⑴ 污水检测用什么仪器
污水检测用水质测试仪。
水质测试仪就是用特殊的仪器来代理常规性的内水质测试。适用于大、中、容小型水厂及工矿企业、游泳池疾控中心、生活或工业用水的浓度检测,以便控制水的浊度、色度、余氯、总氯、化合氯、二氧化氯、氨氮、镍、悬浮物、铜、磷酸盐、DPD余氯、溶解氧、亚硝酸盐、铬、铁、锰、TDS、水温。
本仪器可快速准确测定地表水、地下水、城市污水及工业废水中多项指标,浓度直读;广泛用于自来水厂、生活污水处理厂、纯净水厂、饮料厂、食品厂、环保部门、工业用水、防疫部门、城市供水。
(1)污水tod如何监测扩展阅读:
水质测试仪仪器特点:
一、比色系统、消解系统、防护罩一体化设计,内置型9孔消解系统,消解孔上端附隔热层有效保证消解温度,仪器内置风冷装置,消解完毕提高散热速度,保证检测精度。
二、消解系统采用微回流快速消解方式,密闭消解防止有机物挥发及样品逸出,一体化的全透明防护罩可确保消解过程的安全性,同时便于实时监测消解过程。
三、采用使用寿命长达10万小时的冷光源,无需散热系统,稳定性优秀;独立多通道光路系统,各通道独立控制,互不干扰,有效消除机械误差,提高检测精度。
参考资料来源:网络—水质测试仪
⑵ 水质检测指标是哪些
1、色度:饮用水的色度如大于15度时多数人即可察觉,大于30度时人感到厌恶。标准中规定饮用水的色度不应超过15度。
2、浑浊度:为水样光学性质的一种表达语,用以表示水的清澈和浑浊的程度,是衡量水质良好程度的最重要指标之一,也是考核水处理设备净化效率和评价水处理技术状态的重要依据。浑浊度的降低就意味着水体中的有机物、细菌、病毒等微生物含量减少,这不仅可提高消毒杀菌效果,又利于降低卤化有机物的生成量。
3、臭和味:水臭的产生主要是有机物的存在,可能是生物活性增加的表现或工业污染所致。公共供水正常臭味的改变可能是原水水质改变或水处理不充分的信号。
4、肉眼可见物:主要指水中存在的、能以肉眼观察到的颗粒或其他悬浮物质。
5、余氯:余氯是指水经加氯消毒,接触一定时间后,余留在水中的氯量。在水中具有持续的杀菌能力可防止供水管道的自身污染,保证供水水质。
⑶ 污水处理后 出水要检测的指标有哪些呢
污水处理后出水要检测的指标包括三类:物理性指标、化学性指标、生物性指标。
1、物理性指标:
温度、色度、嗅和味、固体物质的三种存在形态:悬浮的、胶体的、溶解的。固体物质用总固体量(TS)作为指标,污水处理中常用悬浮固体(SS)表示固体物质的含量(TDS指标高于1000以上)。
2、化学性指标:
(1)化学需氧量(COD):指用强化学氧化剂(中国法定用重铬酸钾)在酸性条件下,将有机物氧化成二氧化碳与水所消耗的氧量(mg/L),用CODcr表示,简写为COD。化学需氧量越高,表示水中有机污染物越多,污染越严重。
(2)生化需氧量(BOD):水中有机污染物被好氧微生物分解时所需的氧量称为生化需氧量(mg/L)。
(3)总需氧量(TOD):有机物主要元素是C、H、O、N、S等,当有机物被全部氧化时,将分别产生二氧化碳、水等,此时需氧量称为总需氧量(TOD)。
(4)总有机碳(TOC):包括水样中所有有机污染物质的含碳量,也是评价水样中有机物质质的一个综合参数。
(5)总氮(TN):污水中含氮化合物分为有机氮、氨氮、亚硝酸盐氮、硝酸盐氮,四种含氮化合物总量称为总氮(TN)。凯氏氮(TKN)是有机氮与氨氮之和。
(6)总磷(TP):包括有机磷与无机磷两类。
(7)pH值。
(8)重金属。
3、生物性指标:
(1)大肠菌群数:每升水样中所含有的大肠菌群的数目,以个/L计。
(2)细菌总数:是大肠菌群数、病原菌、病毒及其他细菌数的总和,以每毫升水样中的细菌菌落总数表示。
(3)污水tod如何监测扩展阅读:
污水处理的技术:
1、一级处理:主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。
2、二级处理:主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准,悬浮物去除率达95%出水效果好。
3、三级处理:进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法等。
⑷ 水质监测的常规五项指标是哪些
环境监测角度的水质5参数是:PH 水温 浊度 电导率 溶解氧
《水和废水监测分析方法》上提到 具体忘了哪页了
⑸ 城市污水中有机物的检测与去除方法
由于污水中污染物成份复杂,有机物有成千上万种,一般不进行特定有机物的检测,进行已知内有机污染物容的检测除外。
一般通过用COD和BOD检测来表明有机污染的程度,用的仪器除常规玻璃仪器外,有电炉和回流装置,进行BOD测定还要生化培养箱。
去除的方法有物理的——沉淀和过滤;化学的——絮凝沉淀;生物化学的——活性污泥法。
⑹ 水资源污染的监测
(1)无机污染的监测
被无机盐污染的水,由于离子浓度增高,使其电阻率降低。一般来说,地下电阻率与介质孔隙的连通性、孔隙中是否有液体以及液体的电阻率有关。如果孔隙的大小和连通性基本不变,而液体的电阻率只和污染有关,用电法就可以确定污染的范围和程度,通过电测深和时间域电磁法可以确定污染的垂向分布,而通过电剖面法和频率域电磁法可以确定污染的横向范围,用电(磁)测量比只用钻探成本低、效率高。此外,电(磁)测井也是一种辅助手段。
应用地面电法监测污染的基本条件是:污染水与非污染水电阻率有明显差别,埋藏不太深,污染水体有一定的厚度,地表物质电性比较均匀。工作时可先用电测深或时域电磁法确定污染水体顶底板深度,然后按一定系统进行固定极距的电剖面或固定装置和频率的频域电磁测量。电法一般都要与少量监测井互相配合,解释时利用地质、钻探和其他地球物理资料。对工矿废水污染的监测是受到广泛关注的问题,利用地球物理方法对工矿废水进行污染监测有许多成功的实例。
图9.1用电法监测工厂废水对岩溶的加速作用
工厂的废水排入地下,不仅污染水源,而且在某些地区还加速地下岩溶的发育过程。例如在苏联的奥卡河沿岸有一个大的化工厂生产硫酸,酸性废水渗入地下,溶蚀了石膏质的岩石,在这些岩石中形成了岩溶洞穴,老洞穴不断加大、新洞穴不断出现,连续成地下通道,沿着这些通道,溶解的物质流入奥卡河,造成河水污染。通过地面电法测量和河水电阻率测量可以圈定岩溶水的通道位置,并且评价岩溶作用随时间的变化。从图9.1中时间t1和t2两次观测的视电阻率曲线可以看出,低电阻率的范围加宽,是溶洞变宽的结果。河水电阻率测量表明,被溶解物质的流入量明显增加(低电阻率面积扩大)。通过上述测量确定了废水污染的范围和程度,以便采取必要的措施。
矿山和油田废水也是水资源的重要污染源,例如在美国有成千上万口已经废弃的、封闭不好的油气井,由于二次回采而使产油层产生过压,这些井会使注入油田的卤水沿钻孔向上运移而进入浅部的饮用水含水层。在俄克拉荷马州林肯县产油的普鲁砂层附近曾利用可控源音频大地电磁法来圈定卤水的污染。从 20 世纪 30 年代就开始从普鲁砂层采油,从 50 年代开始注入卤水来提高回采率。瓦穆萨组是该区饮水的主要水源层,淡水层的底部深度变化于 40 ~ 135m 之间,固溶物总量低于 500mg/L。1979 年所打的试验井表明在油田上含水层的卤水含量异常高。在该区选出的一些部位按一定网格开展了可控源音频大地电磁法,图 9. 2 是一口废井附近典型的视电阻率拟剖面,它表明深部的良导物质向地表运移,其他一些测线上也检测到另外一些污染体。根据地球物理结果所打的两口试验井的 Br/Cl 比值表明,瓦穆萨组的污染源确实是普鲁砂层的卤水。
图 9. 2 废注水井附近的视电阻率等值线图
(2)有机污染的监测
地下水有机污染的种类较多,其物性特征不尽相同,探测难度较大。来自炼油厂、化肥厂、制药厂等排放的废液多为有机污染,它们在自然环境下不易降解,化学需氧量(COD)、总有机碳(TOD)等指标较高。多数情况下有机污染物与水是非混溶的。轻非水相液体污染物(LNPAL)集中在地下水的表层,而重非水相液体(DNPAL)污染物集中在地下水的底部,这使地下水不同程度地混杂了有机杂质,引起地下水在物理性质和化学性质上的变化。这样可以根据不同的物理性质(化学性质)选取不同的地球物理方法。
20世纪90年代加拿大和美国的学者在加拿大安大略省开展了一项针对乙烯(C2Cl4)的试验研究。乙烯用于服装干洗和金属清洗,仅1986年美国就生产乙烯12×108L。乙烯的特点是密度大,在水中下沉,不太受地下水横向流动的影响。虽然乙烯的溶解度(200mg/L)低,但仍然比世界卫生组织规定的饮水标准(0.01mg/L)高几个数量级,每排放1L乙烯最终可污染1000×104L的地下水。试验场地面积9m×9m,周围用钢板打入地下,穿过3.3m厚的地表含水层进入下伏半隔水层,有效地隔断场地内外的水力联系。通过钻孔向场地内注入770L乙烯,在围绕注入孔的9个监测孔内进行中子、密度和感应测井,还定期测地面和井地电阻率。探地雷达工作频率200MHz,300MHz,500MHz,900MHz,沿测线进行测量。地球物理监测开始于注液前几天,注液延续了3d,注液后观测38d,第一个星期每8h观测一次,以后时间逐渐加长。随后采用表面活化剂清除乙烯,再监测清除的过程。在中子测井曲线上,由于氯俘获中子,出现明显的负峰,如图9.3(a)所示,从电阻率异常的变化上则可以看出乙烯随时间的运移,如图9.3(b)所示。探地雷达测量表明,注入的乙烯先在注入点下1m深左右的界面上汇聚,然后沿该界面向两侧扩散。
图9.3注乙烯后参数变化
地面加油站储油罐和地下储油设施普遍存在腐蚀和泄漏现象,难以发现。北京、沈阳、西安、成都均发生过此类事故。发生在北京地区某加油站的一次漏油事故中,由于污染区面积较大,致使自来水厂停水和地下施工停工。国外此类事故更多,据报道美国对21万个加油站调查发现,在20世纪70年代以前建设的加油站几乎都有渗漏,其中1.8万个已对地下水造成污染。油气渗漏的检测技术较多,其中烃类检测技术(油离烃)、探地雷达技术,能现场实时给出检测结果,且快速、方便;吸收烃乙烷、荧光光谱法探测精度高、结果可靠。图9.4和图9.5分别是北京市某加油站渗漏污染范围的游离烃CH4和吸附烃C2H4检测效果图。
图9.4北京某加油站渗漏污染范围的游离烃CH4检测效果图
图9.5北京某加油站渗漏污染范围的吸附烃C2H4检测效果图
石油污染颇为常见,已有许多利用地球物理方法探测石油污染的实例。例如利用探地雷达探测石油污染、用常规的直流电法和电磁法有可能探测石油污染。石油进入地下介质的孔隙系统后可使其电阻率明显增高。研究人员利用地面低频电磁或电阻率成像方法追索到几十至几百米深处的石油污染。例如在美国俄克拉荷马城的Carlswell空军基地,利用钻孔EM测量数据作出地下电阻率三维分布图像,推断出石油污染的位置,据此所打的钻孔证实了高阻区域与油污染吻合。
图9.6屏蔽体法的室内试验和数学模拟结果
浮在潜水面上的高阻油层对电法测量来说会产生屏蔽作用,因此研究人员提出了“屏蔽体”法(SB)。屏蔽体法是一种井地电法,一个供电电极置于污染层之下,用于确定污染层的范围。室内模拟和数学模拟的结果如图9.6所示。图(a)为室内测得石油污染带上的电位值V(mV);图(b)为数学模拟计算的电位值V(mV);图(c)为数学模拟计算的电位梯度ΔV(mV/m)。室内模拟在电解质槽内进行,数学模拟采用有限元法。在野外试验中采用了电测深和屏蔽法两种方法,其目的是确定石油污染的范围,污染层厚度0.2m,深5.7m,赋存于7m厚的第四系砾-砂沉积中,下伏不渗透的白垩系沉积。电测深AB/2最大为50m,在AB/2=15m时沿一些测线出现了电阻率的升高,为污染带的响应,但最高异常值仅达背景值的15%,难于断定污染带的横向范围,而屏蔽法显示了污染带的范围比电测深要清晰得多,地球物理野外测量结果已被监测孔证实。
澳大利亚CoffeyPartners公司曾提出,用探地雷达和低频电磁法探测石油污染有一定的困难,只有频率在30kHz~5MHz间的电磁波法效果最好。当频率为1.2MHz时,通过土壤和风化岩石的最大探测深度约30m。在南澳的一个大型柴油机车加油站发现在终端泵站和加油点之间有明显漏油。开始用EM31电磁仪作剖面测量和探地雷达探测均未奏效,后改用GRC-2仪器作无线电波剖面法,其垂直发射线圈和水平接收线圈沿剖面移动,两者保持零耦合状态,测量垂直磁场强度,线圈距在工作期间保持不变。结果在柴油污染范围内测出明显垂直磁场强度低值异常,并经钻探和槽探证实。
总之,地下水有机污染浓度较低,物理化学性质上的变化较小,监测难度大,必须采用高分辨率、高密度的方法以及应用地球物理的综合解释方法技术。
(3)地下水污染路径的动态监测
以河北沧州为例。河北沧州地处滨海平原,该区以冲积-湖积的粉细砂松散岩层为主,并夹有多层海积层。自上而下共有五组含水层,且咸、淡水交替出现,地下水含氟量较高(2~7mg/L),地下水补、经、排条件差,地下水循环交替作用缓慢,垂向补给逐渐被侧向补给所代替。由于集中开采地下水,使得沧州地下水失衡而形成巨大的地下水漏斗(图9.7)。
图9.7沧州漏斗Q2含水组水位下降剖面图
沧州漏斗的形成给地下水资源的开发、利用带来了严重的问题,尤其是地下水严重污染。由于漏斗的形成,加速了地面污水向地下水的倒灌,使地下水造成污染,同时稠密的机井给地表(浅层)污水、咸水和淡水层形成的污染通道,使所利用的含水层遭受不同程度的污染。利用地球物理方法,如用直流电法和探地雷达,在地面监(遥)测地下水漏斗的动态变化、监测地面上工业和生活污水向漏斗迁移的路径,从污染源和污染路径上卡住污染物对地下水的污染。
(4)井中多个含水层之间交叉污染的监测
已经废弃的工业用井和供水用井,以及一些设计得不适当的监测井穿过多个含水带,使得地下水流系统“短路”。如果其中有的含水层已被污染,便会产生水层之间的交叉污染。美国地质调查所和美国环境保护署合作在宾夕法尼亚州东南部三叠纪斯托克顿组地层中利用地球物理方法研究了废弃井中多个含水层之间的交叉污染,测量了井内的垂向水流,取样并分析了井中的液体。所使用的地球物理方法包括井径测井、液体电阻率测井、液体温度测井、自然伽马测井和单点电阻测井。在16个钻孔的45~143之间进行,用以划分岩性、地层,圈定了含水裂隙和井液垂向运移带,测量了垂向液流,确定了井液的运移方向和速度。
(5)地表水污染治理中的地球物理工作
在杭州西湖换水过程中曾经成功地应用了地球物理方法。西湖由于常年污染,湖水的水质和透明度日益变差,市政府决定开凿隧道引钱塘江水更换西湖湖水。为了解江水进入西湖的运移和分布情况、换水的进度和效果,利用电阻率法在换水过程中及其前后进行了动态和静态观测(图9.8)。
在换水之前对江水和湖水的电阻率进行了测量,江水的电阻率变化范围为81~93Ω·m,平均为88Ω·m。西湖由五个相互连通的湖泊组成,其中电阻率最低的变化范围为55~60Ω·m,平均为57Ω·m,最高的变化范围为69.5~75Ω·m,平均为72Ω·m。这是利用电阻率法监测换水过程的基础。水电阻率观测比例尺为1∶5000,线距200~400m,整个湖面均匀发布20条测线。观测仪器为测井全自动记录仪,安装在电瓶驱动船上,用七心电缆连接电源、探测器和自动记录仪。探测器为井液流体电极系,固定在水深约70cm处,换水期间每天沿各测线连续探测水的电阻率一次。根据观测结果,可以得出江水进入西湖后逐日的扩散范围、水流的主要方向,指导了换水工作的进行。同时发现了一些原来未发现的污染源。
(6)地下水污染防护中的地球物理工作
地球物理方法也可用来监测有机化合物污染的治理过程。美国能源部执行了一项“非干旱区土壤和地下水易挥发有机化合物综合示范计划(VOC-NAS)”,向地下注入甲烷与空气的混合物,作为新陈代谢的碳源,以繁殖一种微生物,使三氯乙烯降解。混合物注入地下后,在运移的途径上,由于置换了地层水,使电阻率升高,因而可以通过地下(井间)电阻率层析使运移的途径成像。电阻率层析是在5个钻孔之间进行的,每一孔内有21个电极,从地面到61m深度等距发布,两孔之间的地面有4个电极。结果发现,注入气体流动途径为复杂的三维通道网,有些通道延伸到距注入井30m以外,这些通道在几个月过程中并不稳定,不断有新通道出现,气体注入通道的电阻率随时间而增大。影响微生物繁殖的其他因素还包括大气降水和来自地表的水溶养分。所以,在另一组试验中,水从地面渗入地下并作出渗入前和渗入过程中某一瞬间电阻率差值的图像,这些图像表明,水的入渗也是限于具有三维结构的狭窄通道,水流受地层渗透率变化(砂和泥的分布)的控制,不过水流通道随时间的变化小。这些通道在图像上表现为低阻带。
图9.8西湖初次换水混合流推进图
美国桑迪亚国家实验室提出一种不尽相同的治理方案,并在南卡罗莱纳州的一个场地进行了试验。该场地也被挥发性的三氯乙烯和四氯乙烯污染。为了治理污染,打了两口水平井,由潜水面以下的井注入空气,而由上面的另一口井抽取污染物,当空气通过地下孔隙时溶解挥发性污染物,再被上面的井抽出。空气在地下的分布会直接影响治理的范围并且影响如何对注入气流进行调节。因此,桑迪亚实验室利用监测井井间地震数据,根据注入气体饱和度变化引起的地震波速变化了解空气的分布。为能提高分辨率,选用井间地震层析成像方法,既减少近地表噪声的影响及与近地表物质有关的衰减,又使震源和检波器更接近目标,减少高频波的能量损耗,高频波波长短而具有更高的空间分辨率。为此,在空气注入前后都作了S波和P波层析。S波震源为频率扫描气动可控震源,用井中三分量检波器。震源和检波孔相距27.4m,孔内测点垂向距离1m。
捷克的一家发电厂也进行过类似的监测,他们为了检查粉煤灰堆放池的施工质量,在未敷设防渗层之前先在池底埋设若干条平行长导线作为检测用的供电电极,然后在其上敷设防渗层。施工结束后向池内放水,将设置在防渗层下的长导线作为供电线路的一个极,另外一个极置于无穷远,在小船上用单电位电极进行测量,在池边用经纬仪测量定位。如果测到高电位异常,即为防渗层破漏处,发现率为94%。
⑺ 污水的可生化性怎么判断
用BOD/COD的比值来判断。
BOD/COD大于0.3时,一般认为该废水具有可生化性。
判定废水可生化性能有B/C值法:
B/C>0.58 完全可生物降解;
B/C=0.45~0.58 生物降解良好;
B/C=0.30-0.45 可生物降解;
B/C<0.3 难生物降解;
BOD测定方法使用五日生物需氧量测定法,COD测定使用重铬酸钾法。
还有一种是好氧呼吸参量法。通过测定COD、BOD等水质指标的变化以及呼吸代谢过程中的O2或CO₂含量(或消耗、生成速率)的变化来确定某种有机污染物(或废水)可生化性的判定方法。根据所采用的水质指标,主要可以分为:水质指标评价法、微生物呼吸曲线法、CO₂生成量测定法。
(7)污水tod如何监测扩展阅读:
传统观点认为BOD5/CODCr,即B/C比值体现了废水中可生物降解的有机污染物占有机污染物总量的比例,从而可以用该值来评价废水在好氧条件下的微生物可降解性。在一般情况下,BOD5/COD值愈大,说明废水可生物处理性愈好。
在各种有机污染指标中,总有机碳(TOC)、总需氧量(TOD)等指标与COD相比,能够更为快速地通过仪器测定,且测定过程更加可靠,可以更加准确地反映出废水中有机污染物的含量。
无论BOD/COD、BOD/TOD或者BOD/TOC,方法的主要原理都是通过测定可生物降解的有机物(BOD)占总有机物(COD、TOD或TOC)的比例来判定废水可生化性的。
微生物在降解污染物的过程中,在消耗废水中O2的同时会生成相应数量的CO2。因此,通过测定生化反应过程CO2的生成量,就可以判断污染物的可生物降解性。
常用的方法为斯特姆测定法,反应时间为28d,可以比较CO2的实际产量和理论产量来判定废水的可生化性,也可以利用CO2/DOC值来判定废水的可生化性。由于该种判定实验需采用特殊的仪器和方法,操作复杂,仅限于实验室研究使用,在实际生产中的应用还未见报道。