离子交换树脂法是一种应用广泛的方法,树脂中含有的氨基、羟基等活专性基团可以与重金属离子属进行螯合、交换反应,从而去除废水中重金属离子的方法,同时还可以用于浓缩和回收溶液中痕量的重金属,其优点是树脂具有可逆性,可通过再生重复使用,且交换选择性好,缺点是价格昂贵。因此研究和选择成本低、选择性高、交换容量大、吸附-解吸过程可逆性好的离子交换树脂,对于处理重金属废水有着重要意义
㈡ 树脂对 重金属的去除作用是离子交换和吸附作用两者的区别是什么
离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导应用
1)水处理
水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。
2)食品工业
离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。例如:高果糖浆的制造是由玉米中萃出淀粉后,再经水解反应,产生葡萄糖与果糖,而后经离子交换处理,可以生成高果糖浆。离子交换树脂在食品工业中的消耗量仅次于水处理。
3)制药行业
制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用。链霉素的开发成功即是突出的例子。近年还在中药提成等方面有所研究。
4)合成化学和石油化学工业
在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应。用离子交换树脂代替无机酸、碱,同样可进行上述反应,且优点更多。如树脂可反复使用,产品容易分离,反应器不会被腐蚀,不污染环境,反应容易控制等。
甲基叔丁基醚(MTBE)的制备,就是用大孔型离子交换树脂作催化剂,由异丁烯与甲醇反应而成,代替了原有的可对环境造成严重污染的四乙基铅。
5)环境保护
离子交换树脂已应用在许多非常受关注的环境保护问题上。目前,许多水溶液或非水溶液中含有有毒离子或非离子物质,这些可用树脂进行回收使用。如去除电镀废液中的金属离子,回收电影制片废液里的有用物质等。
6)湿法冶金及其他
离子交换树脂可以从贫铀矿里分离、浓缩、提纯铀及提取稀土元素和贵金属。
其他补充:
离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。
在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。
离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。
离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。
离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。
离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl-),同时吸附溶液中原来存有的其他阳离子或阴离子。即树脂中的离子与溶液中的离子互相交换,从而将溶液中的离子分离出来。
广泛的应用于水处理领域。
㈢ 为什么潘宁效应有利于气体的电离
为什来么潘宁效应有利于自气体的电离
离子交换法是重金属离子与离子交换剂进行交换,达到去除废水中重金属离子的方法。常用的离子交换剂有阳离子交换树脂、阴离子交换树脂、螯合树脂等。几年来,国内外学者就离子交换剂的研制开发展开了大量的研究工作。随着离子交换剂的不断涌现,在电镀废水深度处理、高价金属盐类的回收等方面,离子交换法越来越展现出其优势。离子交换法是一种重要的电镀废水治理方法,处理容量大,出水水质好,可回收重金属资源,对环境无二次污染,但离子交换剂易氧化失效,再生频繁,操作费用高。
㈣ 离子交换树脂除钙、镁离子外,能去除铁、锰离子吗
普通的来软化离子可以去除源钙镁离子,铁锰有专用的离子交换树脂,例如T-IRR是专门用于去除铁离子的,CH-90可以去除锰离子。其实普通软化树脂也可以去除铁锰离子,只是很微弱,另外您的溶液中含有铁离子很容易引起树脂中毒。北京华豫清源国际贸易有限公司,杜笙离子交换树脂
㈤ 含重金属废水处理的主要技术有膜分离法吗
有的。其中还主要包含溶剂萃取分离、离子交换法及吸附法。
溶剂萃取分离
溶剂萃取法是分离和净化物质常用的方法。由于液液接触,可连续 操作,分离效果较好。使用这种方法时,要选择有较高选择性的萃取
剂,废水中重金属一般以阳离子或阴离子形式存在,例如在酸性条件 下,与萃取剂发生络合反应,从水相被萃取到有机相,然后在碱性条
件下被反萃取到水相,使溶剂再生以循环利用。这就要求在萃取操作 时注意选择水相酸度。尽管萃取法有较大优越性,然而溶剂在萃取过
程中的流失和再生过程中能源消耗大,使这种方法存在一定局限性, 应用受到很大的限制。
离子交换法
离子交换法是重金属离子与离子交换剂进行交换,达到去除废水中 重金属离子的方法。常用的离子交换剂有阳离子交换树脂、阴离子交
换树脂、螯合树脂等。几年来,国内外学者就离子交换剂的研制开发 展开了大量的研究工作。随着离子交换剂的不断涌现,在电镀废水深
度处理、高价金属盐类的回收等方面,离子交换法越来越展现出其优 势。离子交换法是一种重要的电镀废水治理方法,处理容量大,出水
水质好,可回收重金属资源,对环境无二次污染,但离子交换剂易氧 化失效,再生频繁,操作费用高。
膜分离技术
膜分离技术是利用一种特殊的半透膜,在外界压力的作用下,不改 变溶液中化学形态的基础上,将溶剂和溶质进行分离或浓缩的方法,
包括电渗析和隔膜电解。电渗析是在直流电场作用下,利用阴阳离子 交换膜对溶液阴阳离子选择透过性使水溶液中重金属离子与水分离 的一种物理化学过程。
隔膜电解是以膜隔开电解装置的阳极和阴极而 进行电解的方法,实际上是把电渗析与电解组合起来的一种方法。上
述方法在运行中都遇到了电极极化、结垢和腐蚀等问题。
吸附法
吸附法是利用多孔性固态物质吸附去除水中重金属离子的一种有效 方法。吸附法的关键技术是吸附剂的选择,传统吸附剂是活性炭。活
性炭有很强吸附能力,去除率高,但活性炭再生效率低,处理水质很 难达到回用要求,价格贵,应用受到限制。近年来,逐渐开发出有吸
附能力的多种吸附材料。有相关研究表明,壳聚糖及其衍生物是重金 属离子的良好吸附剂,壳聚糖树脂交联后,可重复使用 10 次,吸附
容量没有明显降低。利用改性的海泡石治理重金属废水对 Pb2+、 Hg2+、Cd2+ 有很好的吸附能力,处理后废水中重金属含量显著低于 污水综合排放标准。
另有文献报道蒙脱石也是一种性能良好的粘土矿 物吸附剂, 铝锆柱撑蒙脱石在酸性条件下对 Cr 6+的去除率达到 99%, 出水中 Cr
6+含量低于国家排放标准,具有实际应用前景。
㈥ 怎么去除蛋白质中的金属离子
1化学沉淀
化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等.
中和沉淀法
在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离.中和沉淀法操作简单,是常用的处理废水方法.实践证明在操作中需要注意以下几点:
(1)中和沉淀后,废水中若pH值高,需要中和处理后才可排放;
(2)废水中常常有多种重金属共存,当废水中含有Zn、Pb、Sn、Al等两性金属时,pH值偏高,可能有再溶解倾向,因此要严格控制pH值,实行分段沉淀;
(3)废水中有些阴离子如:卤素、氰根、腐植质等有可能与重金属形成络合物,因此要在中和之前需经过预处理;
(4)有些颗粒小,不易沉淀,则需加入絮凝剂辅助沉淀生成.
硫化物沉淀法
加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀后从废水中去除的方法.
与中和沉淀法相比,硫化物沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低,反应时最佳pH值在7—9之间,处理后的废水不用中和.硫化物沉淀法的缺点是:硫化物沉淀物颗粒小,易形成胶体;硫化物沉淀剂本身在水中残留,遇酸生成硫化氢气体,产生二次污染.为了防止二次污染问题,英国学者研究出了改进的硫化物沉淀法,即在需处理的废水中有选择性的加入硫化物离子和另一重金属离子(该重金属的硫化物离子平衡浓度比需要除去的重金属污染物质的硫化物的平衡浓度高).由于加进去的重金属的硫化物比废水中的重金属的硫化物更易溶解,这样废水中原有的重金属离子就比添加进去的重金属离子先分离出来,同时能够有效地避免硫化氢的生成和硫化物离子残留的问题.
2氧化还原处理
化学还原法
电镀废水中的Cr主要以Cr6+离子形态存在,因此向废水中投加还原剂将Cr6+还原成微毒的Cr3+后,投加石灰或NaOH产生Cr(OH)3沉淀分离去除.化学还原法治理电镀废水是最早应用的治理技术之一,在我国有着广泛的应用,其治理原理简单、操作易于掌握、能承受大水量和高浓度废水冲击.根据投加还原剂的不同,可分为FeSO4法、NaHSO3法、铁屑法、SO2法等.
应用化学还原法处理含Cr废水,碱化时一般用石灰,但废渣多;用NaOH或Na2CO3,则污泥少,但药剂费用高,处理成本大,这是化学还原法的缺点.
铁氧体法
铁氧体技术是根据生产铁氧体的原理发展起来的.在含Cr废水中加入过量的FeSO4,使Cr6+还原成Cr3+,Fe2+氧化成Fe3+,调节pH值至8左右,使Fe离子和Cr离子产生氢氧化物沉淀.通入空气搅拌并加入氢氧化物不断反应,形成铬铁氧体.其典型工艺有间歇式和连续式.铁氧体法形成的污泥化学稳定性高,易于固液分离和脱水.铁氧体法除能处理含Cr废水外,特别适用于含重金属离子种类较多的电镀混合废水.我国应用铁氧体法已经有几十年历史,处理后的废水能达到排放标准,在国内电镀工业中应用较多.
铁氧体法具有设备简单、投资少、操作简便、不产生二次污染等优点.但在形成铁氧体过程中需要加热(约70oC),能耗较高,处理后盐度高,而且有不能处理含Hg和络合物废水的缺点.
电解法
电解法处理含Cr废水在我国已经有二十多年的历史,具有去除率高、无二次污染、所沉淀的重金属可回收利用等优点.大约有30多种废水溶液中的金属离子可进行电沉积.电解法是一种比较成熟的处理技术,能减少污泥的生成量,且能回收Cu、Ag、Cd等金属,已应用于废水的治理.不过电解法成本比较高,一般经浓缩后再电解经济效益较好.
近年来,电解法迅速发展,并对铁屑内电解进行了深入研究,利用铁屑内电解原理研制的动态废水处理装置对重金属离子有很好的去除效果.
另外,高压脉冲电凝系统()为当今世界新一代电化学水处理设备,对表面处理、涂装废水以及电镀混合废水中的Cr、Zn、Ni、Cu、Cd、CN-等污染物有显著的治理效果.高压脉冲电凝法比传统电解法电流效率提高20%—30%;电解时间缩短30%—40%;节省电能达到30%—40%;污泥产生量少;对重金属去除率可达96%一99%.
3溶剂萃取分离
溶剂萃取法是分离和净化物质常用的方法.由于液一液接触,可连续操作,分离效果较好.使用这种方法时,要选择有较高选择性的萃取剂,废水中重金属一般以阳离子或阴离子形式存在,例如在酸性条件下,与萃取剂发生络合反应,从水相被萃取到有机相,然后在碱性条件下被反萃取到水相,使溶剂再生以循环利用.这就要求在萃取操作时注意选择水相酸度.尽管萃取法有较大优越性,然而溶剂在萃取过程中的流失和再生过程中能源消耗大,使这种方法存在一定局限性,应用受到很大的限制.
4吸附法
吸附法是利用吸附剂的独特结构去除重金属离子的一种有效方法.利用吸附法处理电镀重金属废水的吸附剂有活性炭、腐植酸、海泡石、聚糖树脂等.活性炭装备简单,在废水治理中应用广泛,但活性炭再生效率低,处理水质很难达到回用要求,一般用于电镀废水的预处理.腐植酸类物质是比较廉价的吸附剂,把腐植酸做成腐植酸树脂用以处理含Cr、含Ni废水已有成功经验.有相关研究表明,壳聚糖及其衍生物是重金属离子的良好吸附剂,壳聚糖树脂交联后,可重复使用10次,吸附容量没有明显降低.利用改性的海泡石治理重金属废水对Pb2+、Hg2+、Cd2+有很好的吸附能力,处理后废水中重金属含量显著低于污水综合排放标准.另有文献报道蒙脱石也是一种性能良好的粘土矿物吸附剂,铝锆柱撑蒙脱石在酸性条件下对Cr6+的去除率达到99%,出水中Cr6+含量低于国家排放标准,具有实际应用前暑.
5膜分离法
膜分离法是利用高分子所具有的选择性来进行物质分离的技术,包括电渗析、反渗透、膜萃取、超过滤等.用电渗析法处理电镀工业废水,处理后废水组成不变,有利于回槽使用.含Cu2+、Ni2+、Zn2+、Cr6+等金属离子废水都适宜用电渗析处理,已有成套设备.反渗透法已大规模用于镀Zn、Ni、Cr漂洗水和混合重金属废水处理.采用反渗透法处理电镀废水,已处理水可以回用,实现闭路循环.液膜法治理电镀废水的研究报道很多,有些领域液膜法已由基础理论研究进入到初步工业应用阶段,如我国和奥地利均用乳状液膜技术处理含Zn废水,此外也应用于镀Au废液处理中.膜萃取技术是一种高效、无二次污染的分离技术,该项技术在金属萃取方面有很大进展.
6离子交换法
离子交换处理法是利用离子交换剂分离废水中有害物质的方法,应用的离子交换剂有离子交换树脂、沸石等等,离子交换树脂有凝胶型和大孔型.前者有选择性,后者制造复杂、成本高、再生剂耗量大,因而在应用上受到很大限制.离子交换是靠交换剂自身所带的能自由移动的离子与被处理的溶液中的离子通过离子交换来实现的.推动离子交换的动力是离子间浓度差和交换剂上的功能基对离子的亲和能力,多数情况下离子是先被吸附,再被交换,离子交换剂具有吸附、交换双重作用.这种材料的应用越来越多,如膨润土,它是以蒙脱石为主要成分的粘土,具有吸水膨胀性好、比表面积大、较强的吸附能力和离子交换能力,若经改良后其吸附及离子交换的能力更强.但是却较难再生,天然沸石在对重金属废水的处理方面比膨润土具有更大的优点:沸石是含网架结构的铝硅酸盐矿物,其内部多孔,比表面积大,具有独特的吸附和离子交换能力.研究表明,沸石从废水中去除重金属离子的机理,多数情况下是吸附和离子交换双重作用,随流速增加,离子交换将取代吸附作用占主要地位.若用NaCl对天然沸石进行预处理可提高吸附和离子交换能力.通过吸附和离子交换再生过程,废水中重金属离子浓度可浓缩提高30倍.沸石去除铜,在NaCl再生过程中,去除率达97%以上,可多次吸附交换,再生循环,而且对铜的去除率并不降低.
三、生物处理技术
由于传统治理方法有成本高、操作复杂、对于大流量低浓度的有害污染难处理等缺点,经过多年的探索和研究,生物治理技术日益受到人们的重视.随着耐重金属毒性微生物的研究进展,采用生物技术处理电镀重金属废水呈现蓬勃发展势头,根据生物去除重金属离子的机理不同可分为生物絮凝法、生物吸附法、生物化学法以及植物修复法.
1生物絮凝法
生物絮凝法是利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法.微生物絮凝剂是一类由微生物产生并分泌到细胞外,具有絮凝活性的代谢物.一般由多糖、蛋白质、DNA、纤维素、糖蛋白、聚氨基酸等高分子物质构成,分子中含有多种官能团,能使水中胶体悬浮物相互凝聚沉淀.至目前为止,对重金属有絮凝作用的约有十几个品种,生物絮凝剂中的氨基和羟基可与Cu2+、Hg2+、Ag+、Au2+等重金属离子形成稳定的鳌合物而沉淀下来.应用微生物絮凝法处理废水安全方便无毒、不产生二次污染、絮凝效果好,且生长快、易于实现工业化等特点.此外,微生物可以通过遗传工程、驯化或构造出具有特殊功能的菌株.因而微生物絮凝法具有广阔的应用前景.
2生物吸附法
生物吸附法是利用生物体本身的化学结构及成分特性来吸附溶于水中的金属离子,再通过固液两相分离去除水溶液中的金属离子的方法.利用胞外聚合物分离金属离子,有些细菌在生长过程中释放的蛋白质,能使溶液中可溶性的重金属离子转化为沉淀物而去除.生物吸附剂具有来源广、价格低、吸附能力强、易于分离回收重金属等特点,已经被广泛应用.
3生物化学法
生物化学法指通过微生物处理含重金属废水,将可溶性离子转化为不溶性化合物而去除.硫酸盐生物还原法是一种典型生物化学法.该法是在厌氧条件下硫酸盐还原菌通过异化的硫酸盐还原作用,将硫酸盐还原成H2S,废水中的重金属离子可以和所产生的H2S反应生成溶解度很低的金属硫化物沉淀而被去除,同时H2SO4的还原作用可将SO42-转化为S2-而使废水的pH值升高.因许多重金属离子氢氧化物的离子积很小而沉淀.有关研究表明,生物化学法处理含Cr6+浓度为30—40mg/L的废水去除率可达99.67%—99.97%.有人还利用家畜粪便厌氧消化污泥进行矿山酸性废水重金属离子的处理,结果表明该方法能有效去除废水中的重金属.赵晓红等人用脱硫肠杆菌(SRV)去除电镀废水中的铜离子,在铜质量浓度为246.8mg/L的溶液,当pH为4.0时,去除率达99.12%.
4植物修复法
植物修复法是指利用高等植物通过吸收、沉淀、富集等作用降低已有污染的土壤或地表水的重金属含量,以达到治理污染、修复环境的目的.植物修复法是利用生态工程治理环境的一种有效方法,它是生物技术处理企业废水的一种延伸.利用植物处理重金属,主要有三部分组成:
(1)利用金属积累植物或超积累植物从废水中吸取、沉淀或富集有毒金属;
(2)利用金属积累植物或超积累植物降低有毒金属活性,从而可减少重金属被淋滤到地下或通过空气载体扩散:
(3)利用金属积累植物或超积累植物将土壤中或水中的重金属萃取出来,富集并输送到植物根部可收割部分和植物地上枝条部分.通过收获或移去已积累和富集了重金属植物的枝条,降低土壤或水体中的重金属浓度.在植物修复技术中能利用的植物有藻类、草本植物、木本植物等.
藻类净化重金属废水的能力,主要表现在对重金属具有很强的吸附力,利用藻类去除重金属离子的研究已有大量报道.褐藻对Au的吸收量达400mg/g,在一定条件下绿藻对Cu、Pb、La、Cd、Hg等重金属离子的去除率达80%—90%,马尾藻、鼠尾藻对重金属的吸附虽然不及绿海藻,但仍具有较好的去除能力.
草本植物净化重金属废水的应用已有很多报道.凤眼莲是国际上公认和常用的一种治理污染的水生漂浮植物,它具有生长迅速,既能耐低温、又能耐高温的特点,能迅速、大量地富集废水中Cd、Pb、Hg、Ni、Ag、Co、Cr等多种重金属.有关研究发现凤眼莲对钴和锌的吸收率分别高达97%和80%.此外,还有很多草本植物具有净化作用,如喜莲子草、水龙、刺苦草、浮萍、印度芥菜等.
木本植物具有处理量大、净化效果好、受气候影响小、不易造成二次污染等等优点,受到人们广泛关注.同时对土壤中Cd、Hg等有较强的吸附积累作用,由胡焕斌等试验结果表明:芦苇和池杉对重金属Pb和Cd都有较强富集能力.
㈦ 含有EDTA-Ni的废水如何处理我们试过烧碱,重金属捕集剂、离子交换、硫化碱等,要求Ni
EDTA-Ni由于其的难处理性,被称为重金属废水处理中的癌症,如果只是加烧碱、重金回属捕集剂、离子减缓、硫答化钠等肯定没有办法处理达标,需要如下处理1、氧化处理:利用次氯酸钠,或者芬顿氧化技术进行氧化处理破络,将EDTA-Ni中的EDTA进行氧化处理,从而除去一部分。2、重金属捕集剂RS100螯合再进行氧化处理以后,再加入与镍结合能力最强的重捕剂RS100进行鳌合反应,从而进一步把镍离子从EDTA夺走,不同于传统液体重捕剂,RS100 常温下为白色粉末,其溶液为无色透明液体,能够与重金属离子(Cu2+ 、Ni2+ 、Hg2+ 、Pb2+ 、Cr3+ 、Cd2+ 等)强力结合,生成不溶于水的无害污泥。即使对于络合态的重金属离子,RS100也具有相同的处理效果,确保废水的重金属含量低于国家排放标准。重捕剂的选型十分关键,每种重捕剂的分子量以及结合能力都是不同的,像液体重捕剂结合能力最差,不要轻易选择。
㈧ 工业蛭石用于处理含铵及重金属阳离子废水
彭同江 张宝述 刘福生 孙红娟
(西南科技大学矿物材料及应用研究所,四川绵阳 621010)
项目来源于国家自然科学基金“含蛭石晶层矿物的间层结构及其多体性自组装机理研究”(40102006)。
一、内容简介
本研究使用的样品采自新疆尉犁蛭石矿的工业蛭石。
(一)工业蛭石对铵的饱和吸附
工业蛭石样品对铵饱和吸附的同时,释放出了层间可交换阳离子,且所释放出来的可交换阳离子的总数与铵离子吸附的总数一致。这表明样品对铵的吸附几乎全部是离子交换吸附。决定工业蛭石的铵饱和吸附量的主要因素是样品结构中蛭石晶层的含量。
(二)工业蛭石对溶液中重金属离子(Cu2+,Pb2+,Zn2+)的吸附
研究表明,工业蛭石对铵及重金属离子具有较强的吸附能力,其吸附能力与结构中蛭石晶层的含量呈正相关关系。在低浓度下,对金属离子Cu2+、Pb2+和Zn2+的吸附属于离子交换吸附,在30~60 min内可以达到吸附平衡。溶液的pH值及溶液中离子的浓度对吸附量有很大的影响。在高浓度下,对重金属离子的离子交换吸附达到饱和,并以物理吸附为主。
二、推广应用
蛭石具有优良的阳离子交换性能和吸附性能,在农业、园艺、环保、建筑等领域具有重要的用途。蛭石矿产是我国有较好资源远景和潜在优势的非金属矿产之一。我国蛭石工业由于没有足够重视蛭石新产品、新用途的开发,目前我国蛭石的应用更多地局限于轻质保温材料方面。在当前面临与日俱增的保温材料的激烈竞争的情况下,蛭石工业的发展受到了严重的影响。
在环保方面,工业污水的处理及其再利用已成为人类面临的日益重要的课题。目前,国内外利用天然矿物岩石(包括蛭石)的离子交换吸附性能来处理重金属离子废水也开展了较多的工作,但大多处于实验室研究阶段。对于工业蛭石来说,产生吸附作用的主要原因是阳离子交换,而阳离子交换性是由工业蛭石中所含有的蛭石晶层及其性质所决定的。研究成果为蛭石在处理含铵及重金属阳离子废水中的应用提供了理论基础。
三、鉴定、获奖、专利情况
2001年获四川省科技进步三等奖。