H-型(R-PO3H2):Na型(R-PO3Na2)。


弱酸
?羧酸基
H-型(R-CO 2 H):Na型(R-CO2Na)。
724型,IRC-50型

酚基
H-型(R-C6H4OH)Na型(R-C6H4ONa)


阴离子交换树脂
?强碱性
?第四纪胺组
OH-型(R-NR`3OH)

氯型(R-NR“3CL)
?717,IRA-400型

弱碱性
伯胺组
OH-型(R-NH3OH)

氯型(R-NH3Cl)
701,IR-45型

仲氨基的基团
OH-型(R-NR“H2OH)

氯型(R-NR“H2Cl)


叔胺基团
OH-型(R-NHR`2OH)

氯型(R-NHR“2CL)


特殊功能树脂
螯合树脂,两性的树脂,氧化还原树脂


较强的合作能力:

K + <H +的Na + <K +银+ <FE2 + CO2 +镍+铜+镁+钙+ <Ba2 +的<SC3 +

?同样,对于目的的结果,离子交换树脂,与增加的离子价的增加,如在强碱性阴离子树脂的交换势:

AC-F-OH-HCOO-H2PO4-HCO3-BrO3-CL-<NO3-<BR-NO2-I-CrO42-C2O42-SO42-

??一般制造的所谓的交换容量的1克干树脂的离子交换容量交换容量是毫当量相应的离子交换的数目。不同类型的树脂的交换容量为强酸性离子交换树脂,一般≥4.5毫克当量/克干树脂的交换容量,从而可以计算出从最小量的树脂,需要一个特定的实验。

III。交换树脂的影响因素

有许多因素影响树脂的交换,主要包括以下几个方面:

1。的性质的树脂本身的不同制造商,不同型号的不同树脂的交换容量。

2。预处理的树脂或再生的质量。

3。填充树脂,在离子交换柱中的树脂填充的是是否有气泡。

4。柱直径和由于离子交换过程的流出速度的比率是一个缓慢的交换过程中,这种交换是一个可逆过程。的流出速度交换的结果造成很大的影响,流出速度过大,为时已晚,离子交换,从十字架上的效果是不佳的。流出速度的柱塔直径比[离子交换柱的高度与直径之比的溶液中的离子浓度与流动相和离子交换(图2-35)]和其他因素,如离子浓度小时,可能是适当增加流出的速度。在实验室中柱直径比为10:1或以上的一般要求,可适当增加柱直径比较大的流出速度。为了得到更好的效果,流出速度一般控制在20-30滴/分为适当的。

IV。新树脂预处理老化树脂再生的

1。阳离子交换树脂预处理的目的⑴清洗以去除一些外源性杂质会购买一个新的树脂,用清水浸泡,不烦躁时。丢弃的酸洗液,并不断换水,直到酸洗液无色。的⑵苛性由于稳定性要求,购买新的树脂基本上是钠型,苛性处理的使用,可能是一些非钠的类型转换为钠形式,以方便下一处理。增加的容量的8%的NaOH溶液中浸泡30分钟后,分离的碱液,用水洗至中性。 (3)转化率7%的HCl溶液三次,每次是容量和浸泡30分钟后,分离出酸,并洗涤至中性备用(注:应使用最后用蒸馏水或去离子水)的多次。

2。阴离子交换树脂预处理⑴新购阴离子交换树脂加入等量的50%乙醇,搅拌,静置过夜,除去乙醇,用清水洗净,直到酸洗液无色无味。 ⑵用7%的HCl溶液3次,每次,容量和浸泡30分钟,分离的酸,并用水洗至中性。 ⑶与8%NaOH溶液3次,每次在容量和允许浸泡30分钟,用水洗涤至pH为8-9。

3。随着时间的推移,变色,和损失的交换容量,可以是该树脂的老化处理,以再生的离子交换树脂的离子交换树脂的再生使用。再生树脂的方法,是对类似的不同而不同,但基本步骤和预处理,第一漂洗,然后用离子交换过程的可逆性原理,与H +,Na +的(或OH - ,Cl-)的交换树脂离子IE浏览器可以。再生过程中,你可以使用静态方法和动态方法和其他方法。 2mol / L的盐酸的阳离子交换树脂的再生,例如:(1)静态方法,漂洗后的树脂中加入适量(2-3倍(体积)或更多)的24小时或更长时间(的放置过程中应始终是搅拌),弃掉的酸,并用水洗至中性。 (2)动态方法是2-3倍容量的2 mol / L的(约7%)的HCl溶液(或其它酸),从下部的横柱的开关旋钮打开第一次释放,残留水从跨列,让液体慢慢的pH值测试的污水流出,并在任何时候,当污水呈强酸性,关闭旋钮,静置一段时间,换来的是完全的(静态再胜)后释放的酸,以及所添加的酸的其余部分(动态的再生),最后用水洗至中性漂洗可以。

注(1)为了避免在洗涤过程中,树脂的交换动作的自来水中的离子发生,最好先用自来水洗出,大部分的树脂酸(或碱)[的流出物的pH为约2-3(11 - 12)](去离子水),用蒸馏水洗涤至pH为6-7(或8-9)。 (2)阴离子交换树脂可以很容易地分解超过40个时,应特别注意。 ⑶树脂支付的过程中逐渐开裂破碎,但一般为3-4年,甚至更长的时间,而且不容易倒掉。 (4)交易(或再生)树脂应立即使用,不能阻止足够长的时间,因





Ⅰ阳离子交换柱

Ⅱ阴离子交换柱

Ⅲ混合离子交换柱





?????????????????







图2-35图2-36离子交换装置图的横栏柱直径比



它的稳定性差。交叉Na +型阳离子树脂通常比H +从十字架上的阴离子树脂的Cl-比OH-的形式形成稳定的稳定。 ⑸树脂再生,应选择于树脂上的酸(碱),如对Pb2 +的组合相结合的离子的基础上,不能使用盐酸硝酸铅(NO3)2应是可溶的。

五,离子交换方法的具体操作

1。应该是预处理或再生树脂树脂的变换,变换后的树脂放置在蒸馏水中。

2。装柱(1)的选择是根据实验的目的和情况不同性质的离子交换树脂中选择的树脂,

如果吸附的无机阳离子或有机碱,应该使用的阳离子交换树脂,而随后的吸附是一种无机阴离子或有机认为应该使用的阴离子交换树脂,如果分离的氨基酸,例如两性物质,使用阳离子阴离子交换树脂可以是。未定羊后,阴离子交换树脂,以确定需要的类型的交换基团的,弱的酸(碱)等树脂为强吸附的离子从交叉的电阻,可以使用,和用于吸附较弱的酸(碱)电阻,应选择从AC树脂。几种离子的共存应该使用弱吸附县,强交换树脂的吸附后的重新选择。的树脂作为催化剂时,应使用强酸性离子交换树脂(基峰)。 (2)树脂填充柱好书装入离子交换柱的激活过程被加载柱。柱填料,关键在于的间隙中或气泡不能为树脂的具体做法是:第1离子交换柱部的去离子水,然后放入列中的树脂与水,并打开所述活塞的下部,水开始流程。当树脂滴加结束后,用去离子水冲洗树脂,直到流出物的pH为中性。柱填料的过程中特别注意不能没有水,树脂层,以避免气泡和使树脂故障。如果无意中产生的气泡,用玻璃棒搅拌分支,并与气泡。

3。开关旋钮远离交叉打开的离子交换柱的下端,将已处理的离子交换柱,在去离子水排出(注:进一步测试一次的流出物的pH值是中性的,如果不是则继续去离子水冲洗至中性) 。直到刚好隐瞒树脂的去离子水,被添加到待处理的样品液体的离子交换柱(注意:当他们不使树脂翻转),开关旋钮打开该树脂柱的下端,控制流速20-30滴每分钟,样品液体时,当几乎所有进入到树脂中,加入去离子水(注:不能让树脂层的交叉过程中没有水,以避免产生气泡,影响从交叉影响)继续在十字架上,直到出水pH约6-7年。 ⑷

树脂再生方法的运算。

Ⅵ 测石膏纯度:硫酸钙和中性阳离子交换树脂的化学反应方程式怎么写

2R-SO3Na +CaSO4 ➡️ (R-SO3)2Ca + Na2SO4
但硫酸钙容易沉淀,须控制好浓度和交换流速。

Ⅶ 国标中测定硫酸钙的方法

你加入了多少氢氧化钾?
甲基红的变色范围:
1.其pH值在4.4~6.2区间时,呈橙色,
2.其pH值<=4.4时,呈红色,
3.其pH值>=6.2时,呈黄色.
你加入氢氧化钾后甲基红变成黄色说明加入的碱液太多,或者碱液的浓度太大,使得pH改变过大.请调整氢氧化钾的浓度和滴加速度.

Ⅷ 硫酸钙溶解度测定方法具体是什么啊

Solubility of CaSO4
Experiment 2

Major Concepts and Learning Goals
∙ Application of the solubility proct constant (Ksp)
∙ Saturated solutions
∙ Le Chatlier’s Principle/Common ion effect
∙ Activities and activity coefficients
∙ Ion selective electrodes
∙ Calibration curves

Laboratory Task
∙ Proce a calibration curve using standard solutions of CaNO3
∙ Measure the activities of the calcium ion, ACa2+, of three different solutions
1) a saturated solution of CaSO4 in H2O
2) a saturated solution of CaSO4 in 0.10 M KNO3
3) a saturated solution of CaSO4 in 0.10 M Na2SO4
∙ Use concepts of ionic strength () and activity coefficient () to calculate the concentrations and activities of Ca2+ and SO42- in each of the three solutions
∙ Calculate Ksp for CaSO4 using the data from each of the solutions and compare it to the literature value of 2.4•10-5.

Introction
The solubility of CaSO4 at 25 ºC is described by the following reaction and equilibrium

CaSO4(s) ↔ Ca2+ + SO42-

Ksp(CaSO4) = [Ca2+][SO42-] = 2.4∙10-5 Eq. 1

In words, this equilibrium expression states that the proct of the calcium ion concentration and the sulfate ion concentration can be no larger than 2.4∙10-5 in any aqueous solution.

Saturated solutions
Any aqueous solution in which the proct of the calcium ion concentration and the sulfate ion concentration is 2.4∙10-5 is said to be a saturated CaSO4 solution.
If a little more Ca2+ or SO42- is added to a saturated CaSO4 solution the equilibrium will shift to the left to form solid CaSO4 and the value of the proct of the calcium ion concentration and the sulfate ion concentration would be restored to 2.4∙10-5. This statement is the basis of Le Chatlier’s Principle.

When an equilibrium position of a reaction is disturbed, a new equilibrium position will be established by shifting the reaction in a direction that alleviates the stress caused by the disturbance

Saturated solutions can be prepared by a variety of methods. In this experiment the first saturated solution has been prepared by adding solid CaSO4 to purified water (the water comes from a purification system that includes a carbon filter, an ion-exchange resin and a UV lamp). The solution was mixed for several days and allowed to settle and reach equilibrium for several weeks. Because the only source of the calcium ions and sulfate ions are from the dissolution of CaSO4, [Ca2+] = [SO42-]. In fact, the same statement can be made for the second saturated solution, since KNO3 is not a source of Ca2+ or SO42-
Based on the literature Ksp value, and ignoring activities (see below), the [Ca2+] of these first two saturated solutions are about 5.0∙10-3 M.

Le Chatlier’s Principle and the Common Ion Effect
One general case in which Le Chatlier’s principle can be applied is when the solution contains a soluble salt of an ion that is in common with the insoluble salt in question. This is the case in the third saturated solution; CaSO4 in dissolved 0.10 M Na2SO4. In this solution there are two sources of the sulfate ion; the Na2SO4 and the CaSO4. The [SO42-] concentration coming from the Na2SO4 is 0.10 M. The sulfate ion coming from the CaSO4 is equal to the calcium ion concentration.

Thus,

Ksp = [Ca2+] ([SO42-]CaSO4+ + [SO42-]Na2SO4) = 2.4∙10-5

Letting [Ca2+] = x, we arrive at

Ksp = x (x + 0.10) = 2.4∙10-5

If we assume x <<< 0.10 M, then

Ksp = x 0.10 = 2.4∙10-5 and [Ca2+] = 2.4∙10-4 M,

This is considerably lower than the first saturated solution. It is also important to note that our solution verifies that our stated assumption was valid.

This is lowering of the [Ca2+] is said to be e to the common ion effect.

Activities and Activity Coefficients
In reality, equilibria are affected by the concentration of ions, any ions, in solution. The ionic strength () is used as a measure of the total ion concentration of a solution. It is calculated by incorporating each of the “i” ionic species in solution to the following equation.

 = ½ ∑(CiZi2)

So, why does the ionic strength matter? Well let’s look at the CaSO4 equilibrium as an example. The ionic strengths of the saturated solution 2 and 3 are considerably greater than that of saturated solution 1.

Saturated solution 1
 = ½ ([Ca2+](2)2 + [SO42-](-2)2))
 = ½ (5∙10-3(2)2 + 5.0∙10-3(-2)2)) = 0.02 M

Saturated solution 2
 = ½ ([K+](1)2 + [NO3-](-1)2 + [Ca2+](2)2 + [SO42-](-2)2))
 = ½ (0.1(1)2 + 0.1(-1)2 + 5∙10-3(2)2 + 5.0∙10-3(2)2)) = 0.12 M

Saturated solution 3
 = ½ ([Na+](1)2 + [SO42-](-2)2) + [Ca2+](2)2)
 = ½ (0.2(1)2 + 0.1(-2)2 + 2.4∙10-4(2)2 ) = 0.20 M

Electrostatic interactions between the negative ions and the Ca2+ ions in solution cause the formation of an ion cloud around the Ca2+ ions. The larger the ionic strength of the solution the greater the radius of this ion cloud. A similar ion cloud forms around the SO42- ions from the positive ions in solution. The size of the ion clouds about Ca2+ and SO42- defines the energetics associated with these ions finding each other in solution and forming CaSO4(s). Thus, the proct of the [Ca2+] and the [SO42-] in the second saturated solution would be expected to be greater than 5.0∙10-3 M, and in the third saturated solution the [Ca2+] would be expected to be greater than 2.4∙10-5 M and [SO42-] would be expected to be greater than 0.10 M.

Mathematically, the effect of ionic strength is accounted for by introcing the concept of ion activity, A. The activity of an ion can be thought of as its effective concentration and is given by proct of its concentration and activity coefficient, . The activity coefficient depends upon the size of the ion, its charge, and the ionic strength of the solution. For example:

ACa2+ = [Ca2+] Ca+

The activity coefficient can be calculated using the Debye-Huckle equation.

In this experiment estimates of the activity coefficients of Ca2+ and SO42- for the three saturated solutions will be provided with the corresponding spreadsheet.

The most important concept to appreciate in terms of activities is that the definition of equilibrium expression that we first learn and used is a model that works very well at low ionic strengths, where the activity coefficients are close to unity. But the more universal model expresses the equilibrium constants in terms of activities. Equation 1 becomes
Ksp(CaSO4) = ACa2+ASO42- = [Ca2+]Ca2+[SO42-]SO42- = 2.4∙10-5 Eq. 2

Ion-Selective Electrodes
Ion-selective electrodes are electrochemical cells that have been carefully crafted into a probe that is useful for measuring the activity of a specific ion in solution. An ion-selective electrode most often consists of two reference electrodes, which give a constant potential. The two reference electrodes are electrically linked via a voltmeter and a salt bridge through the solution being measured. The salt bridge consists of a membrane between the solution being measured and the inner reference electrode solution. This membrane is made of a unique material that preferentially allows the ion of interest to partially penetrate the membrane. This partial penetration leads to the development of a junction potential, the magnitude of which depends entirely on the activity of the ion in the solution being measured. The Ca2+ selective electrode used in this application uses a membrane that preferentially chelates Ca2+. The potential measured by the voltmeter depends upon the potential at each of the reference electrodes and the junction potential. The potential of the reference electrodes is constant and junction potential is only influenced by the activity of the Ca2+ in the solution being measure.

Ecell = constant + 59.16/2 log ACa2+

Typically, one would measure the voltage of several standard Ca2+ solutions of known activities in the range of 0.1-10-6 M. Then, a calibration plot is proced by plotting the cell potential as a function of the log ACa2+.

In the Lab

1. Make serial dilutions of the 0.100 M Ca(NO3)2 solution using a 10.00 mL pipet and several 100 mL volumetric flasks. You should end up with solutions at the following concentrations; 0.0100 M, 1.00∙10-3 M, 1.00∙10-4 M, 1.00∙10-5 M. The Corresponding activities of these solutions are as follows 0.0100 M, 1.00∙10-3 M, 1.00∙10-4 M, 1.00∙10-5 M.
2. Carefully pour about 25 mL of the three CaSO4 solutions into each of three 100 mL beakers. Label the beakers well.
3. Measure the cell voltages of each of the six standards and the three samples of different saturated CaSO4 solutions. Record all data on the Lab Pro Software and and paste the data into an Excel spread sheet.

Lab Report
Open the Excel file named “CASO4”. In the “standard curve” worksheet enter the Ecell readings. Be sure that the cells where the data are inputted correspond to the correct concentration of the standard. The graph will show the calibration plot (mV vs log ACa2+) for your Ca2+ ion selective electrode. The slope and intercept of the plot is also given and automatically placed on top of the worksheet labeled “CaSO4 solutions”. Go to this worksheet. Place the data you obtained for the cell potentials for your three CaSO4 solutions. For the first and second saturated solutions (saturated CaSO4 in H2O and saturated CaSO4 in 0.1 M KNO3) the spreadsheet calculates the ACa2+ from the standard curve parameters, then calculates the [Ca2+] using the estimated activity coefficient for Ca2+, which, as described above, must equal the [SO42-], then calculates the ASO42- from the estimated activity coefficient of SO42-, and finally we calculated the Ksp of CaSO4 from the proct of the activities.

log ACa2+ = (Ecell – intercept)/slope

ACa2+ = 10 (log ACa2+)

[Ca2+] = ACa2+ / Ca2+

[SO42-] = [Ca2+]

ASO42- = [SO42-] SO42-

Ksp(CaSO4) = ACa2+ ASO42-

For the saturated CaSO4 solution in 0.10 M Na2SO4 the spreadsheet performs the same calculations, except that the [SO42-] is assumed to be 0.10 M.

The average Ksp of CaSO4 is also calculated.

Questions:

1. Compare and rationalize the relative magnitudes of the [Ca2+] in the three saturated CaSO4 solutions.

2. Are the three values for the Ksp of CaSO4 calculated from your experimental data in reasonable agreement?

3. Is the average value for the Ksp of CaSO4 calculated from your experimental data in reasonable agreement with the literature value of 2.4∙10-5?

Ⅸ 硫酸钙溶度积的测定

难溶强电解质溶度积常数Ksp的测定一、 实验目的1、 了解极稀溶液浓度的版测量方法;2、 了解测定权难溶盐Ksp的方法;3、 巩固活度、活度系数、浓度的概念及相关关系。二、 实验原理 在一定温度下,一种难溶盐电解质的饱和溶液在溶液中形成一种多项离子平衡,一般表示式为:这个平衡常数Ksp称为溶度积常数,或简称溶度积,严格地讲Ksp应为相应个离子活度的乘积,因为溶液中个离子有牵制的作用,但考虑的难容电解质饱和溶液中离子强度很小,可警世的用浓度来代替活度。就AgCl而言 从上式可知,若测出难溶电解质饱和溶液中个离子的浓度,就可以计算出溶度积Ksp。因此测量最终还是测量离子浓度的问题。若设计出一种测量浓度的方法,就找到了测量Ksp的方法。具体测量浓度的方法,包括滴定法(如AgCl溶度积的测定),离子交换法(如CuSO4溶度积的测定),电导法(如AgCl溶度积的测定),离子电极法(如氯化铅溶度积的测定),电极电势法(Ksp与电极电势的关系),即分光光度法(如碘酸铜溶度积的测定)等

阅读全文

与离子交换法测硫酸钙溶解度相关的资料

热点内容
混凝土污水检查井做法 浏览:930
钝化废水里的泡沫怎么消除 浏览:340
污水处理堵塞怎么清理 浏览:351
豆制品污水用哪种絮凝剂好 浏览:494
雨排管可以排污水吗 浏览:544
废水调节池平面尺寸计算 浏览:422
用纯净水洗鼻子有什么好处 浏览:513
空气滤芯大车的多少钱一个 浏览:768
净水机滤芯如何清零 浏览:162
船用主机回油可以关闭不 浏览:596
嵊新污水处理二期 浏览:578
济南水处理设备厂家 浏览:507
小米净化器怎么与app连接 浏览:554
污水处理资源化经济化景观化 浏览:908
雨污水盖板怎么看出是加重 浏览:972
楼盘污水设计 浏览:972
长安福特汽油滤芯怎么拆 浏览:853
工业废水氨氮排放指标 浏览:825
富士高滤芯多少钱 浏览:744
领导视察污水厂工作简报 浏览:39