导航:首页 > 废水知识 > 水处理使用规范

水处理使用规范

发布时间:2021-01-07 03:04:12

1. 工业循环冷却水处理设计规范标准是什么

根据建设来部《关于印发“二〇自〇四年工程建设国家标准制订、修订计划”的通知》(建标[2004]67号),本规范由中国寰球工程公司会同有关单位,对《工业循环冷却水处理设计规范》GB50050-95进行修订而成的。
修订工作是在原规范的基础上进行的。根据国家现行的方针政策,重点突出节水和保护环境。通过有针对性的调查和资料收集,召开多次行业专题研讨会,广泛征求了全国有关单位和专家的意见,经审查会审查并修改后,完成了规范报批稿。
本次修订对原规范做了较大改动,修订和增加内容如下:
再生水处理、直冷循环冷却水处理、间冷闭式循环冷却水处理、术语、符号、间冷(开式和闭式)和直冷循环冷却水水质指标、腐蚀速率、黏泥量、浓缩倍数、硫酸投加量计算、旁滤量、高碱及高硬补充水处理、含磷超标排水处理、自动化监控、水质分析数据校核计算及标准等。

2. 净化水处理执行国家什么技术标准

净化水来处理执行源
GB18918-2002是《城镇污水处理厂污染物排放标准》,而GB8978-1996是《污水综合排放标准》,两者是不同的概念,两者都有各自的针对对象,两者是不可以混用的。
《污水综合排放标准》最新的标准国家还没有出台,国家污水综合排放标准用的还是GB8978-1996。
纳米晶技术是派斯软水机独有的水软化技术,根据中立的实验室检测,除垢率达99.6%,达到完美的软化水的效果,比以前所知的任何一种类型的软水机效果都要优异。同时也是在无化学添加成分的情况下,被证明非常有效的软水机。 纳米晶的技术原理是TAC(Template Assisted Crys-tallization)技术,即离子晶体化,利用纳米晶聚合球体表面晶核产生的高能量把水中的钙、镁、碳酸氢根等离子打包成纳米级的晶体,当这种晶体长到2纳米左右时自动脱落到水中,水中没有了钙、镁、碳酸氢根离子也就不会在有水垢产生。

3. 水处理的排污标准

GB18918-2002是《城镇污水处理厂污染物排放标准》,而GB8978-1996是《污水综合排放标准》,两者是不同的概念,两者都有各自的针对对象,两者是不可以混用的。
《污水综合排放标准》最新的标准国家还没有出台,国家污水综合排放标准用的还是GB8978-1996。
纳米晶技术是派斯软水机独有的水软化技术,根据中立的实验室检测,除垢率达99.6%,达到完美的软化水的效果,比以前所知的任何一种类型的软水机效果都要优异。同时也是在无化学添加成分的情况下,被证明非常有效的软水机。 纳米晶的技术原理是TAC(Template Assisted Crys-tallization)技术,即离子晶体化,利用纳米晶聚合球体表面晶核产生的高能量把水中的钙、镁、碳酸氢根等离子打包成纳米级的晶体,当这种晶体长到2纳米左右时自动脱落到水中,水中没有了钙、镁、碳酸氢根离子也就不会在有水垢产生。 沉淀物过滤法的目的是将水源内之悬浮颗粒物质或胶体物质清除乾净。这些颗粒物质如果没有清除,会对透析用水其它精密的过滤膜造成破坏或甚至水路的阻塞。这是最古老且最简单的净水法,所以这个步骤常用在水纯化的初步处理,或有必要时,在管路中也会多加入几个滤器(filter)以清除体积较大的杂质。滤过悬浮的颗粒物质所使用的滤器种类很多,例如网状滤器,沙状滤器(如石英沙等)或膜状滤器等。只要颗粒大小大於这些孔洞之大小,就会被阻挡下来。对於溶解于水中的离子,就无法阻拦下来。如果滤器太久没有更换或清洗,堆积在滤器上的颗粒物质会愈来愈多,则水流量及水压会逐渐减少。人们就是利用入水压与出水压差来判断滤器被阻塞的程度。因此滤器要定时逆冲以排除堆积其上的杂质,同时也要在固定时间内更换滤器。
沉淀物过滤法还有一个问题值得注意,因为颗粒物质不断被阻拦而堆积下来,这些物质 面或许有细菌在此繁殖,并释放毒性物质通过滤器,造成热原反应,所以要经常更换滤器,原则上进水与出水的压力落差升高达到原先的五倍时,就需要换掉滤器。 硬水的软化需使用离子交换法,它的目的是利用阳离子交换树脂以钠离子来交换硬水中的钙与镁离子,以此来降低水源内之钙镁离子的浓度。其软化的反应式如下:
Ca2++2Na-EX→Ca-EX2+2Na+1
Mg2++2Na-EX→Mg-EX2+2Na+1
式中的EX表示离子交换树脂,这些离子交换树脂结合了Ca2+及Mg2+之後,将原本含在其内的Na+离子释放出来。
树脂基质(resin matrix)内藏氯化钠,在硬水软化的过程中,钠离子会逐渐被使用耗尽,则交换树脂的软化效果也会逐渐降低,这时需要作还原(regeneration)的工作,也就是每隔固定时间加入特定浓度的盐水,一般是10%,其反应方式如下:
Ca-EX2+2Na+(浓盐水)→2Na-EX+Ca2+
Mg-EX2+2Na+(浓盐水)→2Na-EX+Mg2+
如果水处理的过程中没有阳离子的软化,不只是逆渗透膜上会有钙镁体的沉积以致降低功效甚至破坏逆渗透膜,同时病人也容易得到硬水症候群。硬水软化器也会引起细菌繁殖的问题,所以设备上需要有逆冲的功能,一段时间後就要逆冲一次以防止太多杂质吸附其上。另一个值得注意问题的是高血钠症,因为透析用水的软化与再还原过程是*计时器来控制,正常情况还原作用大多发生在半夜,这是*阀门在控制,如果发生故障,大量盐水就会涌进水源,进而造成病人的高血钠症。全自动钠离子交换器采用离子交换原理,去除水中的钙、镁等结垢离子。当含有硬度离子的原水通过交换器内树脂层时,水中的钙、镁离子便与树脂吸附的 钠离子发生置换,树脂吸附了钙、镁离子而钠离子进入水中,这样从交换器内流出的水就是去掉了硬度的软化水。
活性炭是由木头,残木屑,水果核,椰子壳,煤炭或石油底渣等物质在高温下乾馏炭化而成,制成後还需以热空气或水蒸气加以活化。它的主要作用是清除氯与氯氨以及其它分子量在60到300道尔顿的溶解性有机物质。活性炭的表面呈颗粒状,内部是多孔的,孔内有许多约1Onm~lA大小的毛细管,1g的活性炭内部表面积高达700-1400m2,而这些毛细管内表面及颗粒表面就是吸附作用之所在。影响活性炭清除有机物能力的因素有活性炭本身的面积,孔洞大小以及被清除有机物的分子量及其极性(Polarity),它主要*物理的吸附能力来排除杂物,当吸附能力达饱合之後,吸附过多的杂质就会掉落下来污染下游的水质,所以必须定时利用逆冲的方式来清除吸附其上的杂质。
这种活性炭滤器如果吸附能力明显下降,必须更新。测定进水及出水的TOC浓度差(或细菌数量差)是考量更换活性炭的依据之一。有些逆渗透膜对氯的耐受性不佳,所以在逆渗透之前要有活性碳的处理,使氯能够有效的被活性炭吸附,但是活性碳上的孔洞吸附的细菌容易繁殖滋长,同时对於分子较大有机物的清除,活性炭的功效有限,所以必须*逆渗透膜在後面补强。 去离子法的目的是将溶解於水中的无机离子排除,与硬水软化器一样,也是利用离子交换树脂的原理。在这 使用两种树脂-阳离子交换树脂与阴离子交换树脂。阳离子交换树脂利用氢离子(H+)来交换阳离子;而阴离子交换树脂则利用氢氧根离子(OH-)来交换阴离子,氢离子与氢氧根离子互相结合成中性水,其反应方程式如下:
M+x+xH-Re→M-M-Rex+xH+1
A-z+zOH-Re→A-Rez+zOH-1
上式中的的M+x表阳离子,x表电价数,M+x阳离子与阳离子树脂上H-Re的氢离子交换,A-z则表阴离子,z表电价数,A-z与阴离子交换树脂结合後,释放出OH-离子。H+离子与OH-离子结合後即成中性的水。
这些树脂之吸附能力耗尽之後也需要再还原,阳离子交换树脂需要强酸来还原;相反的,阴离子则需要强碱来还原。阳离子交换树脂对各种阳离子的吸附力有所差异,它们的强弱程度及相对关系如下:
Ba2+>Pb2+>Sr2+>Ca2+>Ni2+>Cd2+>CU2+>Co2+>Zn2+>Mg2+>Ag1+>Cs1+>K1+>NH41+>Na1+>H1+
阴离子交换树脂与各阴离子的亲合力强度如下:
S02-4+>I->NO3->NO2->Cl->HCO3->OH->F-
如果阴离子交换树脂消耗殆尽而没有还原,则吸附力最弱的氟就会逐渐出现在透析用水中,造成软骨病,骨质疏松症及其它骨病变;如果阳离子交换树脂消耗尽了,氢离子也会出现在透析用水之中,造成水质酸性的增加,所以去离子功能是否有效,需要时常监视。一般是*水质的电阻系数(resistivity)或传导度(conctivity)来判断。去离子法所使用的离子交换树脂同样也会造成细菌的繁殖引起菌血症,这是值得注意的一点。 反渗透法可以有效的清除溶解於水中的无机物,有机物,细菌,热原及其它颗粒等,是透析用水之处理中最重要的一环。要了解反渗透原理之前,要先解释渗透(osmosis)的观念。所谓渗透是指以半透膜隔开两种不同浓度的溶液,其中溶质不能透过半透膜,则浓度较低的一方水分子会通过半透膜到达浓度较高的另一方,直到两侧的浓度相等为止。在还没达到平衡之前,可以在浓度较高的一方逐渐施加压力,则前述之水分子移动状态会暂时停止,此时所需的压力叫作 渗透压 (osmotic pressure),如果施加的力量大於渗透压时,则水份的移动会反方向而行,也就是从高浓度的一侧流向低浓度的一侧,这种现象就叫作反渗透。反渗透的纯化效果可以达到离子的层面,对於单价离子(monovalentions)的排除率(rejectionrate)可达90%-98%,而双价离子(divalent ions)可达95%-99%左右(可以防止分子量大於200道尔敦的物质通过)。
反渗透水处理常用的半透膜材质有纤维质膜(cellulosic),芳香族聚酝胺类(aromatic polyamides),polyimide或polyfuranes等,至於它的结构形状有螺旋型(spiral wound),空心纤维型(hollow fiber)及管状型(tubular)等。至於这些材质中纤维素膜的优点是耐氯性高,但在碱性的条件下(pH ≥8.0)或细菌存在的状况下,使用寿命会缩短。polyamide的缺点是对氯及氯氨之耐受性差。
如果反渗透前没有作好前置处理则渗透膜上容易有污物堆积,例如钙,镁,铁等离子,造成反渗透功能的下降;有些膜(如polyamide)容易被氯与氯氨所破坏,因此在反渗透膜之前要有活性碳及软化器等前置处理。反渗透虽然价钱较高,因为一般反渗透膜的孔径约在l0A以下,它可以排除细菌,病毒及热原甚至各种溶解性离子等,所以在准备血液透析析释用水最好准备这一道步骤。
反渗透系统的调试工作显得尤为重要。我们可以从以下几个方面来掌握: 运行条件 运行前准备 试车运行 分离流程
反渗透膜分离工艺设计中常见的流程有如下几种:
①一级一段法这种方式是料液进入膜组件后,浓缩液和产水被连续引出,这种方式水的回收率不高,工业应用较少。另一种形式是一级一段循环式工艺,它是将浓水一部分返回料液槽,这样浓溶液的浓度不断提高,因此产水量大,但产水水质下降。
②一级多段法当用反渗透作为浓缩过程时,一次浓缩达不到要求时,可以采用这种多步式方式,这种方式浓缩液体体积可减少而浓度提高,产水量相应加大。
③两级一段法当海水除盐率要求把NaCl从35000 mg/L降至500mg/L时,则要求除盐率高达98.6%如一级达不到时,可分为两步进行。即第一步先除去NaCl 90%,而第二步再从第一步出水中去除NaCl 89%,即可达到要求。如果膜的除盐率低,而水的渗透性又高时,采用两步法比较经济,同时在低压低浓度下运行时,可提高膜的使用寿命。
④多级反渗透流程在此流程中,将第一级浓缩液作为第二级的供料液,而第二级浓缩液再作为下一级的供料液,此时由于各级透过水都向体外直接排出,所以随着级数增加水的回收率上升,浓缩液体体积减少浓度上升。为了保证液体的一定流速,同时控制浓差极化,膜组件数目应逐渐减少。 它的杀菌机理是破坏细菌核酸的生命遗传物质,使其无法繁殖,其中最重大的反应是核酸分子内的pyrimidine盐基变成双合体(dimer)。一般是使用低压水银放电灯(杀菌灯)的人工253.7nm波长的紫外线能量。紫外线杀菌灯的原理与日光灯相同,只是灯管内部不涂萤光物质,灯管的材质是采用紫外线穿透率高的石英玻璃。一般紫外线装置依用途分照射型,浸泡型及流水型。
在血液透析稀释用水所使用的紫外线是安放在储水槽到透析机器之间的管路上,也就是所有的透析用水在使用之前都要接受一次紫外线的照射,以达到彻底杀菌的效果。对紫外线的感受性最大的是绿脓菌、大肠菌;相反的,耐受性较大的则是枯草菌芽胞体。因为紫外线消毒法安全,经济,对菌种的选择性少,水质也不会改变,所以已广泛使用这种方法,例如船上的饮用水就常使用这种消毒法。水中的依哥拉菌、巴斯拉菌、沙门氏菌等等全杀光,能潜入水中心360度杀菌,功效等于水面杀菌灯的三倍。能消除水中禄藻,效果显著,使用方便,紫外线杀菌灯适用于:各种大小渔场过滤,水处理,大小型水池,游泳场、温泉。杀菌效率可达99%-99.99%。
紫外线水处理技术--杀菌
紫外线杀菌主要是利用254纳米波长的紫外线光。此波长的紫外线光,即使是在微量的紫外线投射剂量下,也可以破坏一个细胞的生命核心——DNA,因此阻止细胞再生,丧失再生能力使细菌变得无害,从而达到灭菌的效果。象所有其它紫外线应用技术一样,这种系统的规模取决于紫外线的强度(照射器的强度和功率)和接触时间(水、液体、或空气暴露在紫外线下的时间长短)。
紫外线水处理技术--消除臭氧
在工业生产中,臭氧常被用于消毒和净化水体。但是,由于臭氧有极强的氧化能力,水中剩余的臭氧如果不被去除会有可能对下一流程有所影响,因此,通常臭氧处理过的水在进入主要的工艺流程之前必须将水中剩余臭氧去除掉。254纳米波长的紫外线对于破坏剩余臭氧非常有效,它可以把臭氧分解成氧气。尽管不同的系统所需要的规模不同,但通常来讲,一个典型的臭氧消除系统所需的紫外线放射量是一个传统的灭菌消毒系统的三倍左右。
紫外线水处理技术--降低总有机碳量
在很多高技术和实验室装置中,有机物会妨碍高纯度水的生产。有很多方法可以把有机物从水中清除掉,较常用的方法包括使用活性炭和反渗透。波长较短的紫外线(185纳米)也可以有效地降低总有机碳量。波长较短的紫外线具有更多的能量,因此能够分解有机物。紫外线氧化有机的反应过程虽然非常复杂,紫外线水处理技术其主要原理是通过产生氧化能力很强的自由氢氧,将有机物氧化成水和二氧化碳。和臭氧清除系统一样,这种降解有机碳的紫外线系统的紫外线放射量是传统消毒系统的三到四倍。
紫外线水处理技术--降解余氯在市政水处理和供水系统, 加氯消毒是非常必要的。但在工业生产过程中,为了避免对产品产生不良影响,去除水中的余氯却经常是必要的前处理。消除余氯的基该方法有活性炭床和化学处理。活性碳水处理的缺点在于它需要不断再生,而且经常遇到细菌滋生的问题。185纳米和254纳米波长的紫外线都被证实可以有效地破坏余氯和氯氨的化学键。虽然需要巨大的紫外线能量才能发挥作用,但紫外线水处理技术的优点在于此方法不需向水中添加任何药物,不需要储存化学物质,容易维修,而且同时还有杀菌和去除有机物的作用。
特点:
1、脉冲紫外杀菌方式,宽光谱能量强,杜绝微生物的光复活现象
2、采用全不锈钢外壳,使用寿命长
3、灯管可采用手动清洗或自动机械清洗方式
4、全自动控制系统,智能化操作 波长从 200 到 300nm 的紫外线有杀菌作用。 UVC 辐射有很强的杀菌力。它被 DNA 吸收并对其结构进行破坏,从而去除活细胞的活性。微生物如病毒,细菌,酵母菌,真菌被紫外灯在几秒钟之内变得无害。只要辐射强度足够高,紫外线杀菌是一种可靠和环保的方法,因为无需任何化学添加剂。此外,微生物无法对紫外线产生抗体。
在用紫外线杀菌时,可以使用发射波长为 254 nm 的单色谱低压汞灯 ,或是发射宽带光谱覆盖从 200 到 300 nm 的整个范围的中压汞灯,也可以使用只发射波长为 222 nm 的准分子灯。
世纪源紫外灯进行水处理的优点:
对味道和气味没有影响;
无需添加化学物质;
无环境污染;
辐射时间短;
对耐氯的病原体有效;
操作简便;
工艺的维护需求小;
运行成本极低。 生物化学水处理方法利用自然界存生的各种细菌微生物,将废水中有机物分解转化成无害物质,使废水得以净化。生物化学水处理方法可以分活性污泥法、生物膜法、生物氧化塔、土地处理系统、厌氧生物水处理方法。
生物化学水处理法的流程:
原水→格栅→调节池→接触氧化池→沉淀地→过滤→消毒→出水。
1、活性污泥水处理方法
(1)纯氧曝气法。最早是在1968 年由美国建成第一个纯氧曝气的污水处理厂。由于制造氧气的成本不断下降, 纯氧曝气法得到广泛应用。
(2)深水曝气法。增加曝气池的深度可以增加池水的压力, 从而使水中氧的溶解度提高, 氧的溶解速度也相 应增快, 因此, 深水曝气池水中的溶解氧要比普通曝气 池的高, 一般是将池深由原来的4 m 增加到10 m 左右。
(3)射流曝气法。污水和污泥组成的混合液通过射流器, 由于高速射流而产生负压, 从而有大量的空气吸入,空气与混合液进行充分接触, 提高了污水的吸氧率, 从而使处理的污水效率得到提高。
(4)投加化学混凝剂及活性炭法。在活性污泥法的曝气池中投加化学混凝剂及活性炭, 这样相当于在进行生化处理的同时进行物化处理。活性炭又可作为微生物的载体并有协助固体沉降的作用, BOD 及COD 的去除率提高, 使水质净化。(5)生物接触氧化法。这是兼有活性污泥法和生物过滤法特点的一种新型污水处理方法, 以接触氧化池代替一般的曝气池, 以接触沉淀池代替常用的沉淀池。
(6)管道化曝气。此法是使污水在压力管道内进行活性污泥曝气, 同时进行较长距离的输送。由于设备少,投资费用和操作费用均可降低。
曝气:即排流式曝气,使用曝气风机将压缩空气不断地鼓入废水中,保证水中有一定的溶解氧,以维持微生物的生命活动,分解水中有机物,以达到水处理的净化效果。
2、生物膜水处理方法
(1)生物滤池:使废水流过生长在滤料表面的生物膜,通过两面间的物质交换及生化作用,使废水中有机物降解,达到水处理的净化目的。
(2)生物转盘:由固定在一横轴上的若干间距很近的圆盘组成,不断旋转的圆盘面上生长一层生物膜,以达到水处理净化效果。 生物接触氧化:供微生物栖附的填料全部浸于废水中,并采用机械设备向废水中充入空气,使废水中有机物降解,以净化废水。 3、土地处理系统 (1)土地渗滤:利用土壤膜中的微生物和植物根系对污染物的净化能力来进行生活污水处理,同时利用污水中的水、肥来促进农作物、牧草、树木生长。
(2)污水灌溉:这种水处理方法主要目的为灌溉,以充分利用净化后的污水。
4、厌氧生物水处理方法:利用厌氧微生物分解污水中有机物,达到水处理净化目的,同时产生甲烷气、CO2等气体。 如果所取水样内混有较多的微粒杂质,则在四氯化碳萃取后,水和有机溶剂分层处不会出现明显的分液层,但仍可用干的滤纸过滤,因为干滤纸会很快吸干混杂层中的水珠,而使四氯化碳通过滤纸时并不影响测试结果。四氯化碳蒸汽对人体有毒害,在操作时应尽量避免吸入,蒸发烘干时必须在通风橱内进行。

4. 主要水污染物有哪些水处理后要达到什么标准

一、SPR高浊度污水处理系统

SPR污水处理系统首先采用化学方法使溶解状态的污染物从真溶液状态下析出,形成具有固相界面的胶粒或微小悬浮颗粒;选用高效而又经济的吸附剂将有机污染物、色度等从污水中分离出来;然后采用微观物理吸附法将污水中各种胶粒和悬浮颗粒凝聚成大块密实的絮体;再依靠旋流和过滤水力学等流体力学原理,在自行设计的SPR高浊度污水净化器内使絮体与水快速分离;清水经过罐体内自我形成的致密的悬浮泥层过滤之后,达到三级处理的水准,出水实现回用;污泥则在浓缩室内高度浓缩,定期靠压力排出,由于污泥含水率低,且脱水性能良好,可以直接送入机械脱水装置,经脱水之后的污泥饼亦可以用来制造人行道地砖,免除了二次污染。
沿用了许多年的传统的“一级处理”及“二级处理”水处理工艺技术和设备已经难以适应当今的高浊度和高浓度污水的净化处理要求,最新发明的“SPR高浊度污水净化系统”(美国发明专利)将污水的“一级处理”和“三级处理”程序合并设计在一个SPR污水净化器罐体内,在30分钟流程里快速完成。它容许直接吸入悬浮物(浊度)高达500毫克/升至5000毫克/升的高浊度污水,处理后出水的悬浮物(浊度)低于3毫克/升(度);它容许直接吸入CODcr为200毫克/升至800毫克/升的高浓度有机污水,处理后出水CODcr可降为40毫克/升以下。只需用相当于常规的一、二级污水处理厂的工程投资和低于常规二级处理的运行费用,就能够获得三级处理水平的效果,实现城市污水的再生和回用。

最新发明的SPR污水净化技术以其流程简单可靠、投资和运行费用低、占地少、净化效果好的众多优势将为当今世界的城市污水的再利用开创一条新路。城市污水实现再利用之后,为城市提供了第二淡水水源,为城市的可持续发展提供了必不可少的条件,其经济效益和社会效益是不可估量的。

SPR污水处理系统与众不同的技术特点

1、SPR污水净化器内部结构是完全按照混凝机理精确设计的,形成的涡旋流动和各部位恰当的水流速度,使得胶体颗粒之间有最多的碰撞次数,并且有凝聚吸附所需的最佳流速环境。从而在极小的容积内获得了极充分的凝聚效果。这也是常规水工装置无法比拟的。
1、城市生活污水和处理药剂的混合主要是在泵前吸药管道、污水泵叶轮、蛇形反应管和瓷球反应罐的组合作用下完成的,依照紊流速度、混合时间、和水力学结构数据设计,得以十分充分的混合,为取得最佳混凝净化效果和最大限度地节省药剂创造了前提条件。这是过去常规的一级处理和二级处理之水工结构所做不到的。

2、SPR系统选用的絮凝剂,同时也是良好的污泥助滤剂,所以,系统最后排出的污泥浆,其脱水性能良好,可以不另外添加助滤剂,就直接泵入压滤机脱水。泥饼可以制成人行道地砖再利用,不会带来二次污染的问题。它没有传统的生化法产生的污泥含水率很高、脱水性能很差的致命弱点。
3、SPR系统处理城市污水时,采用五种以上污水处理药剂及其最佳配方组合使用,靠化学反应使污水中溶解状态的有机污染物、重金属离子和有害的盐类从水中析出,成为有固相界面的微小颗粒(它包含有污水三级处理的作用)。其中还选用了一种吸附效果很好而价钱又很便宜的吸附剂,以吸附有机污染物和色度。靠消毒剂在30分钟的流程内杀灭细菌和大肠杆菌。靠混凝的物理化学吸附作用将悬浮物及各类杂质凝聚成大而且密实的絮团。这样发挥各药剂的单独作用和它们之间的交联作用的用药方式是与常规的物理化学法不相同的。而且SPR系统使用的组合药剂配方,只能在具有十分精细的水动力学参数设计的SPR污水净化器及其系统里才能充分发挥作用,在常规的水工系统里是无法使用的。

4、SPR系统装置能够依照模拟试验得出的配方,借助大气压力和流量计,十分精确地投加混凝药剂和絮凝药剂,不致因加药过量而造成药剂残留在净化后的出水中,而且动力消耗很少。

5、根据混凝形成的絮团实际状况,准确确定了SPR污水净化器内部的水动力学数据,使得在罐体中上部形成了一个有几十厘米厚的、十分致密的悬浮泥层。所有经过混凝的出水都必须通过此悬浮泥层的过滤,才能升流到罐体上部的清水汇集区。它十分成功地起到了污水高级处理工艺中极为重要的过滤作用。

这个致密的悬浮泥层是由污水中的污泥及混凝药剂形成的絮体本身组成的。随着絮体由下向上运动,使泥层的下表层不断增加、变厚;同时,随着过滤水力学原理形成的罐体的旁路流动,引导着悬浮泥层的上表层不断流入中心接泥桶,上表层不断减少、变薄。这样,悬浮泥层的厚度达到一个动态的平衡。当混凝后的出水由下向上穿过此悬浮泥层时,此絮体滤层靠界面物理吸附和电化学特性及范德华力的作用,将悬浮胶体颗粒、絮体、细菌菌体等等杂质全部拦截在此悬浮泥层上,使出水水质达到三级处理的水平。由于泥层是由絮体组成,致密度高,过滤效率远远高于常规的沙粒层过滤;由于是处于悬浮状态的絮体泥层作滤层,其过滤的水头(阻力)损失非常小,所以动力消耗远远低于常规的砂层过滤、微孔过滤、或反渗透膜过滤;又由于过滤泥层是净化过程中由污水中的污泥自动补充添加,又自动被引走,即过滤泥层自身在不断地更新,过滤泥层总是保持着稳定的厚度,而且总是保持着稳定的物理吸附和电化学吸附性能,因此能获得稳定的过滤效果。而且完全免去了常规系统中必不可少的过滤层的反冲洗以及反冲洗带来的众多麻烦。这种结构和原理与常规的三级污水处理的过滤装置是完全不同的,这里没有价格昂贵的反渗透膜过滤、微孔过滤、或活性炭过滤等装置。所以,投资省、动力消耗小、运行费用低是SPR系统的必然优势。

更多详细信息请参考:www.wokjob.com

5. 水处理设备的施工标准有哪些

1采暖与卫生工程施工及验收规范GBJ242-1982 1983.03.01 2生活饮用水卫生标准GB5749-1985 1986.10.01 3工业循环冷却水设计规范GBJ102-1987 1987.10.01 4工业用软化水除盐设计规范GBJ109-1987 1988.04.01 5地面水环境质量标准GJZB1-1999 2001.01.01 6生活用水水质标准CJ28.1-1989 1989.11.01 7游泳池给水排水设计规范CECS14:89 1989.12.26 8住宅设计规范GB50096-1999 1999.06.01 9建筑中水设计规范CECS30:91 1991.08.31 10建筑给水硬聚氯乙烯管道设计与施工验收规程CECS41:92 1992.06.20 11生活饮用水水源水质标准CJ3000-1993 1994.01.01 12居住小区给水排水设计规范CECS57“94 1994.06.01 13人民防空地下室设计规范GB50038-1994 1995.05.01 14工业循环冷却水处理设计规范GB50050-1995 1995.10.01 15泵站设计规范GB/T50265-1997 1997.09.01 16建筑给水排水设计规范GBJ15-1988 1998.01.01 1997年局部修改 17污水综合排放标准GB8978-1996 1998.01.01 18室外给水设计规范GBJ13-1986 1998.03.01 1997年局部修改 19室外排水设计规范GBJ14-1987 1998.03.01 1997年局部修改 20给水排水管道工程施工及验收规范GB50268-1997 1998.05.01 21建筑排水硬聚氯乙烯管道设计规程CJJ/T29-1998 1999.10.01 22饮用净水水质标准CJ94-1999 2000.03.01 23建筑排水硬聚氯乙烯螺旋管道设计与施工验收规程CECS94:97 2000.11.01 2000年局部修改 24水泵隔振技术规程CECS59-94 25水喷雾灭火系统设计规范GB50219-1995 1995.09.01 26自动喷水灭火系统施工及验收规范GB50261-1996 1997.03.01 27建筑灭火器配置设计规范GBJ140-1990 1997.09.01 28汽车库、修车库、停车场设计防火规范GB50067-1997 1998.12.01 等。

6. 已经达到水处理一级A排放标准的水,还需要进行中水处理吗

不需要,一级A排放标准的水用来浇绿化煤场冲洗可以,但不是回用于版生产或饮用级别的纯水,如权果达到这个级别是需要进行膜(反渗透)的处理的。

吸附方式中较重要者为以活性炭进行吸附,阻隔方法则是将水通过滤材,让体积较大的杂质无法通过,进而获得较为干净的水。另外,物理方法也包括沉淀法,就是让比重较小的杂质浮于水面捞出,或是比重较大的杂质沉淀于下,进而取得。

中水就是指循环再利用的水。其实中水处理离生活并不遥远,许多家庭都习惯把洗衣服和洗菜的水收集起来,用于冲厕所和拖地板,其实这就是最原始、最简单的中水处理办法。



(6)水处理使用规范扩展阅读:

当废水的排放或再用的水质要求较低时,只需用筛除和沉淀等方法去除粗大杂质和悬浮物(常称一级处理);当要求去除有机物时,一般在一级处理后采用生物处理法(常称二级处理)和消毒;

对经过生物处理后的废水,所进行的处理过程统称三级处理或深度处理,如当废水排入的水体需要防止富营养化所进行的去除氮、磷过程即属于三级处理(见水的物理化学处理法)。

当废水作为水源时,成品水水质要求以及相应的加工流程随其用途而定。理论上,现代的水处理技术,可以从任何劣质水制取任何高质量的成品水。

7. 水处理行业都有哪些标准

水环境标准
水环境质量标准
相关信息
GB/T 14848-1993 地下水质量标准 1993-12-30
GB 3097-1997 海水水质标准 1997-12-03
GB 3838-2002 地表水环境质量标准 2002-04-28
GB 5084-1992 农田灌溉水质标准 1992-01-04
GB 11607-1989 渔业水质标准
水污染物排放标准
发布日期 相关信息
GB 26451-2011 稀土工业污染物排放标准 2011-01-24
GB 26131-2010 硝酸工业污染物排放标准 2010-12-30
GB 26132-2010 硫酸工业污染物排放标准 2010-12-30
GB 25468-2010 镁、钛工业污染物排放标准 2010-09-27
GB 25467-2010 铜、镍、钴工业污染物排放标准 2010-09-27
GB 25466-2010 铅、锌工业污染物排放标准 2010-09-27
GB 25465-2010 铝工业污染物排放标准 2010-09-27
GB 25464-2010 陶瓷工业污染物排放标准 2010-09-27
GB 25463-2010 油墨工业水污染物排放标准 2010-09-27
GB 25462-2010 酵母工业水污染物排放标准 2010-09-27
GB 25461-2010 淀粉工业水污染物排放标准 2010-09-27
GB 15580-1995 磷肥工业水污染物排放标准 1995-06-12
GB 15581-1995 烧碱、聚氯乙烯工业水污染排放标准 1995-06-12
GB 8978-1996 污水综合排放标准 1996-10-04
GB 13458-2001 合成氨工业水污染物排放标准 2001-11-12
GB 18486-2001 污水海洋处置工程污染控制标准 2001-11-12
GB 18596-2001 畜禽养殖业污染物排放标准 2001-12-28
GB 14470.1-2002 兵器工业水污染排放标准 火炸药 2002-11-18
GB 14374-1993 航天推进剂水污染物排放与分析方法标准 1993-05-22
GB 14470.2-2002 兵器工业水污染排放标准 火工药剂 2002-11-18
GB 14470.3-2002 兵器工业水污染排放标准 弹药装药 2002-11-18
GB 18918-2002 城镇污水处理厂污染物排放标准 2002-12-24
GB 4287-1992 纺织染整工业水污染物排放标准 1992-05-18
GB 13457-1992 肉类加工工业水污染物排放标准 1992-05-18
GB 13456-1992 钢铁工业水污染物排放标准 1992-05-18
GB 19430-2004 柠檬酸工业污染物排放标准 2004-01-18
GB 19431-2004 味精工业污染物排放标准 2004-01-18
GB 19821-2005 啤酒工业污染物排放标准 2005-07-18
GB 18466-2005 医疗机构水污染物排放标准 2005-07-27
GB 20425-2006 皂素工业水污染物排放标准 2006-09-01
GB 20426-2006 煤炭工业污染物排放标准 2006-09-01
GB 21523-2008 杂环类农药工业水污染物排放标准 2008-04-02
GB 21900-2008 电镀污染物排放标准 2008-06-25
GB 21901-2008 羽绒工业水污染物排放标准 2008-06-25
GB 21902-2008 合成革与人造革工业污染物排放标准 2008-06-25
GB 21903-2008 发酵类制药工业水污染物排放标准 2008-06-25
GB 21904-2008 化学合成类制药工业水污染物排放标准 2008-06-25
GB 21905-2008 提取类制药工业水污染物排放标准 2008-06-25
GB 21906-2008 中药类制药工业水污染物排放标准 2008-06-25
GB 21907-2008 生物工程类制药工业水污染物排放标准 2008-06-25

GB 21908-2008 混装制剂类制药工业水污染物排放标准 2008-06-25
GB 21909-2008 制糖工业水污染物排放标准 2008-06-25
GB 3544-2008 制浆造纸工业水污染物排放标准 2008-06-25
GB 4914-1985 海洋石油开发工业含油污水排放标准 1985-01-18
GB 4286-1984 船舶工业污染物排放标准 1984-05-13
GB 3552-1983 船舶污染物排放标准 1983-04-09

相关检测规范、方法标准(水)
GB 13196-1991 水质 硫酸盐的测定 火焰原子吸收分光光度法 1991-08-31
GB/T 17133-1997 水质 硫化物的测定 直接显色分光光度法 1997-12-08
GB/T 14378-1993 水质 二乙烯三胺的测定 水杨醛分光光度法 1993-05-22
GB/T 14552-1993 水和土壤质量 有机磷农药的测定 气相色谱法 1993-07-19
GB/T 14581-1993 水质 湖泊和水库采样技术指导 1993-08-14
GB/T 14671-1993 水质 钡的测定 电位滴定法 1993-09-18
GB/T 14672-1993 水质 吡啶的测定 气相色谱法 1993-09-18
GB/T 14673-1993 水质 钒的测定 石墨炉原子吸收分光光度法 1993-09-18
GB/T 15503-1995 水质 钒的测定 钽试剂(BPHA)萃取分光光度法 1995-03-15
GB/T 15504-1995 水质 二硫化碳的测定 二乙胺乙酸铜分光光度法 1995-03-15
GB/T 15505-1995 水质 硒的测定 石墨炉原子吸收分光光度法 1995-03-15
GB/T 15507-1995 水质 肼的测定 对二甲氨基苯甲醛分光光度法 1995-03-15
GB/T 15440-1995 环境中有机污染物遗传毒性检测的样品前处理规范 1995-03-25
GB/T 15441-1995 水质 急性毒性的测定 发光细菌法 1995-03-25
GB/T 15959-1995 水质 可吸附有机卤素(AOX)的测定 微库仑法 1995-12-21
GB/T 16488-1996 水质 石油类和动植物油的测定 红外光度法 1996-08-01
GB/T 16489-1996 水质 硫化物的测定 亚甲基蓝分光光度法 1996-08-01
GB/T 17130-1997 水质 挥发性卤代烃的测定 顶空气相色谱法 1997-12-08
GB/T 17132-1997 环境 甲基汞的测定 气相色谱法 1997-12-08
GB/T17378.1-1998 海洋监测规范 第1部分:总则 1998-06-22
GB/T 17131-1997 水质 1,2-二氯苯、1,4-二氯苯、1,2,4-三氯苯的测定 气相色谱法 1997-12-08
GB/T 14377-1993 水质 三乙胺的测定 溴酚蓝分光光度法 1993-05-22
GB/T 14376-1993 水质 偏二甲基肼的测定 氨基亚铁氰化钠分光光度法 1993-05-22
GB/T 14375-1993 水质 一甲基肼的测定 对二甲氨基苯甲醛分光光度法 1993-05-22
GB/T 14204-1993 水质 烷基汞的测定 气相色谱法 1993-02-23
GB/T 13902-1992 水质 硝化甘油的测定 示波极谱法 1992-12-02
GB/T 13901-1992 水质 二硝基甲苯的测定 示波极谱法 1992-12-02
GB/T 13900-1992 水质 黑索今的测定 分光光度法 1992-12-02
GB/T 13899-1992 水质 铁(II、III)氰络合物的测定 三氯化铁分光光度法 1992-12-02
GB/T 13898-1992 水质 铁(II、III)氰络合物的测定 原子吸收分光光度法 1992-12-02
GB/T 13897-1992 水质 硫氰酸盐的测定 异烟酸-砒唑啉酮分光光度法 1992-12-02
GB/T 13896-1992 水质 铅的测定 示波极谱法 1992-12-02
GB/T 13266-1991 水质 物质对蚤类(大型蚤) 急性毒性测定方法 1991-09-14
GB/T 13195-1991 水质 水温的测定 温度计或颠倒温度计测定法 1991-08-31
GB/T 13194-1991 水质 硝基苯、硝基甲苯、硝基氯苯、二硝基甲苯的测定 气相色谱法 1991-08-31
GB/T 13193-1991 水质 总有机碳(TOC)的测定 非色散红外线吸收法 1991-08-31
GB/T 13192-1991 水质 有机磷农药的测定 气相色谱法 1991-08-31
GB 13200-1991 水质 浊度的测定 1991-08-31
GB 13199-1991 水质 阴离子洗涤剂的测定 电位滴定法 1991-08-31
GB/T 11914-1989 水质 化学需氧量的测定 重铬酸盐法 1989-12-25
GB/T 11913-1989 水质 溶解氧的测定 电化学探头法 1989-12-25
GB/T 11912-1989 水质 镍的测定 火焰原子吸收分光光度法 1989-12-25
GB/T 11911-1989 水质 铁、锰的测定 火焰原子吸收分光光度法 1989-12-25
GB/T 11910-1989 水质 镍的测定 丁二酮肟分光光度法 1989-12-25
GB/T 11909-1989 水质 银的测定 3,5-Br2-PADAP分光光度法 1989-12-25
GB/T 11908-1989 水质 银的测定 镉试剂2B分光光度法 1989-12-25
GB/T 11907-1989 水质 银的测定 火焰原子吸收分光光度法 1989-12-25
GB/T 11905-1989 水质 钙和镁的测定 原子吸收分光光度法 1989-12-25
GB/T 11904-1989 水质 钾和钠的测定 火焰原子吸收分光光度法 1989-12-25
GB/T 11903-1989 水质 色度的测定 1989-12-25
GB/T 11902-1989 水质 硒的测定 2,3-二氨基萘萤光法 1989-12-25
GB/T 11906-1989 水质 锰的测定 高碘酸钾分光光度法 1989-12-25
GB 11901-1989 水质 悬浮物的测定 重量法 1989-12-25
GB 11900-1989 水质 痕量砷的测定 硼氢化钾-硝酸银分光光度法 1989-12-25
GB 11899-1989 水质 硫酸盐的测定 重量法 1989-12-25
GB 11896-1989 水质 氯化物的测定 硝酸银滴定法 1989-12-25

8. 水处理设计参照的标准依据有哪些

一、规划抄审批文件袭;
二、业主的设计委托要求;
三、国家相关的法律法规要求;
四、规范标准的要求;
五、其它方面:如现场的实际情况、当地的材料价格、目前与设计相关的新技术、新方法、新材料及其应用情况等等。
其中,规范是你最常用到的,假如是高层住宅设计的建筑设计,你可能要用到:《住宅设计规范》、《住宅建筑规范》、《民用建筑设计通则》、《人民防空地下室设计规范》、《建筑制图标准》、《房屋建筑制图统一标准》、《高层民用建筑设计防火规范》、《人民防空工程设计防火规范》、《建筑采光设计标准》、《屋面工程技术规范》、《住宅建筑模数协调标准》、《建筑楼梯模数协调标准》、《建筑灭火器配置设计规范》、《建筑地面设计规范》、《建筑物防雷设计规范》、《建筑工程建筑面积计算规范》、《民用建筑隔声设计规范》、《民用建筑节能设计标准》、《住宅建筑技术经济评价标准》、《住宅建筑门窗应用技术规范》、《住宅性能评定技术标准》、《民用建筑热工设计规范》、《混凝土普通砖和装饰砖》等等。

9. 水处理相关法律法规与标准规范

法律法来规就搞不太清楚,自呵呵
我知道的标准有《生活饮用水卫生标准》(GB5749-2006)
《生活饮用水卫生规范》(2001)
《瓶(桶)装饮用纯净水卫生标准》(GB17324-2003)
《瓶(桶)装饮用水卫生标准》(GB19298-2003)
还有矿原水、水处理器及污水的标准等

阅读全文

与水处理使用规范相关的资料

热点内容
电子除垢仪功能 浏览:375
饮水机的出水口多少钱 浏览:919
什么饮水机最流行 浏览:998
树脂镀膜眼镜 浏览:39
解放j61柴油滤芯换什么的 浏览:356
mc9空气净化器怎么选 浏览:447
贵州工业废水氨氮超标如何处理 浏览:63
脱色剂印染污水怎么处理 浏览:734
纯水用什么盐做水泥 浏览:384
力斯净水器性价比怎么样 浏览:212
树脂粘土bjd娃娃 浏览:591
光化树脂牙变黄 浏览:290
半透膜表面积越大 浏览:274
污水入渗量 浏览:196
污水处理系统什么意思 浏览:921
718gts空气滤芯怎么拆 浏览:680
废水处理的是怎么进行的英语 浏览:24
煤灰渣场废水挥发酚 浏览:179
创星外置过滤桶CF800价格 浏览:348
小区太多提升泵太吵 浏览:224