❶ 膜分离设备的类型
由有机合成膜构成的膜分离设备,主要类型为:①板框式装置。在尺寸相同的片状膜组之间,相间地插入隔板,形成两种液流的流道。由于膜组可置于均匀的电场中,这种结构适用于电渗析器。板框式装置也可应用于膜两侧流体静压差较小的超过滤和渗析。②螺卷式装置。把多孔隔板(供渗透液流动的空间)夹在两张膜之间,使它们的三条边粘着密合,开口边与用作渗透液引出管的多孔中心管接合。再在上面加一张作料液流动通道用的多孔隔板,并一起绕中心管卷成螺卷式元件(图1)。料液通道与中心管接合边及螺卷外端边封死。多个螺卷元件装入耐压筒中,构成单元装置。操作时料液沿轴向流动,可渗透物透过膜进入渗透液空间,沿螺旋通道流向中心管引出。该设备适用于反渗透和气体渗透分离,不能处理含微细颗粒的液体。③管式装置。用管状膜并以多孔管支撑,构成类似于管壳式换热器的设备,分内压式和外压式,各用多孔管支撑于膜的外侧或内侧。内压式的膜面易冲洗,适用于微过滤和超过滤。④中空纤维式装置。中空纤维不需要支撑而能承受较高的压差,在各种膜分离设备中,它的单位设备体积内容纳的膜面积最大。用中空纤维构成类似于管壳式换热器的设备(图2)。中空纤维直径约0.1~1mm,并列达数百万根,纤维端部用环氧树脂密封,构成管板,封装在压力容器中。中空纤维式适用于反渗透和气体渗透分离。
❷ 陶瓷膜过滤器都能应用在哪些领域
如果具体化应用,在项目中陶瓷膜过滤器应用已包括但不限于以下:
1,催化剂回收。解决了传统工艺难以避免的催化剂浪费或进入下游工序影响产品品质问题。
2,纳米粉体洗涤。如银粉洗涤后电导率达到良好预期20μs以下,且运行稳定,可大大提高传统人工生产效率。
3,高纯溶剂脱水。如乙腈脱水可以达到99.5%,目前已是成熟稳定应用。还有醇类,醚类,酮类,酯类等。
4,用于油水分离。如煤化工油水分离领域,可以离水中的乳化油和超细催化剂颗粒,对于乳化油脱除率可以达到90%以上,而催化剂脱除率更是高达99%,都已经是成熟应用。
5,化纤工业碱液回用。如化纤工业废碱液(半纤维素含量35-55g/L,NaOH含量180-220g/L),经陶瓷膜综合工艺处理可回用也解决环保排放问题。
6,植物提取领域应用。如洋姜菊粉提取、蓝莓花青素提取、紫薯花青素提取、苦荞黄酮提取、甜菊叶中的甜菊糖提取、甘蔗青汁脱水纯化(原糖、白糖)、罗汉果提取、葛根提取等。
7、生物医药发酵行业。林可霉素碱化液纯化、L-色氨酸脱色处理、右旋糖酐铁脱盐除杂以及苏氨酸项目应用等。同时在现代抗生素工业生产中,还可替代传统精制技术如吸附、沉淀、溶媒萃取、离子交换等。
8、氯碱行业应用。在氯碱行业盐水精制工艺过程中,陶瓷膜应用有着传统精制及过滤技术难以达到的优势。还可以用于卤水真空制盐,所产的固体盐品质高于澄清工艺产品,作为高品质食用盐或氯碱盐使用。
9、新能源太阳能行业金刚线切割液的硅粉回收。这也是一项新的应用。回收了硅粉,为光伏企业带来投资收益,同时还极大辅助解决了环保排放问题。
10、调味品保健酒、食品行业。如饮料行业、酱油、保健酒过滤澄清,以及骨汤澄清、浓缩等工艺应用。陶瓷膜超滤设备可直接处理酱油、食醋等调味品生产的原液,取代传统多步过滤过程。
总之各类物料体系、涉及到的分离、浓缩、提取等生产工艺中都会用到陶瓷膜工艺,已经应用的应该只是一小部分,所以说陶瓷膜分离以后是大趋势,取代传统!
目前成熟度微孔陶瓷膜可以做到最高2nm孔径,多用于研究院物料实验如精细化除杂何浓缩。而2-50nm陶瓷纳滤膜技术如众所熟知的南京博滤工业可提供5nm膜管及成套膜分离设备已达到高稳定水平,成熟应用于工业生产和植物提取领域。以上全部,但建议楼主多查询文献资料,并结合走访现场应用多做深入了解学习。
❸ 膜分离实验设备的种类
膜是具有选择性分离功能的材料.利用膜的选择性分离实现料液的不同组分的分离、纯化、内浓缩的过程称作膜容分离.它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂.膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要还只有微滤级别的膜,主要是陶瓷膜和金属膜.有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等.
❹ 超滤膜过滤设备能自动清洗吗
“。
超滤膜在运行相当长的一段时间,在浓差极化影响下逐渐形成凝胶层和污染物沉积层,并在压力差的作用下慢慢被压实,使流体阻力显着增加,透水通量急剧下降,采用物理方法不能使通量恢复时,必须用化学清洗剂进行清洗。
对膜进行清洗时应当注意必须事先弄清楚污染物的组成及污染性质。这样才能采取有效的清洗方法。如能用清水冲洗,应尽量用清水冲洗。只有当清水冲洗达不到理想效果时,才考虑用化学清洗方法。”
❺ 膜分离设备的前景如何
膜分离技术是指在分子水平上不同粒径分子的混合物在通过半透膜时,实现选择性分离的技术,在饮用水净化、工业用水处理,食品、饮料用水净化、除菌,生物活性物质回收、精制等方面得到广泛应用,并迅速推广到纺织、化工、电力、食品、冶金、石油、机械、生物、制药、发酵等各个领域。分离膜因其独特的结构和性能,在环境保护和水资源再生方面异军突起,在环境工程,特别是废水处理和中水回用方面有着广泛的应用前景。 膜在大自然中,特别是在生物体内是广泛存在的,首先出现的是超滤膜和微孔过滤,然后才出现反渗透。
1748年Abble Nelkt发现水能自然地扩散到装有酒精溶液的猪膀胱内,首次揭示了膜分离现象,但是直到本世纪60年代中期,膜分离技术才应用在工业上。
1861年Schmidt首先提出超过滤的概念,他指出,当溶液用比滤纸孔径更小的棉胶膜或赛璐玢膜过滤时,如果对接触膜的溶液施加压力并使膜两侧产生压力差,那么它可以过滤分离溶液中如细菌、蛋白质、胶体那样的微小粒子,这种过滤精度要比通常的滤纸过滤高的多,因此称这种膜过滤法为超过滤。
在截留分子量级重要概念提出后,关于截留各种不同分子量的超过滤膜,是Machaelis等用各种比例的酸性和碱性高分子电解质混合物,以水-丙酮-溴化钠为溶剂首先制成的。此后,一些国家又相继用各种高分子材料研制了具有不同用途的超过滤膜,并由美国Amicon公司首先进行了商品化生产。将各种形状的大面积的超过滤膜放在耐压装置中的膜组件中,随着反渗透组件的研制而发展起来的。
几种主要膜技术发展近况大致如下:
微滤在20世纪30年代硝酸纤维素微滤膜商品化,60年代主要开发新品种。虽然早在100多年前已在实验室制造微孔滤膜,但是直到1918年才由Zsigmondy提出商品微孔过滤膜的制造法,并报道了在分离和富集微生物、微粒方面的应用。1925年在德国建立世界上第一个微孔滤膜公司“Sartorius”,专门经销和生产微孔滤膜。第二次世界大战后,美国对微孔滤膜的制造技术和应用技术进行了广泛的研究研究微孔滤膜主要是发展新品种,扩大应用范围。使用温度在-100~260℃。
超滤从20世纪70年代进入工业化应用后发展迅速,已成为应用领域最广的技术。日本开发出孔径为5~50nm的陶瓷超滤膜,截留分子量为2万,并开发成功直径为1~2mm,壁厚200~400um的陶瓷中空纤维超滤膜,特别适合于生物制品的分离提纯。
离子交换膜和电渗析技术主要用于苦咸水脱盐,引起氯碱工业的深刻变化。离子膜法比传统的隔膜法节约总能耗30%,节约投资20%。90年世界上已有34个国家近140套离子膜电解装置投产,到2000年全世界将1/3氯碱生产转向膜法。
20世纪60年代Loeb与Sourirajan发明了第一代高性能的非对称性醋酸纤维素膜,把反渗透首次用于海波及苦咸水淡化。70年代开发成功高效芳香聚酰胺中空纤维反渗透膜,使RO膜性能进一步提高。90年代出现低压反渗透复合膜,为第三代RO膜,膜性能大幅度提高,为RO技术发展开辟了广阔的前景。超纯水制造、锅炉水软化,食品、医药的浓缩,城市污水处理,化工废液中有用物质回收。
1979年Monsanto公司用于H2/N2分离的Prism系统的建立,将气体分离推向工业化应用。1985年Dow化学公司向市场提供以富N2为目的空气分离器“Generon”气体分离用于石油、化工、天然气生产等领域,大大提高了过程的经济效益。
20世纪80年代后期进入工业应用的膜分离技术是用渗透汽化进行醇类等恒沸物脱水,由于该过程的能耗仅为恒沸精馏的1/3~1/2,且不使用苯等挟带剂,在取代恒沸精馏及其它脱水技术上具有很大的经济优势。德国GFT公司是率先开发成功唯一商品GFT膜的公司。90年代初向巴西、德、法、美、英等国出售了100多套生产装置,其中最大的为年产4万吨无水乙醇的工业装置,建于法国。除此之外,用PV法进行水中少量有机物脱除及某些有机/有机混合物分离,例如水中微量含氯有机物分离,MTBE/甲醇分离,我国膜科学技术的发展是从1958年研究离子交换膜开始的。60年代进入开创阶段。1965年着手反渗透的探索,1967年开始的全国海水淡化会战,大大促进了我国膜科技的发展。70年代进入开发阶段。这时期,微滤、电渗析、反渗透和超滤等各种膜和组器件都相继研究开发出来,80年代跨入了推广应用阶段。80年代又是气体分离和其他新膜开发阶段。 随着我国膜科学技术的发展,相应的学术、技术团体也相继成立。她们的成立为规范膜行业的标准、促进膜行业的发展起着举足轻重的作用。半个世纪以来,膜分离完成了从实验室到大规模工业应用的转变,成为一项高效节能的新型分离技术。1925年以来,差不多每十年就有一项新的膜过程在工业上得到应用。
由于膜分离技术本身具有的优越性能,产业界和科技界把膜过程视为二十一世纪工业技术改造中的一项极为重要的新技术。曾有专家指出:谁掌握了膜技术谁就掌握了化学工业的明天。
80年代以来我国膜技术跨入应用阶段,同时也是新膜过程的开发阶段。在这一时期,膜技术在食品加工、海水淡化、纯水、超纯水制备、医药、生物、环保等领域得到了较大规模的开发和应用。并且,在这一时期,国家重点科技攻关项目和自然科学基金中也都有了膜的课题。
为众多的企业带来了较为显著的经济效益、社会效益和环境效益。
❻ 哪个公司的过滤膜设备比较好
目前水处理中的过滤膜设备主要分为:反渗透设备、纳滤设备和超滤设备以及MBR一体化设专备。
随着国家对环保属的重视越来越高,各行各业对污水处理也越来越重视。而水处理行业的重心还是在水处理设备的整套系统中的作用,反渗透设备是目前使用最为广泛,对水的处理效果也是最为理想的一种设备,被应用于不同的行业中。同时也随着行业的发展,反渗透设备的技术也日益科学先进,对不同的使用行业也越来越有针对性。
详细可见官网:网页链接
❼ 超滤膜的超滤设备
超滤概念
超滤设备公司生产超滤膜净水设备,超滤膜设备被大量用于水处理净回水设备工程;超滤膜设备技术答在反渗透预处理,饮用水处理,中水回用,酒类和饮料的除菌与除浊,药品的除热原以及食品及制药物浓缩等领域发挥着越来越重要的作用。
超滤过滤孔径和截留分子量的范围一直以来定义较为模糊,一般认为超滤膜的过滤孔径为0.001-0.1微米,截留分子量(Molecular weigh cut-off, MWCO)为1,000-1,000,000 Dalton。严格意义上来说超滤膜的过滤孔径为0.001-0.01微米,截留分子量为1,000-300,000 Dalton。若过滤孔径大于0.01微米,或截留分子量大于300,000 Dalton的微孔膜就应该定义为微滤膜或精滤膜。
一般用于水处理的超滤膜标称截留分子量为30,000-300,000 Dalton,而截留分子量为6,000-30,000 Dalton 的超滤膜大多用于物料的分离、浓缩、除菌和除热源等领域。
❽ 膜分离设备的工作原理是什么
膜是具有选择性分离功能的材料,利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要是陶瓷膜和金属膜,其过滤精度较低,选择性较小。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。错流膜工艺中各种膜的分离与截留性能以膜的孔径和截留分子量来加以区别。
❾ 陶瓷膜过滤器的设备选型
1、适用于化工与精细化工(精度5-10μm)技术参数及选型标准 设备型号 最大处理量(m/h) 罐体直径(mm) 设备总高(mm) 进出水口DN(mm) 反洗进出水口
DN(mm) 排污口
DN(mm) 备用口
DN(mm) 排空口
DN(mm) BJF-10TCM 1.0□H 10 1200 2600 50 50 50 50 40 BJF-20TCM 1.0□H 20 1400 2800 65 65 65 50 40 BJF-30TCM 1.0□H 30 1600 3000 100 100 100 65 50 BJF-40TCM 1.0□H 40 2000 3200 125 125 125 65 50 BJF-50TCM 1.0□H 50 2200 3600 125 125 125 65 50 BJF-65TCM 1.0□H 65 2400 3800 150 150 150 65 50 BJF-80TCM 1.0□H 80 2600 4200 150 150 150 65 50 BJF-100TCM 1.0□H 100 3000 4800 200 200 200 80 65 型号释义:如BJF-10TCM1.0-H BJF:表示福通处理设备;10:表示最大处理量;TCM:表示陶瓷膜过滤器; 1.0:表示压力适用范围≤1.0MPa;□表示温度适应范围:A=5-95℃,B=5-200℃;H表示应用于化工生产。
2、适用于制药(精度1-2μm)技术参数及选型标准 设备型号 最大处理量(m/h) 罐体直径(mm) 设备总高(mm) 进出水口DN(mm) 反洗进出水口
DN(mm) 排污口
DN(mm) 备用口
DN(mm) 排空口
DN(mm) BJF-2TCM 1.0□Y 2 1400 2800 50 50 50 50 40 BJF-4TCM 1.0□Y 4 2000 3200 65 65 65 50 40 BJF-6TCM 1.0□Y 6 2200 3600 65 65 65 50 40 BJF-8TCM 1.0□Y 8 2600 4200 80 80 80 65 50 BJF-10TCM 1.0□Y 10 3000 4800 100 100 100 65 50 型号释义:如BJF-10TCM1.0□ Y BJF:表示福通处理设备;10:表示最大处理量;TCM:表示陶瓷膜过滤器;1.0:表示压力适用范围≤1.0MPa;□表示温度适应范围:A=5-95℃,B=5-200℃;Y表示应用于医药生产。
3、水处理
(1)大型重工业企业的冷却水、焦化水、浊环水水处理(60-120μm) 设备型号 最大处理量(m/h) 罐体直径(mm) 设备总高(mm) 进出水口DN(mm) 反洗进出水口
DN(mm) 排污口
DN(mm) 备用口
DN(mm) 排空口
DN(mm) BJF-10TCM 1.0□W 10 800 2500 50 50 50 50 40 BJF-20TCM 1.0□W 20 1200 2600 65 65 65 50 40 BJF-30TCM 1.0□W 30 1400 2800 100 100 100 65 50 BJF-40TCM 1.0□W 40 1600 3000 125 125 125 65 50 BJF-50TCM 1.0□W 50 1600 3000 125 125 125 65 50 BJF-65TCM 1.0□W 65 1800 3000 150 150 150 65 50 BJF-80TCM 1.0□W 80 2000 3200 150 150 150 65 50 BJF-100TCM 1.0□W 100 2200 3600 200 200 200 80 65 BJF-125TCM 1.0□W 125 2600 4200 200 200 200 80 65 BJF-150TCM 1.0□W 150 2800 4600 250 250 250 100 65 BJF-200TCM 1.0□W 200 3200 5200 250 250 250 100 65 技术参数及选型标准型号释义:如BJF-10TCM1.0□W BJF:表示福通处理设备;10:表示最大处理量;TCM:表示陶瓷膜过滤器;1.0:表示压力适用范围≤1.0MPa;□表示温度适应范围:A=5-95℃,B=5-200℃;W表示应用于工业水处理。
(2)高标准工业洗涤用水(例如洗棉花用水)(2-5μm)技术参数及选型标准 设备型号 最大处理量(m/h) 罐体直径(mm) 设备总高(mm) 进出水口DN(mm) 反洗进出水口
DN(mm) 排污口
DN(mm) 备用口
DN(mm) 排空口
DN(mm) BJF-10TCM 1.0□G 10 1200 2600 50 50 50 50 40 BJF-20TCM 1.0□G 20 1800 3000 65 65 65 50 40 BJF-30TCM 1.0□G 30 2200 3600 100 100 100 65 50 BJF-40TCM 1.0□G 40 2400 3800 125 125 125 65 50 BJF-50TCM 1.0□G 50 2600 4200 125 125 125 65 50 BJF-65TCM 1.0□G 65 3000 4800 150 150 150 65 50 型号释义:如BJF-10TCM1.0□G BJF:表示福通处理设备;10:表示最大处理量;TCM:表示陶瓷膜过滤器;1.0:表示压力适用范围≤1.0MPa;□表示温度适应范围:A=5-95℃,B=5-200℃;G表示应用于工业高标准洗涤用水。
4、多通道陶瓷膜管处理脊性颗粒杂质滤料(5-15μm)技术参数及选型标准 设备型号 最大处理量(m/h) 罐体直径(mm) 设备总高(mm) 进出水口DN(mm) 反洗进出水口
DN(mm) 排污口
DN(mm) 备用口
DN(mm) 排空口
DN(mm) BJF-10TCM 1.0□D 10 1000 2600 50 50 50 50 40 BJF-20TCM 1.0□D 20 1200 2600 65 65 65 50 40 BJF-30TCM 1.0□D 30 1600 3000 100 100 100 65 50 BJF-40TCM 1.0□D 40 1800 3000 125 125 125 65 50 BJF-50TCM 1.0□D 50 2000 3200 125 125 125 65 50 BJF-65TCM 1.0□D 65 2200 3600 150 150 150 65 50 型号释义:如BJF-10TCM1.0□D BJF:表示福通处理设备;10:表示最大处理量;TCM:表示陶瓷膜过滤器;1.0:表示压力适用范围≤1.0MPa;□表示温度适应范围:A=5-95℃,B=5-200℃;D表示应用于工业高标准洗涤用水。