① 氨氮与总氮的关系
氨氮与总氮的关系:
氨氮是以氨气或者铵离子形式存在的氮的形态。总氮除了包括氨氮以外,还包括有机氮,硝态氮,例如酰胺类,硝酸盐和亚硝酸盐等形态的氮。
② 水中总氮与氨氮的含量有什么联系吗
水中总氮是指:水中的有机氮与无机氮的总和。
而氨氮中的氮是以有机化合物的形式存在的,所以氨氮属于有机氮。因此水中的总氮包括水中的氨氮。同一水样中的总氮含量大于等于氨氮的含量。
希望可以帮到你。
③ 水处理中哪个池子氨氮比总氮高
污水中氨氮高于总氮原因分析
随着工业化建设的进一步深入,城市污水的总量急剧增加,氨氮是城市污水的重要污染因子,一旦氨氮含量超标,就极易造成水体中微生物的大量繁殖,并在浮游生物生产的同时,形成水体富营养化。现代环境下,为实现水质的高效利用,进行城市污水的高效化处理至关重要,实现过程中,进行污水氨氮含量与总氮含量的关系研究是其治污处理的首要任务,本文就污水中氨氮含量高于总氮含量的原因展开系统分析。
1、污水中氨氮与总氮的关系
水质衡量过程中,氨氮和总氮是较为重要的两个考察指标;从属性分类上看,氨氮是总氮的基本组成之一。一般情况下,污水中的总氮含量要高于氨氮含量,其包含了各种形式的无机氮和有机氮,譬如,在无机氮中,N3O-、NO2-、NH4+、蛋白质、氨基酸等都是其重要的表现类型,而有机氮一游离氨和铵离子为主要存在形式(如图1)。同时植物性有机物的含氮量明显低于动物性有机物。
需要注意的是,生活污水中含氮有机物的初始污染是水中氨氮含量的主要来源。这些污水中的氨氮因子为微生物的成长、繁殖创造了条件,极易在浮游生物快速成长的基础上,形成水体富营养化;另外,在微生物作用下,污水中的氨氮会进一步分解,并最终形成硝酸盐氮;在该反应过程中,一旦反应过程不充分,就会造成大量亚硝酸盐氮的产生,当其与蛋白质结合时会形成致癌物亚硝胺,严重危害人们的身体健康。由此可见,在实践过程中,进行污水中氨氮污染因子的控制势在必行。
2、氨氮高于总氮原因的实验设计
污水处理过程中,氨氮含量高于总氮含量是一种常见的污水超标现象。要实现其超标原因的有效分析,研究人员就必须注重实验操作的具体规范。
2.1 氨氮及总氮检测的实验准备
2.1.1 实验依据及原液准备
污水氨氮及总氮检测过程中,确保其方法原理的控制规范是检测结果高度准确的有效保证。就氨氮检测而言,HJ537—2009《水质氨氮测定》中的蒸馏-中和滴定法是其实验操作的主要依据,而总氮的含量需按照HJ636—2012《水质总氮测定》进行规范,具体而言,其是在碱性过硫酸钾的应用下,实现污水氨氮含量消解的过程。本次实验鉴定过程中,污水的总氮含量的平均值为30.5mg/L,而氨氮含量平均值为32.2mg/L。
2.1.2 实验仪器准备
医用蒸汽灭菌器、超纯水器、紫外线分光光度计、比色管。在仪器应用过程中,实验人员应对其仪器的规格和型号进行有效规范,譬如,就比色管而言,其容积需保持在25mL;而分光光度计应用过程中,PELamda-25是一种有效的应用类型。
2.1.3 实验试剂准备
污水中氨氮及总氮含量检测是一项专业要求较高的系统实践过程。在检测操作中,试剂的类型和容量直接影响着检测结果的精确度。就氨氮检测而言,实验人员不仅要做好离子水、轻质氧化镁、硼酸吸收液的规范添加,更要对其添加的容量进行严格规范,譬如,硼酸吸收液的添加量应控制在20g,并确保添加后的稀释液总量为1000mL,另外在盐酸溶液应用中,其规格需保持在0.1023mol/L。总氮检测过程中,在保证去离子水应用的基础上,应做好碱性过硫酸钾溶液的严格规范,具体而言,在溶液配制过程中,其过硫酸钾的规格应控制在40g,而氢氧化钠的规格应控制在15g,将其溶于水后,进行氢氧化钠的充分冷却,一旦其温度达到室温后,须确保碱性过硫酸钾溶液的总量保持在1000mL。只有确保这些内容的控制合理,才能为氨氮含量及总氮含量的检测提供有效保证。
2.2 氨氮及总氮检测的实验结果
在确保实验仪器及试剂准备重复的基础上,按照蒸馏-中和滴定法对污水氨氮含量进行检测。具体而言,实验人员在原液的基础上,添加30mg/L的标准样品,同时按照95%~105%回收率要求,确保其平均加标的回收率控制在98.7%,实验结果显示如表1,由表1可见,氨氮测定的结果具有一定的精准性,用于实验对比较为可靠。
氨氮加标平行测试过程中,实验检测其水样本底的平均值为32.2mg/L,而在碱性过硫酸钾消解紫外分光光度法应用过程中,污水总氮含量的平均值仅为30.5mg/L;同时在离子色谱法的应用下,实验人员对硝酸盐氮及亚硝酸盐氮的含量进行有效测定,实验结果表明,污水中氨氮、硝酸盐氮及亚硝酸盐氮含量的平均值为32.37mg/L。由此可见,氨氮含量与总氮的测定存在较大差距,污水氨氮含量明显高于总氮含量。
3、污水中氨氮高于总氮的原因分析
3.1 污水中金属离子干扰因素分析
污水检测过程中,其水体中含量有一定的六价铬离子和三价铁离子,实验过程中,可在盐酸羟胺溶液的支撑下,实现其影响因素的有效消除。一般情况下,盐酸羟胺溶液的稀释度需保持在5%,同时添加容积要保持在1~2mL。待盐酸羟胺溶液反应充分后,可在二苯碳酰二肼分光光度法的应用下,实现其铬、铁含量的检测,结果表明,六价铬、三价铁的含量低于检出限,因而对于氨氮及总氮检查的结果没有影响。
3.2 标准曲线绘制分析
为实现氨氮含量与总氮含量差异的有效分析,实验人员需在实验的基础上,进行其标准曲线的有效绘制;同时在曲线绘制过程中,应注重其结构的独立性,确保检测过程不会和时间结果形成干扰。具体而言,实验人员应以25mL具塞比色管中为基础,然后在硝酸钾标准液添加的基础上,进行溶液的稀释,溶液添加规格分别为0.5、1、2、3、5、7、8mL稀释总容量保持在10mL。最后在过硫酸钾消解紫外分光光度法的应用下,实现其总氮含量的测定(表2),由此可见,分光光度法检测下,总氮的标准曲线较为规范,其符合相关系数不小于0.999的控制要求,因而不会对实验结果造成影响。
3.3 消解时间分析
氨氮及总氮含量检测过程中,化学反应的过程容易受到反应时间干扰,故实验人员需对氨氮与试剂的消解时间进行控制,确保其分别保持在20、30、40、50、60min,然后在样品冷却滞后进行盐酸添加,确保其添加容量保持在1mL,然后进行不同消解时间下的总氮含量记录,可得如下结果(表3)。由此可见,一旦消解时间低于40min,则试液检测中的硫酸钾转化率处于上升状态,其造成了总氮含量的不断增加,并在40min时,实现了总氮含量的高精度把控,然而在40min以后,其含量变化差距不大,且总氮量已经高于氨氮含量32.2mg/L的控制规格。因此,在检测过程中,氨氮与其他试剂的消解时间应控制在40min。
4、实验结构验证
污水处理过程中,氨氮高于总氮含量是较为常见的一种污染症状。在实验分析氨氮含量及总氮含量的基础上,对其金属离子、标准曲线和消解时间进行分析,可见消解时间是造成污水中氨氮含量增加的重要原因。实践过程中,一旦总氮的消解时间不够充分,则硫酸钾就会发生不完全转化,造成硝酸盐氮及亚硝酸盐氮的产生,从而使得污水中的氨氮含量明显高于总氮含量。
5、结论
氨氮与总氮的含量控制是水质衡量的重要指标,消解时间不充分,就会导致总氮含量的降低,从而在增加水体氨氮含量同时,形成水土富营养化。实践过程中,污水处理人员在反应试剂添加过程中,必须确保其与水体总氨的消解实践保持在40min,唯有如此,才能确保污水中氨氮含量的合理控制,继而实现污水处理质量的有效提升。
④ 总氮和氨氮有什么关系没
总氮指的是所有的氮包括硝酸盐氮、亚硝酸盐氮、氨氮和有机氮等。氨氮只是其中的一种,是版水里的铵根权离子和游离氨。总氮一般用紫外分光光度法,在220nm和275nm波长下进行检测,如图,
总氮会使水富营养化,氨氮大家都知道,氨氮太高气味就特别浓。
⑤ 总氮和氨氮有什么区别
污水中的氮,有四种形态,氨氮,有机氮,亚硝酸盐氮,硝酸盐氮,四者合称总氮TN.而氨氮只是总氮中的一种。
⑥ 水中总氮与氨氮的含量有什么联系吗
总氮 和 氨氮 的定义 网络里面都能查到,楼主应该不单独要两个词语的定义吧。
一般情况下,国回家排放标准中一般都指氨氮。
总氮,在废水综合排放标准中有时也提到。
实际应用中,氨氮是具体指处理指标;但是废水中总氮才是影响处理得关键,例如煤化工尿素行业,往往污水站进水氨氮浓度高,但是总氮高,就是因为尿素是有机氮,进入污水站后,逐步水解,成为氨氮,但是测氨氮的答时候又测不出,导致后续处理很麻烦。
为此,测废水中的总氮,对污水处理站有很大的指导意义。
氨氮,就很简单了,厌氧、好氧 逐步消解就行了。
⑦ 总氮、氨氮、硝酸盐氮、凯氏氮他们之间的关系
关系如下:
1、关系是水体中氮元素的形式及转化,进入水体中的氮主要有无机氮和有机氮之分。无机氮包括氨态氮(简称氨氮)和硝态氮。氨氮包括游离氨态氮NH3-N和铵盐态氮NH4+-N;硝态氮包括硝酸盐氮NO3--N和亚硝酸盐氮NO2--N。
2、有机氮主要有尿素、氨基酸、蛋白质、核酸、尿酸、脂肪胺、有机碱、氨基糖等含氮有机物。可溶性有机氮主要以尿素和蛋白质形式存在,它可以通过氨化等作用转换为氨氮。
1、总氮是指可溶性及悬浮颗粒中的含氮量(通常测定硝酸盐氮、亚硝酸盐氮、无机铵盐、溶解态氨几大部分有机含氮化合物中氮的总和)。可溶性总氮是指水中可溶性及含可过滤性固体(小于0.45µm颗粒物)的含氮量。总氮是衡量水质的重要指标之一。
2、氨氮是指游离氨(或称非离子氨,NH3)或离子氨(NH4+)形态存在的氨。pH较高,游离氨的比例较高;反之,铵盐的比例高。
3、水中硝酸盐是在有氧条件下,各种形态含氮化合物中最稳定的氮化合物,通常用以表示含氮有机物无机化作用最终阶段的分解产物。当水样中仅含有硝酸盐而不存在其他有机或无机的氮化合物时,认为有机氮化合物分解完全。
4、亚硝酸盐是氮循环的中间产物。亚硝态氮不稳定,可以氧化成硝酸盐氮,也可以还原成氨氮。因此,在测定其含量的同时,并了解水中硝酸盐和氨的含量,则可以判断水系被含氮化合物污染的程度及自净情况。
5、凯氏氮是以凯氏法测得的的含氮量。它包括氨氮和在此条件下能被转化为铵盐而测定的有机氮化合物。此类有机氮主要指蛋白质、胨、氨基酸、核酸、尿素以及大量合成的,氮为负三价的有机氮化合物。
⑧ 污水中COD、BOD、氨氮、总氮的概念分别是什么
污水中COD、、氨氮、总氮的概念分别是:
1、COD:即化学需氧量(Chemical Oxygen Demand),指用强化学氧化剂(中国法定用重铬酸钾)在酸性条件下,将有机物氧化成CO2与H2O所消耗的氧量(mg/L),用CODcr表示,简写为COD。化学需氧量越高,表示水中有机污染物越多,污染越严重。
2、BOD:即生化需氧量,水中有机污染物被好氧微生物分解时所需的氧量称为生化需氧量(mg/L)。一般用20℃时,五天生化需氧量(BOD5)表示。
如果污水成分相对稳定,则一般来说,COD> BOD5。一般BOD5/COD大于0.3,认为适宜采用生化处理。
3、氨氮:指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。动物性有机物的含氮量一般较植物性有机物为高。同时,人畜粪便中含氮有机物很不稳定,容易分解成氨。因此,水中氨氮含量增高时指以氨或铵离子形式存在的化合氮。
4、总氮:简称为TN,指污水中含氮化合物分为有机氮、氨氮、亚硝酸盐氮、硝酸盐氮,四种含氮化合物总量称为总氮(TN)。
COD测定方法:
1、高锰酸钾(KmnO4)法:氧化率较低,但比较简便,在测定水样中有机物含量的相对比较值时,可以采用。COD(KmnO4法)>5mg/L时,水质已开始变差。
2、重铬酸钾(K2Cr2O7)法:氧化率高,再现性好,适用于测定水样中有机物的总量。
(8)污水处理厂氨氮和总氮是什么关系扩展阅读
污水产生的原因:
1、工业污染
工业废水,是工业污染引起水体污染的最重要的原因。它占工业排出的污染物的大部分。工业除了排出的废水直接注入水体引起污染外,固体废物和废气也会污染水体。
2、农业污染
首先是由于耕作或开荒使土地表面疏松,在土壤和地形还未稳定时降雨,大量泥沙流入水中,增加水中的悬浮物。
还有一个重要原因是农药、化肥的使用量日益增多,而使用的农药和化肥只有少量附着或被吸收,其余绝大部分残留在土壤和漂浮在大气中,通过降雨,经过地表径流的冲刷进入地表水和渗入地表水形成污染。
3、城市污染
城市污染源是因城市人口集中,城市生活污水、垃圾和废气引起水体污染造成的。城市污染源对水体的污染主要是生活污水,它是人们日常生活中产生的各种污水的混合液,其中包括厨房、洗涤房、浴室和厕所排出的污水。