导航:首页 > 净水问答 > 锂离子交换树脂

锂离子交换树脂

发布时间:2021-11-16 11:47:08

1. 锂电池都有哪些物料

我也不是特别清楚,找到一篇,看看是否对您有帮助。祝您顺利。

锂离子电池(Li-ion Batteries)是锂电池发展而来。所以在介绍Li-ion之前,先介绍锂电池。举例来讲,以前照相机里用的扣式电池就属于锂电池。锂电池的正极材料是二氧化锰或亚硫酰氯,负极是锂。电池组装完成后电池即有电压,不需充电.这种电池也可能充电,但循环性能不好,在充放电循环过程中,容易形成锂枝晶,造成电池内部短路,所以一般情况下这种电池是禁止充电的。后来,日本索尼公司发明了以炭材料为负极,以含锂的化合物作正极,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出, 又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。

锂离子电池电池组成部分

(1)电池上下盖

(2)正极——活性物质一般为氧化锂钴

(3)隔膜——一种特殊的复合膜

(4)负极——活性物质为碳

(5)有机电解液

(6)电池壳(分为钢壳和铝壳两种)

锂离子电池优缺点

锂离子电池具有以下优点:

1) 电压高,单体电池的工作电压高达3.6-3.9V,是Ni-Cd、Ni-H电池的3倍

2) 比能量大,目前能达到的实际比能量为100-125Wh/kg和240-300Wh/L(2倍于Ni-Cd,1.5倍于Ni-MH),未来随着技术发展,比能量可高达150Wh/kg和400 Wh/L

3) 循环寿命长,一般均可达到500次以上,甚至1000次以上.对于小电流放电的电器,电池的使用期限 将倍增电器的竞争力.

4) 安全性能好,无公害,无记忆效应.作为Li-ion前身的锂电池,因金属锂易形成枝晶发生短路,缩减了其应用领域:Li-ion中不含镉、铅、汞等对环境有污染的元素:部分工艺(如烧结式)的Ni-Cd电池存在的一大弊病为“记忆效应”,严重束缚电池的使用,但Li-ion根本不存在这方面的问题。

5) 自放电小,室温下充满电的Li-ion储存1个月后的自放电率为10%左右,大大低于Ni-Cd的25-30%,Ni、MH的30-35%。

6) 可快速充放电,1C充电是容量可以达到标称容量的80%以上。

7) 工作温度范围高,工作温度为-25~45°C,随着电解质和正极的改进,期望能扩宽到-40~70°C。

锂离子电池也存在着一定的缺点,如:

1) 电池成本较高。主要表现在正极材料LiCoO2的价格高(Co的资源较小),电解质体系提纯困难。

2) 不能大电流放电。由于有机电解质体系等原因,电池内阻相对其他类电池大。故要求较小的放电电流密度,一般放电电流在0.5C以下,只适合于中小电流的电器使用。

3) 需要保护线路控制。

A、 过充保护:电池过充将破坏正极结构而影响性能和寿命;同时过充电使电解液分解,内部压力过高而导致漏液等问题;故必须在4.1V-4.2V的恒压下充电;

B、 过放保护:过放会导致活性物质的恢复困难,故也需要有保护线路控制。
摘要:综述了锂离子电池的发展趋势,简述了锂离子电池的充放电机理理论研究状况,总结归纳了作为核心技术的锂电池正负电极材料的现有的制备理论和近来发展动态,评述了正极材料和负极材料的各种制备方法和发展前景,重点介绍了目前该领域的问题和改进发展情况。

材料

电子信息时代使对移动电源的需求快速增长。由于锂离子电池具有高电压、高容量的重要优点,且循环寿命长、安全性能好,使其在便携式电子设备、电动汽车、空间技术、国防工业等多方面具有广阔的应用前景,成为近几年广为关注的研究热点。锂离子电池的机理一般性分析认为,锂离子电池作为一种化学电源,指分别用两个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。当电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。锂离子电池是物理学、材料科学和化学等学科研究的结晶。锂离子电池所涉及的物理机理,目前是以固体物理中嵌入物理来解释的,嵌入(intercalation)是指可移动的客体粒子(分子、原子、离子)可逆地嵌入到具有合适尺寸的主体晶格中的网络空格点上。电子输运锂离子电池的正极和负极材料都是离子和电子的混合导体嵌入化合物。电子只能在正极和负极材料中运动[4][5][6]。已知的嵌入化合物种类繁多,客体粒子可以是分子、原子或离子.在嵌入离子的同时,要求由主体结构作电荷补偿,以维持电中性。电荷补偿可以由主体材料能带结构的改变来实现,电导率在嵌入前后会有变化。锂离子电池电极材料可稳定存在于空气中与其这一特性息息相关。嵌入化合物只有满足结构改变可逆并能以结构弥补电荷变化才能作为锂离子电池电极材料。

控制锂离子电池性能的关键材料——电池中正负极活性材料是这一技术的关键,这是国内外研究人员的共识。

1 正极材料的性能和一般制备方法

正极中表征离子输运性质的重要参数是化学扩散系数,通常情况下,正极活性物质中锂离子的扩散系数都比较低。锂嵌入到正极材料或从正级材料中脱嵌,伴随着晶相变化。因此,锂离子电池的电极膜都要求很薄,一般为几十微米的数量级。正极材料的嵌锂化合物是锂离子电池中锂离子的临时储存容器。为了获得较高的单体电池电压,倾向于选择高电势的嵌锂化合物。正极材料应满足:

1)在所要求的充放电电位范围内,具有与电解质溶液的电化学相容性;

2)温和的电极过程动力学;

3)高度可逆性;

4)全锂化状态下在空气中的稳定性。

研究的热点主要集中在层状LiMO2和尖晶石型LiM2O4结构的化合物及复合两种M(M为Co,Ni,Mn,V等过渡金属离子)的类似电极材料上。作为锂离子电池的正极材料,Li+离子的脱嵌与嵌入过程中结构变化的程度和可逆性决定了电池的稳定重复充放电性。正极材料制备中,其原料性能和合成工艺条件都会对最终结构产生影响。多种有前途的正极材料,都存在使用循环过程中电容量衰减的情况,这是研究中的首要问题。已商品化的正极材料有Li1-xCoO2(0<x<0.8),Li1-xNiO2(0<x<0.8),LiMnO2[7][8]。它们作为锂离子电池正极材料各有优劣。锂钴氧为正极的锂离子电池具有开路电压高,比能量大,循环寿命长,能快速充放电等优点,但安全性差;锂镍氧较锂钴氧价格低廉,性能与锂钴氧相当,具有较优秀的嵌锂性能,但制备困难;而锂锰氧价格更为低廉,制备相对容易,而且其耐过充安全性能好,但其嵌锂容量低,并且充放电时尖晶石结构不稳定。从应用前景来看,寻求资源丰富、价廉、无公害,还有在过充电时对电压控制和电路保护的要求较低等优点的,高性能的正极材料将是锂离子电池正极材料研究的重点。国外有报道LiVO2亦能形成层状化合物,可作为正极电极材料[9]。从这些报道看出,虽然电极材料化学组成相同,但制备工艺发生变化后,其性能改变较多。成功的商品化电极材料在制备工艺上都有其独到之处,这是国内目前研究的差距所在。各种制备方法优缺点列举如下。

1)固相法一般选用碳酸锂等锂盐和钴化合物或镍化合物研磨混合后,进行烧结反应[10]。此方法优点是工艺流程简单,原料易得,属于锂离子电池发展初期被广泛研究开发生产的方法,国外技术较成熟;缺点是所制得正极材料电容量有限,原料混合均匀性差,制备材料的性能稳定性不好,批次与批次之间质量一致性差。

2)络合物法用有机络合物先制备含锂离子和钴或钒离子的络合物前驱体,再烧结制备。该方法的优点是分子规模混合,材料均匀性和性能稳定性好,正极材料电容量比固相法高,国外已试验用作锂离子电池的工业化方法,技术并未成熟,国内目前还鲜有报道。

3)溶胶凝胶法利用上世纪70年代发展起

来的制备超微粒子的方法,制备正极材料,该方法具备了络合物法的优点,而且制备出的电极材料电容量有较大的提高,属于正在国内外迅速发展的一种方法。缺点是成本较高,技术还属于开发阶段[11]。

4)离子交换法Armstrong等用离子交换法制备的LiMnO2,获得了可逆放电容量达270mA·h/g高值,此方法成为研究的新热点,它具有所制电极性能稳定,电容量高的特点。但过程涉及溶液重结晶蒸发等费能费时步骤,距离实用化还有相当距离。

正极材料的研究从国外文献可看出,其电容量以每年30~50mA·h/g的速度在增长,发展趋向于微结构尺度越来越小,而电容量越来越大的嵌锂化合物,原材料尺度向纳米级挺进,关于嵌锂化合物结构的理论研究已取得一定进展,但其发展理论还在不断变化中。困扰这一领域的锂电池电容量提高和循环容量衰减的问题,已有研究者提出添加其它组分来克服的方法[12][13][14][15][16][17]。但就目前而言,这些方法的理论机理并未研究清楚,导致日本学者Yoshio.Nishi认为,过去十年以来在这一领域实质进展不大[1],急须进一步地研究。

2 负极材料的性能和一般制备方法

负极材料的电导率一般都较高,则选择电位尽可能接近锂电位的可嵌入锂的化合物,如各种碳材料和金属氧化物。可逆地嵌入脱嵌锂离子的负极材料要求具有:

1)在锂离子的嵌入反应中自由能变化小;

2)锂离子在负极的固态结构中有高的扩散率;

3)高度可逆的嵌入反应;

4)有良好的电导率;

5)热力学上稳定,同时与电解质不发生反应。

研究工作主要集中在碳材料和具有特殊结构的其它金属氧化物。石墨、软碳、中相碳微球已在国内有开发和研究,硬碳、碳纳米管、巴基球C60等多种碳材料正在被研究中[18][19][20][21][22][23]。日本Honda Researchand Development Co.,Ltd的K.Sato等人利用聚对苯撑乙烯(Polyparaphenylene——PPP)的热解产物PPP-700(以一定的加热速度加热PPP至700℃,并保温一定时间得到的热解产物)作为负极,可逆容量高达680mA·h/g。美国MIT的MJMatthews报道PPP-700储锂容量(Storagecapacity)可达1170mA·h/g。若储锂容量为1170mA·h/g,随着锂嵌入量的增加,进而提高锂离子电池性能,笔者认为今后研究将集中于更小的纳米尺度的嵌锂微结构。几乎与研究碳负极同时,寻找电位与Li+/Li电位相近的其他负极材料的工作一直受到重视。锂离子电池中所用碳材料尚存在两方面的问题:

1)电压滞后,即锂的嵌入反应在0~0.25V之间进行(相对于Li+/Li)而脱嵌反应则在1V左右发生;

2)循环容量逐渐下降,一般经过12~20次循环后,容量降至400~500mA·h/g。

理论上的进一步深化还有赖于各种高纯度、结构规整的原料及碳材料的制备和更为有效的结构表征方法的建立。日本富士公司开发出了锂离子电池新型锡复合氧化物基负极材料,除此之外,已有的研究主要集中于一些金属氧化物,其质量比能量较碳负极材料大大提高。如SnO2,WO2,MoO2,VO2,TiO2,LixFe2O3,Li4Ti5O12,Li4Mn5O12等[24],但不如碳电极成熟。锂在碳材料中的可逆高储存机理主要有锂分子Li2形成机理、多层锂机理、晶格点阵机理、弹性球-弹性网模型、层-边端-表面储锂机理、纳米级石墨储锂机理、碳-锂-氢机理和微孔储锂机理。石墨,作为碳材料中的一种,早就被发现它能与锂形成石墨嵌入化合物(Graphite Intercalation Compounds)LiC6,但这些理论还处于发展阶段。负极材料要克服的困难也是一个容量循环衰减的问题,但从文献可知,制备高纯度和规整的微结构碳负极材料是发展的一个方向。

一般制备负极材料的方法可综述如下。

1)在一定高温下加热软碳得到高度石墨化的碳;嵌锂石墨离子型化合物分子式为LiC6,其中的锂离子在石墨中嵌入和脱嵌过程动态变化,石墨结构与电化学性能的关系,不可逆电容量损失原因和提高方法等问题,都得到众多研究者的探讨。2)将具有特殊结构的交联树脂在高温下分解得到的硬碳,可逆电容量比石墨碳高,其结构受原料影响较大,但一般文献认为这些碳结构中的纳米微孔对其嵌锂容量有较大影响,对其研究主要集中于利用特殊分子结构的高聚物来制备含更多纳米级微孔的硬碳[25][26][27]。

3)高温热分解有机物和高聚物制备的含氢碳[28][29]。这类材料具有600~900mA·h/g的可逆电容量,因而受到关注,但其电压滞后和循环容量下降的问题是其最大应用障碍。对其制备方法的改进和理论机理解释将是研究的重点。

4)各种金属氧化物其机理与正极材料类似[24],

也受到研究者的注意,研究方向主要是获取新型结构或复合结构的金属氧化物。

5)作为一种嵌锂材料,碳纳米管、巴基球C60等也是当前研究的一个新热点,成为纳米材料研究的一个分支。碳纳米管、巴基球C60的特殊结构使其成为高电容量嵌锂材料的最佳选择[22][23][30]。从理论上说,纳米结构可提供的嵌锂容量会比目前已有的各种材料要高,其微观结构已被广泛研究并取得了很大进展,但如何制备适当堆积方式以获得优异性能的电极材料,这应是研究的一个重要方向[31][32][33]。

3 结语

综上所述,近年来锂离子电池中正负极活性材料的研究和开发应用,在国际上相当活跃,并已取得很大进展。材料的晶体结构规整,充放电过程中结构不发生不可逆变化是获得比容量高,循环寿命长的锂离子电池的关键。然而,对嵌锂材料的结构与性能的研究仍是该领域目前最薄弱的环节。锂离子电池的研究是一类不断更新的电池体系,物理学和化学的很多新的研究成果会对锂离子电池产生重大影响,比如纳米固体电极,有可能使锂离子电池有更高的能量密度和功率密度,从而大大增加锂离子电池的应用范围。总之,锂离子电池的研究是一个涉及化学、物理、材料、能源、电子学等众多学科的交叉领域。目前该领域的进展已引起化学电源界和产业界的极大兴趣。可以预料,随着电极材料结构与性能关系研究的深入,从分子水平上设计出来的各种规整结构或掺杂复合结构的正负极材料将有力地推动锂离子电池的研究和应用。锂离子电池将会是继镍镉、镍氢电池之后,在今后相当长一段时间内,市场前景最好、发展最快的一种二次电池。

电池的分类有不同的方法其分类方法大体上可分为三大类
第一类:按电解液种类划分包括:碱性电池,电解质主要以氢氧化钾水溶液为主的电池,如:碱性锌锰电池(俗称碱锰电池或碱性电池)、镉镍电池、氢镍电池等;酸性电池,主要以硫酸水溶液为介质,如铅酸蓄电池;中性电池,以盐溶液为介质,如锌锰干电池(有的消费者也称之为酸性电池)、海水激活电池等;有机电解液电池,主要以有机溶液为介质的电池,如锂电池、锂离子电池待。

第二类:按工作性质和贮存方式划分包括:一次电池,又称原电池,即不能再充电的电池,如锌锰干电池、锂原电池等;二次电池,即可充电电池,如氢镍电池、锂离子电池、镉镍电池等;蓄电池习惯上指铅酸蓄电池,也是二次电池;燃料电池,即活性材料在电池工作时才连续不断地 从外部加入电池,如氢氧燃料电池等;贮备电池,即电池贮存时不直接接触电解液,直到电池使用时,才加入电解液,如镁-氯化银电池又称海水激活电池等。

第三类:按电池所用正、负有为材料划分包括:锌系列电池,如锌锰电池、锌银电池等;镍系列电池,如镉镍电池、氢镍电池等;铅系列电池,如铅酸电池等;锂系列电池、锂镁电池;二氧化锰系列电池,如锌锰电池、碱锰电池等;空气(氧气)系列电池,如锌空电池等

充电电池定义
充电电池又称:蓄电池、二次电池,是可以反复充电使用的电池。常见的有:铅酸电池(用于汽车时,俗称“电瓶”)、镉镍电池、氢镍电池、锂离子电池。

电池的额定容量
电池的额定容量指在一定放电条件下,电池放电至截止电压时放出的电量。IEC标准规定镍镉和镍氢电池在20±5℃环境下,以0.1C充电16小时后以0.2C放电至1.0V时所放出的电量为电池的额定容量。单位有Ah, mAh (1Ah=1000mAh)

如何正确使用锂离子电池?
正确使用锂离子电池应注意以下几点:
避免在严酷条件下使用,如:高温、高湿度、夏日阳光下长时间暴晒等,避免将电池投入火中;
装、拆电池时,应确保用电器具处于电源关闭状态;使用温度应保持在-20~55℃之间;
避免将电池长时间“存放”在停止使用的用电器具中;

2. 离子色谱法测定锂、钠、钾、钙、镁、铵

方法提要

水样中阳离子Li+、Na+、NH+4、K+、Mg2+、Ca2+,随盐酸淋洗液进入阳离子分离柱,根据离子交换树脂对各阳离子的不同亲和程度进行分离。经分离后的各组分流经抑制系统,将强电解质的淋洗液转换为弱电解溶液,降低了背景电导。流经电导检测器系统,测量各离子组分的电导率。以相对保留时间和色谱峰(面积)定性和定量。

本法用电导检测器,在3~300μS测量量程,可达到线性范围分别为:Li+0.02~27mg/L;Na+0.06~90mg/L;K+0.16~225mg/L。10~300μS量程为:Mg2+1.2~35mg/L;Ca2+1.7~360mg/L。

仪器和装置

离子色谱仪(电导检测器)。

阳离子分离柱/保护柱(IopacCS12,CS14或同类产品)。

抑制器系统(抑制柱、膜抑制器或自动再生电解抑制器)。

滤膜(0.2μm)和过滤器。

试剂

本法需用电导率小于1μS/cm的纯水配制标准溶液和淋洗液。

淋洗液 盐酸c(HCl)=20mmol/L。

再生液 四甲基氢氧化铵c(CH3)4NOH=100mmol/L称取36.5g四甲基氢氧化铵,置于100mL容量瓶中,加水至刻度。

钠(Na+) 标准储备溶液ρ(Na+)=1.00mg/mL称取0.5084g经500℃灼烧1h,并在干燥器中冷却0.5h的NaCl,置于200mL容量瓶中,加入水溶解后稀释至刻度,摇匀。

钾(K+) 标准储备溶液ρ(K+)=1.00mg/mL称取0.4457g经500℃灼烧1h并在干燥器中冷却0.5h的K2SO4,置于200mL容量瓶中,加入水溶解后稀释至刻度,摇匀。

锂(Li+) 标准储备溶液ρ(Li+)=1.00mg/mL称取1.0648gLi2CO3置于200mL容量瓶中,加少量水湿润,逐滴加入(1+1)HCl,使碳酸锂完全溶解,再过量2滴。加入水至刻度,摇匀。

图81.65 种阳离子的色谱图

钙(Ca2+)标准储备溶液ρ(Ca2+)=1.00mg/mL称取0.4994g经105℃干燥的CaCO3置于200mL烧杯中,加入少量纯水,逐渐加入(1+1)HCl,待完全溶解后,再加入过量(1+1)HCl。煮沸驱除二氧化碳,定量地转移至200mL容量瓶中,加入纯水溶解后稀释至刻度。

镁(Mg2+)标准储备溶液ρ(Mg2+)=1.00mg/mL称取0.7836g氯化镁(MgCl2)置于200mL容量瓶中,加入纯水溶解后稀释至刻度。

阳离子混合标准溶液根据选定的测量范围,分别吸取适量各组分的标准储备溶液,定容至一定体积,以mg/L表示各组分浓度。

分析步骤

开启离子色谱仪,调节淋洗液和再生液流速,使仪器达到平衡,并指示稳定的基线。

校准。根据所选择的量程,将阳离子混合标准溶液和两次等比稀释的三种不同浓度的阳离子混合标准溶液依次进样。记录峰高或峰面积,绘制校准曲线。

将水样经0.2μm滤膜过滤注入进样系统,记录色谱峰高或峰面积。各种阳离子的质量浓度(mg/L)在标准曲线上直接查得。

各种阳离子的测定范围(mg/L)见表81.8及色谱图81.6。

表81.8 各种阳离子在不同量程的参考测定浓度

续表

3. 离子交换法

阳离子交换树脂对碱金属的吸附能力随其水化物离子半径的减小而增强专。根据碱金属属的活度系数,阳离子交换树脂对其吸附能力的次序为:Cs>Rb>K>NH+4>Na>Li。

有些无机化合物对碱金属有选择性的吸附作用,可作为离子交换剂用。

磷酸铝在水溶液中能吸附铷、铯,其分离系数比合成树脂还高。交换柱上的铷、铯可分别用稀硝酸及高于1mol/LHNO3洗脱。

在硝酸溶液中,铷、铯可被磷钼酸铵吸附,与钾、钠、锂分离,再用2mol/L和6mol/LNH4NO3溶液洗脱铷、铯。当氧化钾含量低于50mg时,铷、铯回收率均在90%以上。

阴离子交换树脂在一定条件下,虽可用于碱金属彼此之间的分离,但大多数情况是作为分离其他元素用。

在盐酸溶液中,钴、锌、铁、镉形成稳定的氯阴离子,能被强碱性阴离子交换树脂吸附,或上述元素及钒与柠檬酸作用后,也可被阴离子交换树脂吸附而与碱金属分离。

钙、镁在EDTA的乙醇溶液中,或其他一些两价金属在有EDTA或乙酸盐存在下,均可被阴离子交换树脂吸附,因此可用作碱金属与碱土金属的分离。

4. 离子交换分离操作中,以高浓度盐溶液进行洗脱的原理是

用离子交换树脂进行分离的操作程序包括三个步骤,具体操作过程如下文中所述.
(1)交换柱的制备首先选择合适的离子交换树脂类型,用相应的溶液进行处理,如强酸性阳离子交换树脂需要在稀盐酸中浸泡,以除去杂质并使之溶胀和完全转变成H式.然后用蒸馏水洗至中性,装入充满蒸馏水的交换柱中.注意防止气泡进入树脂层.
(2)交换使待处理水样以合适的流速通过交换柱进行离子交换.交换完毕后用蒸馏水洗去残留的溶液及交换过程中形成的酸、碱或盐类等.
(3)洗脱洗脱是将已交换到树脂上的离子分离出来的过程.选择合适的洗脱液,使之以适宜速度通过交换柱进行洗脱.(更多质量检测、分析测试、化学计量、标准物质相关技术资料请参考中检所对照品查询 www.rmhot.com)
阳离子交换树脂常用盐酸溶液作为洗脱液;阴离子交换树脂常用盐酸溶液、氯化钠或氢氧化钠溶液作洗脱液.对于分配系数相近的离子,可用含有机络合剂或有机溶剂的洗脱液,以提高洗脱过程的选择性.
离子交换技术在富集和分离微量或痕量元素方面应用很广.例如分离水中的锂离子、锰离子、铜离子、铁离子、锌离子等多种金属离子,首先加入盐酸使一部分离子转变为络合阴离子,然后将水样通过强碱性阴离子交换树脂,各种离子均被交换在树脂上,最后用不同浓度的盐酸溶液进行洗脱分离.锂离子不生成络合阴离子,不发生交换,可用12mol/L HCl溶液最先洗脱出来

5. 离子交换树脂法的应用有哪些

离子交换树脂法的应用有哪些
用离子交换树脂进行分离的操作程序包括三个步骤,具体操作过程如下文中所述.
(1)交换柱的制备首先选择合适的离子交换树脂类型,用相应的溶液进行处理,如强酸性阳离子交换树脂需要在稀盐酸中浸泡,以除去杂质并使之溶胀和完全转变成H式.然后用蒸馏水洗至中性,装入充满蒸馏水的交换柱中.注意防止气泡进入树脂层.
(2)交换使待处理水样以合适的流速通过交换柱进行离子交换.交换完毕后用蒸馏水洗去残留的溶液及交换过程中形成的酸、碱或盐类等.
(3)洗脱洗脱是将已交换到树脂上的离子分离出来的过程.选择合适的洗脱液,使之以适宜速度通过交换柱进行洗脱.
阳离子交换树脂常用盐酸溶液作为洗脱液;阴离子交换树脂常用盐酸溶液、氯化钠或氢氧化钠溶液作洗脱液.对于分配系数相近的离子,可用含有机络合剂或有机溶剂的洗脱液,以提高洗脱过程的选择性.
离子交换技术在富集和分离微量或痕量元素方面应用很广.例如分离水中的锂离子、锰离子、铜离子、铁离子、锌离子等多种金属离子,首先加入盐酸使一部分离子转变为络合阴离子,然后将水样通过强碱性阴离子交换树脂,各种离子均被交换在树脂上,最后用不同浓度的盐酸溶液进行洗脱分离.锂离子不生成络合阴离子,不发生交换,可用12mol/L HCl溶液最先洗脱出来

6. 锂同位素测量

热电离质谱法测量锂同位素

自然界锂有两种稳定同位素6Li和7Li,原子质量分别为6.0151223(5)u和7.0160041(5)u,其丰度分别为0.07591(2)和0.92409(20)(Coplenetal.,2002)。IAEA推荐的锂同位素标准参考物质是NBSL-SVECLi2CO3,其绝对6Li/7Li=0.0832±0.0002(Fleschetal.,1973)。另外还有两个标准物质是富6Li的IRMM-015和天然丰度的IRMM-016,后者的绝对6Li/7Li=0.08212±0.00028(Qietal.,1997)。根据IUPAC的推荐,试样的锂同位素组成要采用δ7Li表示(Coplen,1996)。

目前测定锂同位素的方法主要有历史悠久的热电离质谱法(TIMS)(Sahoo,Masuda,1995)和近期发展起来的多接收等离子体质谱法(MC-ICPMS)(Magnaetal.,2004)。

方法提要

采用碱熔、酸溶或水溶的方法将待测试样中的Li制备成含Li溶液,采用离子交换方法进行Li的分离并转型为Li2B7O4或Li3PO3形式,采用双带热电离的方法获得Li+离子进行锂同位素组成的TIMS测定。

仪器装置

热电离同位素质谱计(VG354,MAT262,IsoProbeT,Triton)。

原子吸收光谱仪。

真空烧带装置。

超净化实验室。

石英亚佛蒸馏器。

超净化干燥蒸发箱。

电子分析天平。

试剂与材料

硼酸优级纯。

氢氧化钠优级纯。

氯化钠优级纯。

磷酸。

低本底亚沸蒸馏盐酸。

无水甲醇优级纯。

低Li亚沸蒸馏水。

1.2mol/LHCl-(4+1)甲醇淋洗溶液由上述试剂配制。

NBS951硼同位素标准溶液ρ(B)=1mg/mL。

各类四氟乙烯器皿烧杯、洗瓶等。

NBSL-SVECLi2CO3锂同位素标准物质。

Ta金属箔和Re金属箔规格:长7.5mm,宽0.76mm,厚0.02mm。

上海正一号阳离子交换树脂(80~100目)。

石英离子交换柱=0.5cm。

离子交换柱的制备将浸泡过夜的上海正一号阳离子交换树脂(80~100目)装入直径为0.5cm的石英离子交换柱中,树脂床高度为10cm,继以200mL4mol/LHCl淋洗,再用高纯水洗至中性,并采用1.2mol/LHCl-(4+1)甲醇淋洗溶液将交换柱中的水排出,最后将树脂倒出,用1.2mol/LHCl-(4+1)甲醇溶液重新装柱备用。

分析步骤

(1)试样制备

a.盐类试样的溶解及水溶液试样的预处理。称取约0.1g盐类试样,用低锂亚沸蒸馏水溶解,过滤除去不溶部分,制备成含Li的溶液备用。水溶液试样过滤除去不溶物后,在低温下蒸发至约3mL备用。

b.离子交换纯化。在准备就绪的试样溶液中加入2.5gNaCl和15mL1.2mol/LHCl-(4+1)甲醇淋洗溶液,以0.2mL/min的流速过柱进行交换,盛样容器中残留的NaCl晶体用少量淋洗溶液转移,剩下的少量NaCl晶体用0.2mL水溶解后再加入2mL淋洗液,混合后倒入柱中,重复一次以上操作。最后用淋洗溶液以0.5mL/min的流速淋洗,根据淋洗曲线收集含Li的淋洗液部分。在超净箱中于60℃蒸发至干,加少量水溶解,再蒸干,重复2次。将生成的溶液通过OH-型阴离子交换柱,将Li转化成LiOH形式备用。

当采用Li3PO4作涂样物质时,将交换分离后的试样溶液蒸干后加入0.3mL0.017mol/LH3PO4,然后在电热板上于90℃蒸发数小时备用。

(2)锂含量和特殊组成测定

a.锂含量的检测。试液中锂的浓度可采用原子吸收光谱法测量,以确定锂同位素质谱测定时的取样量。

b.钽、铼带的加热去气处理。为了降低钽和铼带中的Li及其他杂质的含量,钽和铼带通常要进行加热处理,过程如下:将点焊在灯丝架上的钽和铼带在专用的真空系统中进行电加热处理,加热电流Ta带为3.0A,Re带4.5A,加热时间为1.0h,系统的真空度应优于1×10-3Pa。

c.锂同位素测定。锂同位素分析在热电离同位素质谱计(VG354,MAT261,MAT262,IsoProbeT,TritonT)上进行。

采用Li2B4O7作涂样物质(Xiao,1989):采用去过气的双带或三带,样品带为Ta带,电离带为Re带。涂样时在样品带上涂3μL浓度为1mg/mL的NBS951硼标准溶液(也可采用其他超纯的H3BO3化学试剂),蒸发至近干,再加入0.5~1.0μgLi的试液溶液,通以1.2A电流,加热2min使试液蒸干。装入质谱计,当离子源真空优于3×10-5Pa时开始进行测量。快速升高电离带电离至2.00A,然后以0.2A/min继续升高直到电离带温度为1500℃,温度采用光学温度计测量。然后缓慢升高样品带电流至7Li+离子流达到5×10-12A。对7Li+离子流进行仪器聚焦,当7Li+离子流达到2×10-11A时开始数据采集,采用峰跳扫方式测量7Li+6Li+离子流强度,基线零点为u/e6.5。

采用Li3PO4作涂样物质(Moriguti,1998):采用去过气的双带或三带,样品带和电离带均为Re带。涂样时在样品带上涂添加有H3PO4的含Li的试样溶液,先在1.0A下加热,随后缓慢升高电流至1.7A,并避免试液沸腾,维持带电流直至磷酸冒烟消失。装入质谱计,当离子源真空优于3×10-5Pa时开始进行测量。首先升高电离带电流至电离带温度为1150℃,样品带电流升至0.3A,维持10min后快速将两加热电流降至0,冷却10min后再重新升高电离带电流至1.05~1.10A,此时温度为850℃,升高样品带电流至0.60A,此时将出现7Li+,随后缓慢升高至7Li+离子流达到(1.05~1.25)×10-11A时开始数据采集。采用峰跳扫方式测量7Li+6Li+离子流强度,基线零点为u/e6.5。

若采用IsoProbeT或FinniganTriton进行测量,可采用双接收同时进行7Li+6Li+离子流强度的测量。

试液的锂同位素组成用相对于NBSL-SVECLi2CO3锂同位素标准δ7Li表示:

岩石矿物分析第四分册资源与环境调查分析技术

图87.26表明在不同的电离带温度下以Li2B4O7作涂样物质时,7Li/6Li比值随测量时间的变化。结果表明,当电离带温度低于1200℃时,测定的7Li/6Li比值偏低,且有随时间而升高的趋势。

图87.26 以Li2B4O7作涂样物质时不同电离温度时7Li/6Li比值随时间的变化

按照以上方法对NBSL-SVECLi2CO3锂同位素标准进行重复涂样测定的7Li/6Li比值列于表87.25。

表87.25 对NBSL-SVECLi2CO3锂同位素标准7Li/6Li比值测定的重复性

采用正热电离质谱法测得的NBSL-SVECLi2CO3锂同位素比值

正热电离质谱法在Li同位素地球化学、环境等研究领域获得广泛应用。表87.26总结了世界各实验室采用正热电离质谱法测得的NBSL-SVECLi2CO3锂同位素比值和精度。

表87.26 各实验室采用热电离质谱法测定的NBSL-SVECLi2CO3Li同位素比值

讨论

锂同位素热电离质谱法测定有一个由单带到双带的发展过程。在多带法中由于Li以分子形式蒸发,降低了Li在蒸发过程中的同位素分馏而使测定精度得以提高,最常用的涂样物质有LiNO3、LiCl、LiI、Li2SO4、Li3PO4和Li2B4O7,被检测的离子有Li+、LiF+和Li2BO2+。近些年来,以Li3PO4作涂样形式测定Li+的方法得到更普遍的应用。Xiao(1989)等对采用Li2B4O7作涂样物质测定Li+的热电离质谱法高精度测定锂同位素进行系统研究,发现电离带温度对控制测定中的锂同位素分馏起着决定性作用。在多种涂样物质中,发现Li2B4O7是最好的,能获得最稳定的7Li/6Li比值测定。但是后来有研究表明,Li3PO4作涂样物质具有更多的优越性(Moriguti,1998)。

1)电离温度的影响。由于Li的两种稳定同位素6Li和7Li非常大的相对质量差,在热电离质谱法测定中会产生严重的同位素分馏,使得锂同位素的精密测定十分困难。电离温度是影响Li同位素分馏的重要因素,图87.27表明采用不同涂样物质时,7Li/6Li比值随电离温度的变化;在低温时,测定的7Li/6Li比值严重偏低,随电离温度的升高,测定的7Li/6Li比值逐渐升高,到1200℃时7Li/6Li比值才趋于平稳。这表明在低温时,Li同位素的分馏更为显著,因此在进行Li同位素热电离法测定时,电离温度应在1400℃以上。

2)不同形式涂样物质的比较。采用大分子量的涂样物质能降低Li化合物蒸发过程中的同位素分馏,因此Li同位素测定中采用的涂样物质有一个由低相对分子质量到高相对分子质量的发展过程,所采用涂样物质有LiOH、LiCl、LiNO3、LiF、LiI、Li2B4O7和Li3PO4等。除了这一因素外,涂样物质的腐蚀性和记忆效应以及能否产生稳定的Li+离子流应进行综合考虑。表87.27表明,LiCl和Li2B4O7可能是比较理想的涂样物质,7Li/6Li测定精度可达0.14%以上,而且记忆效应较弱。近些年来,很多实验室采用Li3PO4作涂样物质,也得到比较理想的测定结果。图87.27也表明采用Li3PO4涂样时,记忆Li量与Li2B4O7涂样时相似,测量条件控制得好,可望获得更高的测定精度,不妨采用之。LiF可能是最不合适作为锂同位素测定时的涂样物质,采用LiF作涂样物质,测定精度最低,而记忆效应最强。

图87.27 采用不同涂样物质时7Li/6Li比值随电离温度的变化

表87.27 采用不同锂化合物涂样时对NBSL-SVECLi2CO3锂测定的锂同位素比值和记忆量

参考文献

肖应凯,白玉珍,王蕴慧 .1983.大量钠和镁中微量锂的离子交换分离 [J].理化检验,化学分册,19(6) : 41-43

肖应凯,祁海平,王蕴慧,等 .1988.质谱测定锂同位素组成的分馏效应研究 [J].科学通报,33(17) : 1336-1338

肖应凯,祁海平,王蕴慧,等 .1991.热电离质谱法测定锂同位素中各种涂样形式的比较 [J].科学通报,36 (18) : 1386 -1388

Chan L H,Edmond J M, Thompson G, Gillis K.1992.Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans.Earth Planet Sci.Lett.,108: 151-160

Chan L H.1987.Lithium isotope analysis by thermal ionization mass spectrometry of lithium tetraborate.59: 2662-2665

Coplen T B,Blke J K,Bièvre P De,Ding T,Holden N E,Hopple J A,Krouse H R,Lamberty A,Peiser H S,Révész K,Rieder S E,Rosman K J R,Roth E,Taylor P D P,Vocke J R R D,and Xiao Y K.2002.Isotope-aboundance variations of selected elements.Pure Appl.Chem.,74 (10) : 1987-2017

Coplen T B.1996.Atomic weights of the elements.1995.Pure Appl.Chem,68: 2339-2359

Flesch G D, Anderson, Jr A R and Svec H J.1973.A secondary isotopic atandard for6Li /7Li determinations.Int.J.Mass Spectrom Ion Phys.,265-272.

Green L W, Leppinen J J, Elliot N L.1988.Isotopic analysis of lithium as thermal dilithium fluoride ions.Anal.Chim.Acta,60: 34-37

Huh Y,Chan L H,Zhang L,et al.1998.Lithium and its isotopes in major world revers: implications for weathering and the oceanic budget,geochim.Cosmochim.Acta,62: 2039-2051

Lamberty A,Michiels E,Bievre P D.1987.On the atomic weight of lithium.Int.J.Mass Spectrom Ion Proc.,79: 311-313

Magna T,Wiechert U H,Halliday A N.2004.Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS.Int.J.Mass Spectrom.,239: 67-76

Moriguti T,Nakamura E.1993.Precise lithium isotopic analysis by thermal ionization mass spectrometry using lithium phosphate as an ion source meterial.Proc.Jpn.Acad.Sci.,69: 123-128

Moriguti T,Nakamura E.1998.High-yield lithium separation and the precise isotopic analysis for natural rock and aqueous samples.Chem.Geol.,145: 91-104

Qi H P,Taylor P D P,Berglund M,Bievre P De.1997.Calibrated measurements of the isotopic composition and atomic weight of the natural Li isotopic reference material IRMM-016.Int.J.Mass Spectrom.Ion Proc,171:263-268

Sahoo S K, Masuda A.1995.High precision isotopic measurement of lithium by thermal ionization mass spectrometry.Int.J.Mass Spectrom.Ion Proc.,151: 189-196

Xiao Y K,Beary E S.1989.High-precision isotopic measurement of lithium by thermal ionization mass spetrometry[J].Int.J.Mass Spectrom Ion Processes,94: 101-114.

You C F,Chan L H.1996.Precise determination of lithium isotopic composition in low concentration natural samples [J].Geochim Cosmochim Acta,60: 909-915

本节编写人: 肖应凯 (中国科学院青海盐湖研究所) 。

7. 什么是去离子水设备,去离子水采用的工艺有离子交换

去离子水设备,是离来子交换系统自。离子交换系统是通过阴、阳离子交换树脂对水中的各种阴、阳离子进行置换的一种传统水处理工艺,阴、阳离子交换树脂按不同比例进行搭配可组成离子交换阳床系统,离子交换阴床系统及离子交换混床系统,而混床系统又通常是用在反渗透等水处理工艺之后用来制取超纯水,高纯水的终端工艺,它是用来制备超纯水、高纯水不可替代的手段之一。
去离子水设备主要用途
1、化妆品行业:护肤品、洗发水、染发剂、牙膏、洗手液生产用水
2、电子工业:铝箔清洗、电子管喷涂配液、显相管玻壳清洗、沉淀、湿润、洗膜、管颈清洗、液晶屏屏面清洗和配液、晶体管和集成电路的硅片清洗用水、配制水
3、电池行业:蓄电池、锂电池、太阳能电池生产用水
4、混凝土外加剂配制用水
5、玻璃镀膜、玻璃制品清洗及灯具清洗用水
6、纺织印染工业:印染助剂配制、湿巾及面膜生产用水
7、超声波清洗用水
8、涂装行业:涂料配制、电镀配制清洗、电泳漆配制清洗用水

8. 求教:硅酸锂的制备工艺

因为碳酸锂和石英砂熔融而制成的矽酸锂玻璃,在水中不溶解。因此,常规的可溶性矽酸盐制造方法不能制得矽酸锂水溶液,必须寻求其它制造方法。

文献报导的制造方法虽然不少,但都存在一些缺点或不足之处。如采用较多的矽溶胶法,原料成本太高;矽胶法,虽可使用便宜原料,但要求高温高压设备;矽粉法;原料也不便宜,而且成品外观和反应收率都有问题;离子交换法可以用各种可溶性锂盐,但树脂床在我国投资费用较高,而且处理树脂後的废酸、废水量大,从生产成本和环境保护考虑似乎也不宜选用。在较多的方法中,目前认为较好的方法是活性矽酸--氢氧化锂法。以下介绍该法。
活性矽酸--氢氧化锂法是利用将水玻璃溶液按阳离子交换法制得的具有一定浓度的活性矽酸溶液与氢氧化锂粉末或水溶液反应而制成。可以得到具有透明性、长期贮存稳定性以及粘结力优良的矽酸锂水溶液。

(1)原料的预制备及其要求

活性矽酸水溶液,就是使矽酸钠或矽酸钾水溶液通过阳离子交换树脂床层经离子交换後而生成。该水溶液中的二氧化矽的粒径在5毫微米以下,二氧化矽含量1~7重量份,SiO2/M2O(M表示钾或钠)摩尔比300~2000。根据需要,如果再同阴离子交换剂接触,则可以提供制备矽酸锂水溶液的更好的原料。
这种活性矽酸水溶液,常温放置,二氧化矽的粒径要逐渐增大,使溶液增粘,以至胶化。因此,制备矽酸锂水溶液时,必须在活性矽酸生成後尚未增粘和胶化之前,最好二氧化矽粒径还在1~2毫微米之间时,立即同氢氧化锂反应。如果二氧化矽粒径达到5毫微米以上,同氢氧化锂反应就要引起胶化,不仅需要长时间的解胶,而且不能制成透明的矽酸锂水溶液。还须指出,SiO2的浓度如果不足1%(重量),同氢氧化锂反应,显然得到的矽酸锂水溶液中的SiO2的浓度不够,浓缩时将须除去大量的水;如果超过7%,制得的活性二氧化矽水溶液即使立即同氢氧化锂反应,在反应前的瞬间,也会显著增粘或胶化,从而不能在短时间内制造出透明的矽酸锂水溶液。因此,二氧化矽的浓度最好在2~5%(重量)之间。
氢氧化锂使用粉末状、粒状、块状或水溶液均可,但最好是粉末状或水溶液状氢氧化锂。也可以使用以乙醇、乙二醇、丙酮、胺、季胺的氢氧化物等置换部分水溶液而得到的氢氧化锂溶液。(2)制备及其操作条件将上述制得的活性矽酸水溶液和氢氧化锂粉末(或水溶液)按一定的配比,在0~80 ℃(接近常温即可)且搅拌下混合反应10分钟~2小时,即可得到透明而稳定的矽酸锂水溶液。其中原料配比是:活性矽酸水溶液和氢氧化锂粉末(或水溶液)最好是按SiO2:Li2O的摩尔比为2.5~10之间。摩尔比低於2.2,反应时易生成化学组成为Li2O·2SiO2或2Li2O·SiO2的白色沉淀,不能保持水溶液稳定地进行反应;摩尔比大於10,反应得到的矽酸锂水溶液在高温下的长期稳定性低,实际使用效果不好。两种原料的混合方法,采用在搅拌下於活性矽酸水溶液中添加氢氧化锂;或於氢氧化锂中添加活性矽酸水溶液,或将两者同时加入的方法均可然後,将制得的稀矽酸锂水溶液,在常压或减压下於25~90 ℃蒸发浓缩,即可得到SiO2含量35%(重量)以下(通常10~25%)具有实用浓度的矽酸锂水溶液。这样的产品,分散於其中的二氧化矽粒子微细,不仅具有真溶液的性质,而且长期贮存稳定性好。

9. 下列离子在强酸性阳离子交换树脂的交换次序

由于你提供的离子交换排代次序没有说明在什么样的介质情况下,尤其是放射性的离子选择性会在不同介质下更为敏感,所以我只能回答您常规水处理的一般应用数据,具体分析回答如下:

离子交换树脂对水中各种离子的交换能力是不同的,即有些离子易被离子交换树脂吸着,但吸着后要把它解吸下来就比较困难;反之,有些离子则难被离子交换树脂吸着,但易被解吸,这种性能称为离子交换树脂的选择性。这种选择性影响到离子交换树脂的交换和再生过程。

它有两个规律:

(1)离子带的电荷越多,越易被离子交换树脂吸着,例如两价离子比一价离子易被吸着;

(2)对于带有相同电荷量的离子,则原子序数大的元素,形成离子的水合半径小,较易被吸着。

对于阳离子交换树脂来说,它对水中各种常见离子的选择性次序为:

Fe3+ >Al3+ >Ca2+ >Mg2+ >K+ ≈NH4+ >Na+ >Li+

这个次序只适合于在含盐量不很高的水溶液中。在浓溶液中,离子间的干扰较大,且水合半径的大小顺序和上述的次序也有些差别,其结果是使得在浓溶液中各离子间的选择性差别较小。

离子交换树脂的选择性除了和被吸着离子的本质有关外,还与离子交换树脂的结构,特别是与其活性基团有关。例如含磺酸基(-SO3-)的强酸性阳离子交换树脂对H+的吸着能力并不很强,在选择性次序中H+居于Na+和Li+之间,即:

Fe3+ >Al3+ >Ca2+ >Mg2+ >K+ ≈NH4+ >Na+ >H+ >Li+

而含有羧酸基(-COO-)的弱酸性阳离子交换树脂,对H+有特别强的吸着能力,H+的选择性甚至比Fe3+还强,即:

H+ >Fe3+ >Al3+ >Ca2+ >Mg2+ >K+ ≈NH4+ >Na+ >Li+

10. 离子交换树脂经各种处理变为改性离子交换树脂的原理是什么

你说的是阳离子交换树脂吧,基本原理是阳树脂的苯环邻对位上带有一个磺酸基—SO3-H+
如版H型阳离子交换权树脂遇到含有Ca2+、Na+的水时,发生如下反应:
2RH + Mg2+➡️R2Mg+ 2H+
RH + Li+ ➡️RLi + H+
这样就完成了树脂的改性。

阅读全文

与锂离子交换树脂相关的资料

热点内容
斯维洛克氢气过滤器 浏览:492
污水站絮凝剂加到哪里 浏览:793
可以辅食机里蒸馏水做捕食吗 浏览:522
小米豌豆净水器怎么连接手机 浏览:437
松下颗粒净化器怎么样 浏览:528
企业污水入园总磷标准 浏览:110
净水器净化器属于什么品 浏览:908
蒸馏白酒剩的米水有用吗 浏览:813
污水调试需要什么 浏览:850
柴胡蒸馏液 浏览:457
小型美的饮水机的价位是多少 浏览:16
好用的中水回用 浏览:408
水龙头过滤垫圈 浏览:236
RO反渗透膜是4040还是4080 浏览:612
印度没药树脂丰胸吗 浏览:159
小米的空气净化器的作用是什么 浏览:654
景区污水处理方案公司 浏览:633
特恩洁ro反渗透膜怎么更换 浏览:496
可宝空气净化器的滤芯如何保养 浏览:55
污水处理厂一般工资多少上海 浏览:119