导航:首页 > 废水知识 > 某铜铅锌多金属矿选厂废水回用设计

某铜铅锌多金属矿选厂废水回用设计

发布时间:2022-09-01 01:35:06

① 任务贵金属分析方法的选择

任务描述

贵金属元素由于其性质的特殊性,在样品溶解、分离富集等方面与一般元素有很大的不同之处。通过本次任务的学习,加深对贵金属元素性质的了解,能根据矿石的特性、分析项目的要求及干扰元素的分离等情况正确选择分离和富集方法,学会基于被测试样中贵金属元素含量的高低不同以及对分析结果准确度的要求不同而选用适当的分析方法,能正确填写样品流转单。

任务分析

一、贵金属在地壳中的分布、赋存状态及其矿石的分类

贵金属元素是指金、银和铂族(铑、钌、钯、锇、铱、铂)共8 种元素,在元素周期表中位于第五、六周期的第Ⅷ族和第IB副族中。由于镧系收缩使得第二过渡元素(钌、铑、钯、银)与第三过渡元素(锇、铱、铂、金)的化学性质相差很小,因此贵金属元素的化学性质十分相近。

铂族元按其密度不同,分为轻重两族。钌、铑、钯为轻族;锇、铱、铂为重族。

金在自然界大都以自然金形式存在,也能和银、铜和铂族元素形成天然合金。根据最新研究成果,金的地壳丰度值仅为1 ng/g。金矿床中伴生的有用矿产很多。在脉金矿或其他原生金矿床中,常伴生有银、铜、铅、锌、锑、铋和钇等;在砂金矿床中,常伴生有金红石、钛铁矿、白钨矿、独居石和刚玉等矿物。此外,在有色金属矿床中,也常常伴生金。金的边界品位一般为1 g/t。一般自然金里的金含量大于80%,还有少量的铜、铋、银、铂、锑等元素。

银在地壳中的平均含量为1×10-7,在自然界多以硫化物形式存在,单独存在的辉银矿(Ag2S)很少遇见,而且主要伴生在铜矿、铅锌矿、铜铅锌矿等多金属硫化物矿床和金矿床中。在开采和提炼铜、铅、锌、镍和金主要组分时,可顺便回收银。一般含银品位达到5~10 g/t即有工业价值。

铂族元素在自然界分布量很低,铂在地壳中的平均丰度仅为5×10-9,钯为5×10-8。它们和铁、钴、镍在周期表上同属第Ⅷ族,因此也与铁、钴、镍一样,具有亲硫性。铂族元素常与铁元素共生,它们主要富集在与超基性岩和基性岩有关的铜镍矿床、铬铁矿床和砂矿床内。铜镍矿床中所含铂族元素以铂、钯为主,其次是铑、钌、锇、铱。铬铁矿中所含铂族元素以锇、钌、铱为主。铂族元素之间,以及它们与铁、钴、镍、铜、金、银、汞、锡、铅等元素之间能构成金属互化物。在自然界存在自然铂和自然钯。自然铂含铂量为84%~98%,其余为铁,及少量钯、铱、镍、铜等。自然钯含钯量为86.2%~100%,同时含有少量铂、铱、铑等。自然钌很少见,我国广东省发现的自然钌中含有91.1%~100% 的钌。铂族元素还可以与非金属性较强的第Ⅵ主族元素氧、硫、硒、碲及第V主族元素砷、锑、铋等组成不同类型的化合物。目前已知的铂族元素矿物有120多种。在一些普通金属矿物(如黄铜矿、磁黄铁矿、镍黄铁矿、黄铁矿、铬铁矿等)以及普通非金属矿物(如橄榄石、蛇纹石、透辉石等)中也可能含有微量铂族元素。

铂族元素的共同特性是具有优良的抗腐蚀性、稳定的热电性、高的抗电火花蚀耗性、高温抗氧化性能以及良好催化作用,故在工业上应用很广泛,特别是在国防、化工、石油精炼、电子工业上不可缺少的重要原料。

二、贵金属的分析化学性质

(一)化学性质

1.金

金具有很高的化学稳定性,即使在高温条件下也不与氧发生化学作用,这大概就是在自然界中能够以自然金甚至是以微小金颗粒存在的重要原因。金与单一的盐酸、硫酸、硝酸和强碱均不发生化学反应。金能够溶解在盐酸和硝酸的混合酸中,其中在王水中的溶解速率是最快的。用于分析化学中的金标准溶液通常就是以王水溶解纯金来制备,但需要用盐酸反复蒸发除去多余的硝酸或氮氧化合物。在有氧化剂存在的盐酸中,如 H2O2、KMnO4、KClO3、KBrO3、KNO3和溴水等,金也能够很好被溶解,这主要是由于盐酸与氧化剂相互作用产生新生态的氯气同金发生反应所致。

2.银

银有较高的化学稳定性,常温下不与氧发生化学作用,在自然界同样能够以元素形态存在。当与其他元素发生化学反应时,通常形成正一价的银化合物。在某些条件下也可生成正二价化合物,例如AgO和AgF2,但这些化合物不稳定。

金属银易溶于硝酸生成硝酸银,也易溶于热的浓硫酸生成硫酸银,而不溶于冷的稀硫酸中。银在盐酸和王水中并不会很快溶解,原因在于初始反应生成的Ag-以AgCl沉淀沉积在金属表面而形成一层灰黑色的保护膜,阻止了银的进一步溶解。但是如果在浓盐酸中加入少量的硝酸,银的溶解是比较快的。这是因为形成的 AgCl 又生成可溶性的[AgCl2-配离子。这一反应对含银的贵金属合金材料试样的溶解是很有用的。银与硫接触时,会生成黑色硫化银;与游离卤作用生成相应的卤化物。银饰品在空气中长久放置或佩戴后失去光泽常常与其表面上硫化物及其氯化物的形成有关。在有氧存在时,银溶解于碱金属氰化物而生成[Ag(CN)2-配离子。银在氧化剂参与下,如有Fe3+时也能溶于酸性硫脲溶液而形成复盐。

3.铂族金属

铂族金属在常温条件下是十分稳定的,不被空气腐蚀,也不易与单一酸、碱和很多活泼的非金属元素反应。但是在确定的条件下,它们可溶于酸,并同碱、氧和氯气相互作用。铂族金属的反应活性在很大程度上依赖于它们的分散性以及同其他元素,即合金化的元素形成中间金属化合物的能力。

就溶解能力而言,铂族金属粉末较海绵状的易于溶解,而块状金属的溶解是非常缓慢的。与无机酸的反应,除钯外,铂族金属既不溶于盐酸也不溶于硝酸。钯与硝酸反应生成Pd(NO32。海绵锇粉与浓硝酸在加热条件下反应生成易挥发的OsO4。钯、海绵铑与浓硫酸反应,生成相应的PdSO4、Rh2(SO43。锇与热的浓硫酸反应生成OsO4或OsO2。铂、铱、钌不与硫酸反应。王水是溶解铂、钯的最好溶剂。但王水不能溶解铑、铱、锇和钌,只有当它们为高分散的粉末和加热条件下可部分溶解。在有氧化剂存在的盐酸溶液中(如H2O2、Cl2等)于封管的压力条件下,所有的铂族金属都能被很好地溶解。

通常,碱溶液对铂族金属没有腐蚀作用,但当加入氧化剂时则有较强的相互作用。如OsO4就能够在碱溶液中用氯酸盐氧化金属锇来获得。在氧化剂存在条件下,粉末状铂族金属与碱高温熔融,反应产物可溶于水(对于Os和Ru)、盐酸、溴酸和盐酸与硝酸的混合物中,由此可将难溶的铂族金属转化为可溶性盐类。高温熔融时,常用的混合熔剂有:NaOH+NaNO3(或NaClO3)、K2CO3+KNO3、BaO2+BaNO3、NaOH+Na2O2和Na2O2等。利用在硝酸盐存在条件下的NaOH或KOH的熔融、利用Na2O2的熔融以及利用BaO2的高温烧结方法通常被认为是将铂族金属如铑、铱、锇、钌转化成可溶性化合物的方便途径。

在碱金属氯化物存在条件下,铂族金属的氯化作用同样是将其转化成可溶性化合物的最有效途径之一。

(二)贵金属分析中常用的化合物和配合物

1.贵金属的卤化物和卤配合物

贵金属的卤化物或卤配合物是贵金属分析中最重要的一类化合物,尤其是它们的氯化物或氯配合物。因为贵金属分析中大多数标准溶液的制备主要来自这些物种;铂族金属与游离氯反应,即氯化作用,被广泛用于分解这些金属;更重要的是在铂族金属的整个分析化学中几乎都是基于在卤配合物水溶液中所发生的反应,包括分离和测定它们的方法。

铂族金属配合物种类繁多,能与其配位的除卤素外,还有含O、S、N、P、C、As等配位基团,常见的有

NH3、NO、NO2、PH3、PF3、PCl3、PBr3、AsCl3、CO、CN-和多种含S、N、P的有机基团。贵金属的简单化合物在分析上的重要性远不如其配合物。对于金或银虽然形成某些稳定配合物,但无论其种类或数量都无法与铂族金属相比拟。

2.贵金属氧化物

金、银的氧化物在分析上并不重要。金的氧化物有Au2O3、Au2O,Au2O很不稳定,与水接触分解为Au2O3和Au。用硝酸汞、乙酸盐、酒石酸盐等还原剂还原Au(Ⅲ)可得到Au2O。Au(Ⅲ)与NaOH作用时,生成Au(OH)3沉淀。通常,Au(OH)3以胶体形态存在,所形成的胶粒直径一般为80~200 nm。

向银溶液中小心加入氨溶液时可形成白色的氢氧化银。当以碱作用时则有棕色的氧化银析出。氧化银呈碱性,能微溶于碱并生成[Ag(OH )2-;在300℃条件下分解为 Ag和O2

铂族金属及其化合物在空气中灼烧可形成各种组分的氧化物。由于许多氧化物不稳定,或者稳定的温度范围比较窄,或者某些氧化物具有挥发性,因此在用某些分析方法测定时要十分注意。例如,一些采用重量法的测定需在保护气氛中灼烧成金属后称重。Os(Ⅷ)、Ru(Ⅷ)的氧化物易挥发,这也是与其他贵金属分离的最好方法。铂族金属对氧的亲和力顺序依次为:Pt<Pd<Ir<Ru<Os。铂的亲和力最差,但粉末状的铂能很好与氧结合。贵金属的氧化物在溶液中多呈水合氧化物形式存在。

3.贵金属的硫化物

形成硫化物是贵金属元素的共性,但难易程度不同。其中IrS生成较难,而PdS、AgS较容易形成。贵金属硫化物均不溶于水,其溶解度按下列顺序依次减小:Ir2S3、Rh2S3、PtS2、RuS2、OsS2、PdS、Au2S3、Ag2S。在贵金属的氯化物或氯配合物(银为硝酸盐)溶液中,通入H2S气体或加入Na2S溶液可得到相应的硫化物沉淀。

4.贵金属的硝酸盐和亚硝酸盐化合物或配合物

在贵金属的硝酸盐中,AgNO3是最重要的化合物。分析中所用的银标准溶液都是以AgNO3为初始基准材料配制的。其他贵金属的硝酸盐及硝基配合物不稳定,易水解,在分析中较少应用。铂族金属的亚硝基配合物是一类十分重要的配合物。铂族金属的氯配合物与NaNO2在加热条件下反应,生成相应的亚硝基配合物。这些配合物很稳定,在pH 8~10的条件下煮沸也不会发生水解。利用这种性质可进行贵金属与贱金属的分离。

三、贵金属矿石矿物的取样和制样

含有贵金属元素的样品在分析之前必须具备两个条件:①样品应是均匀的;②样品应具有代表性。否则,无论分析方法的准确度如何高或分析人员的操作如何认真,获得的分析结果往往是毫无意义的。此外,随着科学技术的发展,贵金属资源被广泛应用于各工业部门和技术领域,由于贵金属资源逐渐减少,供需矛盾日渐突出,其价格日趋昂贵,因此对分析结果准确性的要求比其他金属要高。

贵金属矿石矿物的取样、加工是为了得到具有较好代表性和均匀性的样品,使所测试样品中贵金属的含量能够较真实地反映原矿的情况,避免取样带来的误差。贵金属在自然界中的赋存状态很复杂,又由于贵金属元素的含量较低,故分析试样的取样量必须满足两个因素:①分析要求的精度;②试样的均匀程度,即取出的少量试样中待测元素的平均含量要与整个分析试样中的平均含量一致。实际上贵金属元素在矿石中的分布并不均匀,往往集中在少数矿物颗粒中,要达到取出的试样与总试样完全一致的要求是很难做到的。因此,只能在满足所要求的分析误差范围内进行取样,增加取样量,分析误差可能会减小。试样中贵金属矿物的破碎粒度与取样量有很大关系,粒度愈大,试样愈不均匀,取样量也应愈大,因此加工矿物试样时应尽可能磨细。为了达到一定的测量精度,除满足上述取样量的条件外,还应满足测定方法的灵敏度。

一般的矿样,可按常规方法取样、制样。金多以自然金的形式存在于矿石矿物中,它的粒度变化较大,大的可达千克以上,而微小颗粒甚至在显微镜下都难以分辨。金的延展性很好,它的破碎速度比脉石的破碎速度慢,因此对未过筛的和残留在筛缝中的样品部分绝对不能弃之,此部分大多含有自然金。金矿石的取样与加工一般按切乔特经验公式进行。对于比较均匀的样品,K取值为0.05,一般金矿石样品,K取值为0.6~1.5。

对于较难加工的金矿石,在棒磨之前加一次盘磨碎样并磨至0.154mm,因为棒磨机的作用是用钢棒冲击和挤压岩石再磨细金粒,能满足一般金粒较细的试样所需的破碎粒度。含有较粗金粒的试样,用棒磨机只能使金粒压成片状或带状,达不到破碎的目的。而盘磨机是利用搓压的作用力使石英等硬度较大的物料搓压金粒来达到破碎的目的。

在金矿样的加工过程中,应注意以下几个方面:

(1)如果矿样量在1kg以下,碎样时应磨至200目。一半送分析用,一半作为副样。如果矿样量在1 kg以上,按加工流程进行破碎,作基本分析的样品重量不应少于500~600 g。

(2)若样品中含有明金时,应增设80目过筛和筛上收金的过程。

(3)对于1∶20万区域化探水系沉淀物样品,应将原分析样混匀后分取40g,用盘磨粉碎至200目,混匀后作为金的测定样。

(4)在过筛和缩分过程中,任何时间都不能弃去筛上物和损失样品。

(5)所使用的各种设备每加工完一个样品后必须彻底清扫干净,并认真检查在缝隙等处有无金粒残留。

(6)矿样经棒磨机粉碎至200 目后,送分析之前必须再进行混匀,以防止因金的密度大在放置时间过久或运送过程中金下沉而导致样品不均匀。

由于金在矿石中的不均匀性,要制取有代表性、供分析用的矿样,应尽可能地增大矿石取样量。在磨样过程中,对分离出粗粒的金应分别处理。其他贵金属矿样的取样与加工要比金矿石的容易。

为了获得准确的分析结果,贵金属试样在分析之前,取样与样品的加工,试样的分解将是整个分析工作中的重要环节。另一方面,由于在大多数的分析方法中,获得的分析结果常常是通过与已知的标准物质的含量,包括标准溶液和标准样品进行比较获得的,因此,准确的分析结果同样也依赖于贵金属标准溶液的准确制备。

四、贵金属矿样的样品处理技术

贵金属矿石矿物的分解有其特殊性,是分析化学中的难题之一。因为多数贵金属具有很强的抗酸、碱腐蚀的特点,常用的无机溶剂和分解技术难以分解。

含铑、铱和钌等试样,在常温、常压,甚至较高温度、压力下用王水也难以分解。

砂铂矿多由超基性岩体中的铬-铂矿风化次生而成,其密度及硬度极高、化学惰性极强,在高温、高压条件下溶解也较慢。

锇铱矿是以锇和铱为主的天然合金,晶格类型的差别较大(铱为等轴晶系,锇为六方晶系)。含锇高时称为铱锇矿,呈钢灰色至亮青铜色;含铱高时称为锇铱矿,呈明亮锡白色。它们的密度都很大,性脆且硬,含铱、钌高时磁性均较强,锇高时相反。化学性质也都很稳定,于王水中长时间煮沸难以被分解。

为了分解这些难溶物料,需要引入一些特殊的技术,如焙烧预处理技术、碱熔融技术、加压酸消解技术等。

(一)焙烧预处理方法

贵金属在矿石中除以自然金、自然铂等形式存在外,还以各种金属互化物形式存在,并常伴生在硫化铜镍矿和其他硫化矿中。用王水分解此类矿样时,由于硫的氧化不完全,易产生元素硫,并吸附金、铂、钯等,使测定结果偏低,尤其对金的吸附严重,故需要先进行焙烧处理,使硫氧化为SO2而挥发。焙烧温度的控制是很重要的,温度过低,分解不完全;温度过高,会烧结成块,影响分析测定。常用的焙烧温度为600~700℃,焙烧时间与试样量和矿石种类有关,一般为1~2h。不同硫化矿的焙烧分解情况不同,其中黄铁矿最易分解,其次是黄铜矿,最难分解的是方铅矿。以下是几种贵金属矿石的焙烧处理方法。

(1)含砷金矿的焙烧。先将矿石置于高温炉中,升温至400℃恒温2h,使大部分砷分解、挥发,继续升温至650℃,使硫和剩余的少量砷完全挥发。于矿石中加入NH4NO3、Mg(NO32等助燃剂,可提高焙烧效率,缩短焙烧时间。如果金矿中砷的含量在0.2% 以上,且砷含量比金含量高800倍的条件下焙烧时,会生成砷和金的一种易挥发的低沸点化合物而使金损失,此时的焙烧温度应控制在650℃以下。当金矿石中硅含量较高时,加入一定量NH4HF2可分解SiO2

(2)含银硫化矿的焙烧。先将矿石置于高温炉中,升温至650℃,恒温2h,使硫完全挥发。当矿石中硅含量较高时,即使加入NH4HF2,由于焙烧过程中生成难溶的硅酸银,使测定结果严重偏低。为此,用酸分解焙烧试样时,加入HF以分解硅酸银,可获得满意的结果。

(3)含铂族元素硫化矿的焙烧。与含金硫化矿的焙烧方法相同。

(4)含锇硫化矿的焙烧。试样进行焙烧时,易氧化为OsO4形式挥发损失,于焙烧炉中通入氢气,硫以H2S形式挥发;或按10∶1∶1∶1比例将矿石、NH4Cl、(NH42CO3、炭粉混合后焙烧,可加速硫的氧化,对锇起保护作用。

(二)酸分解法

贵金属物料的酸分解法是最常用的方法,操作简便,不需特殊设备。常用的溶剂是王水,它所产生的新生态氯具有极强的氧化能力,是溶解金矿和某些铂族矿石的有效试剂。溶解金时可在室温下浸泡,加热使溶解加速。溶解铂、钯时,需用浓王水并加热。此外,分解金矿的试剂很多,如HCl-H2O2、HCl-KClO3、HCl-Br2等。被硅酸盐包裹的矿物,应在王水中加少量HF或其他氟化物分解硅酸盐。酸分解方法不能用于含铑、铱矿石的分解,此类矿石只有在高温、高压的特定条件下强化溶解才能完全溶解。

(三)碱熔法

固体试剂与试样在高温条件下熔融反应可达到分解的目的。最常用的是过氧化钠熔融法,几乎可以分解所有含贵金属的矿石,但对粗颗粒的锇铱矿很难分解完全,常需要用合金碎化后再碱熔才能分解完全。本法的缺点是引入了大量无机盐,对坩埚腐蚀严重,又带入了大量铁、镍。使用镍坩埚还能带入微量贵金属元素。此法多用于无机酸难以分解的矿石。

五、贵金属元素的分离和富集方法

贵金属元素在岩石矿物中的含量较低,因此,在测定前对其进行分离富集往往是必要且关键的一步。贵金属元素的分离和富集有两种方法;一种是干法分离和富集——火法试金;一种是湿法分离和富集——将样品先转为溶液,然后采用沉淀、吸附、离子交换、萃取、色层等方法进行分离富集贵金属与贱金属分离,主要有共沉淀分离法、溶剂萃取法、离子交换分离法、活性炭分离富集法、泡沫塑料富集法及液膜分离富集法等。目前应用最广泛的是火试金法、泡沫塑料法、萃取法。具体方法详见任务2、任务3、任务4的相关内容。

六、贵金属元素的测定方法

(一)化学分析法

1.重量法测定金与银

将铅试金法得到的金、银合粒,称其总量。经“分金后”得到金粒,称重。两者重量之差为银的重量。

为了减少金在灰吹中的损失和便于分金,在熔炼时通常加入毫克量的银。如果试样中含金量较高,加入的银量必须相应增加,以达金量的3倍以上为宜。低于此数时,分金不完全,且银不能完全溶解,影响测定结果。

在实际应用中,不同含金量可按表7-1所示的银与金的比例加入银,可满意地达到分金效果。

表7-1 银与金的比例

如合粒中含银量低、金量高时,可称取两份试样,一份不加银,所得合粒称重,为金银合量。另一份加银,分金后测金。二者重量之差为银量。亦可先将金、银合粒称重,再加银灰吹,然后进行分金,测得金量。差减法得银量。

分金可采用热硝酸(1∶7),此时合粒中的银、钯以及部分铂溶解,而金不溶并呈一黑色的整粒留下来。如果留的下金粒带黄色,则表示分金不完全,应当取出,补加适量银,包在铅片中再灰吹,然后分金。

用硝酸(1∶7)分金后,金粒中还残留有微量银,可再用硝酸(1∶1)加热数分钟除去。

2.滴定法

在贵金属元素的滴定法中,主要利用贵金属离子在溶液中进行的氧化还原反应、形成稳定配合物反应、生成难溶化合物沉淀或被有机试剂萃取的化合反应。被滴定的贵金属离子本身多数是有颜色的,而且存在着复杂的化学形态和化学平衡反应,故导致滴定法的应用有一定的局限性。

金的滴定法主要依据氧化还原反应,包括碘量法、氢醌法、硫酸铈滴定法、钒酸铵滴定法及少数催化滴定法和原子吸收-碘量法联合的分析方法。其中碘量法和氢醌法在我国应用最普遍,它们与活性炭或泡塑吸附分离联用,方法的选择性较好,且可测得微量至常量的金,已成为经典的测定方法或实际生产中的例行测定规程。由于样品的成分的复杂性,故用活性炭吸附分离-碘量法测定金时,还应针对试样的特殊性采取相应的预处理手段。例如,含铅、银高的试样,可加入5~7g硫酸钠,煮沸使二氯化铅转化为硫酸铅沉淀过滤除去,银用盐酸溶液(2+98)洗涤,可避免氯化银沉淀以银的氯配离子形式进入溶液中而被活性炭吸附。含铁、铅、铜、锌的试样,在滴定时加入0.5~1 g氟化氢铵可掩蔽50mg铁、铅,3~5mL的EDTA溶液(25g/L)可掩蔽大量铅、铜、锌,但需立即加入碘化钾,以避免Au(Ⅲ)被还原为Au(Ⅰ)。含硫高时,于马弗炉中500℃温度下焙烧3h后再于650~700℃恒温1~2h,可避免金的分析结果偏低。含锑的试样,用氢氟酸蒸发2次,可消除其对金的影响。试样中含铂和钯时,会与碘化钾形成红色和棕色碘化物,且消耗硫代硫酸钠,可于滴定时加入5mL硫氰酸钾溶液(250g/L),使之形成稳定的配合物而消除干扰。用碘量法测定金的误差源于多种因素:金标准溶液的稳定性、活性炭吸附金的酸度、水浴蒸发除氮氧化物的条件、淀粉指示剂用量、滴定前碘化钾的加入量、分取试液和滴定液的浓度、标定量的选择等,因此应予以注意。

关于银的化学滴定法,应用最普遍的是硫氰酸钾(铵)和碘化钾沉淀滴定法,其次是硫代硫酸钠返滴定法、硫酸亚铁氧化还原滴定法和二硫腙萃取滴定法等。

硫氰酸钾滴定法测定银:将试金所得的金、银合粒用稀硝酸溶解其中的银,以硫酸铁铵为指示剂,用硫氰酸钾标准溶液滴定至淡红色,即为终点。其主要反应式如下:

Ag+KCNS→K+AgCNS↓

Fe3++3KCNS→3K+Fe(CNS)3

在铂族金属的滴定中,以莫尔盐还原Pt(Ⅳ),用钒酸铵返滴定法或二乙基二硫代氨基甲酸钠滴定法的条件苛刻,选择性差,不能用于组成复杂的试样分析中。于pH为3~4酸性介质中,长时间煮沸的条件下,Pt(Ⅳ)能与EDTA定量络合,在乙酸-乙酸钠缓冲介质中,用二甲酚橙作指示剂,乙酸锌滴定过量的EDTA,可测定5~30mg Pd。利用这一特性,采用丁二肟分离钯,用酸分解滤液中的丁二肟,可测定含铂、钯的冶金物料中的铂。Pd(Ⅱ)的滴定测定方法较多,常见的是利用形成难溶化合物沉淀和稳定配合物的反应。在较复杂的冶金物料中,采用选择性试剂掩蔽钯,二甲酚橙作指示剂,锌(铅)盐滴定析出与钯等量的EDTA测定钯的方法较多。

(二)仪器分析法

贵金属在地壳中的含量很低,因此各种仪器分析方法在贵金属的测定中获得了非常广泛的应用。主要有可见分光光度法、原子吸收光谱法、发射光谱法、电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法等。具体的应用请参阅本项目的任务2、任务3、任务4的相关内容。

七、贵金属矿石的分析任务及其分析方法的选择

贵金属矿石的分析项目主要是金、银、铑、钌、钯、锇、铱、铂含量的测定,除精矿外,一般矿石中贵金属的含量都比较低,因此,在选择分析方法时,灵敏度是需要重点考虑的因素。一般,银的测定主要用原子吸收光谱法和可见分光光度法,且10 g/t以上含量的不需要预富集,可直接测定。可见分光光度法、原子吸收光谱法、电感耦合等离子体原子发射光谱法、电感耦合等离子体质谱法在金的测定上都获得了广泛的应用。金的测定一般都需要采取预富集手段。铑、钌、钯、锇、铱、铂在矿石中含量甚微,因此对方法的灵敏度要求较高。目前,电感耦合等离子体质谱法在铑、钌、钯、锇、铱、铂的测定的应用已经越来越广泛和成熟。另外光度法、电感耦合等离子体发射光谱法也在铑、钌、钯、锇、铱、铂的测定中发挥了重要作用。

技能训练

实战训练

1.学生实训时按每组5~8人分成几个小组。

2.每个小组进行角色扮演,利用所学知识并上网查询相关资料,完成贵金属矿石委托样品从样品验收到派发样品检验单工作。

3.填写附录一中质量表格1、表格2。

② 选矿厂选矿废水回用率至少要达到多少

90%,包括选矿厂各种浓缩机溢流水回用及从尾矿库回水回用,都算废水会用;

③ 毕业论文题目

化学化工环境
1. 喜树发根培养及培养基中次生代谢产物的研究
2. 虾下脚料制备多功能叶面肥的研究
3. 缩合型有机硅电子灌封材料交联体系研究
4. 棉籽蛋白接枝丙烯酸高吸水性树脂合成与性能研究
5. 酶法双甘酯的制备
6. 硅酸锆的提纯毕业论文
7. 腐植酸钾/凹凸棒/聚丙烯酸复合吸水树脂的合成及性能研究
8. 羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究
9. 铝合金阳极氧化及封闭处理
10. 贝氏体白口耐磨铸铁磨球的研究
11. 80KW等离子喷涂设备的调试与工艺试验
12. 2800NM3/h高温旋风除尘器开发设计
13. 玻纤增强材料注塑成型工艺特点的研究
14. 年处理30万吨铜选矿厂设计
15. 年处理60万吨铁选厂毕业设计
16. 广东省韶关市大宝山铜铁矿井下开采设计
17. 日处理1750吨铅锌选矿厂设计
18. 6000t/a聚氯乙烯乙炔工段初步工艺设计
19. 年产50万吨焦炉鼓冷工段工艺设计
20. 年产25万吨合成氨铜洗工段工艺设计
21. PX装置异构化单元反应器进行自动控制系统设计
22. PX装置异构化单元脱庚烷塔自动控制系统设计
23. 金属纳米催化剂的制备及其对环己烷氧化性能的影响
24. 高温高压条件下浆态鼓泡床气液传质特性的研究
25. 新型纳米电子材料的特性、发展及应用
26. 发达国家安全生产监督管理体制的研究
27. 工伤保险与事故预防
28. 氯气生产与储存过程中危险性分析及其预防
29. 无公害农产品的发展与检测
30. 环氧乙烷工业设计
31. 年产 21000吨 乙醇 水精 馏装置 工艺设计
32. 年产26000吨乙醇精馏装置设计
33. 高层大厦首层至屋面消防给水工程设计
34. 某市航空发动机组试车车间噪声控制设计
35. 一株源于厌氧除磷反应器NL菌的鉴定及活性研究
36. 一株新的短程反硝化聚磷菌的鉴定及活性研究
37. 广州地区酸雨特征及其与气象条件的关系
38. 超声协同硝酸提取城市污泥重金属的研究
39. 脱氨剂和铁碳法处理稀土废水氨氮的研究
40. 稀土 超磁致 伸缩 材料 扬声器 研制
41. 纳米氧化铋的发展
42. 海泡石TiO2光敏催化剂的制备及其研究
43. 超磁致伸缩复合材料的制备
44. 钙钛矿型无铅压电陶瓷的制备和性能研究毕业论文
45. APCVD法在硅基板上制备硅化钛纳米线
46. 浅层地热能在热水系统中的利用初探及其工程设计
47. 输配管网的软件开发

④ 含重金属废水处理的处理方法

含重金属废水处理使用膜处理技术:

  1. 膜处理技术主要是微滤、超滤纳滤反渗透

  2. 其中纳滤可以浓缩废水中金属离子、盐类等,反渗透可以膜截留金属离子和有机添加剂,而让水分子透过膜,而达到分离、浓缩目的。

  3. 含重金属废水进入处理系统,根据需要,经过复合试剂预处理,减少其它离子对膜系统的影响,之后通过纳滤膜、反渗透膜实现物料分离、浓缩。

  4. 本系统设置多套纳滤装置,既可以辅助实现浓缩倍数的要求,也可以切换实现出水重金属离子实现达标排放的要求。

重金属废水来源及其处理原则:

  1. 重金属废水主要来自矿山、冶炼、电解、电镀、农药、医药、油漆、颜料等企业排出的废水。废水中重金属的种类、含量及存在形态随不同生产企业而异。由于重金属不能分解破坏,而只能转移它们的存在位置和转变它们的物理和化学形态。

  2. 例如,经化学沉淀处理后,废水中的重金属从溶解的离子形态转变成难溶性化台物而沉淀下来,从水中转移到污泥中;经离子交换处理后,废水中的重金属离子转移到离子交换树脂上,经再生后又从离子交换树脂上转移到再生废液中。

  3. 因此,重金属废水处理原则是:首先,最根本的是改革生产工艺.不用或少用毒性大的重金属。其次是采用合理的工艺流程、科学的管理和操作,减少重金属用量和随废水流失量,尽量减少外排废水量。

⑤ 矿山废水、废渣综合治理现状

(一)矿山废水综合治理现状

西南地区根据各省资料统计,矿山年排放废水量为1261254.91×104m3,综合利用量82230.73×104m3,综合利用率6.6%。但矿山废水排放及综合治理利用情况较复杂。从不同企业来看,一般大中型国有企业多具有较为完善的废水循环综合利用的设施,因此综合治理利用率较高,而私有、小型矿山企业废水处理及综合利用很少,多为任意排放。

图6-1 会东铅锌矿露天采场西边坡变形体整治

1—矿山废渣;2—长石石英砂岩;3—钙质砂岩;4—泥质粉砂岩;5—泥岩;6—硅质白云岩;7—条带状白云岩;8—厚层白云岩;9—R2碳质破碎体;10—滑坡体;11—滑坡滑动方向;12—逆断层;13—性质不明断层;14—治理工程之一:水泥护;15—治理工程之一:抗滑桩;16—治理工程之一:锚索;17—下寒武统筇竹寺组二段;18—下寒武统筇竹寺组一段;19—下寒武统麦地坪组二段;20—下寒武统麦地坪组一段;21—上震旦统灯影组二段

从不同矿产类型看,金属矿产以地表露天开采为主,矿坑排水较少,废水主要来自选矿的尾矿排水。按正规设计,将尾矿库排水又回到选矿厂循环使用,选矿水是可以循环使用的,综合治理利用率很高。能源矿山废水废液年产出量最多,约为1130129.42×104m3,占西南地区矿山废水产出量的88%;而能源矿山多为小企业,废水废液综合治理利用率很低,仅为4.50%。金属类矿山的废水、废液产出量最少,约占总量的9.0%,但金属矿山国有大中型企业占的比重大,生产工艺较先进,因此其废水废液循环综合利用较好,综合利用率为30%~50%。其他非金属矿中以钙芒硝为主的化工原料非金属矿产多为井下爆破落矿,水溶抽取,废水循环使用,因此,废水废液的循环综合利用率较高,大于50%。建材类非金属矿山用水较少,废水废液综合利用率亦很差,几乎为零。

西南地区以四川省矿山废水利用率最高,为19.61%,该省年产矿山废水量58897.15×104m3,年排放量34226.19×104m3,年处理量8110.44×104m3,年循环利用量11554.45×104m3(表6-6)。

(二)矿山废渣综合治理现状

西南地区矿山废渣年产量57674.32×104t,年排放量49156.15×104t,累计堆放量332165.50×104t,年综合利用量为3362.11×104t(重庆881.67×104t、西藏195.22×104t、云南614.60×104t、四川800.74×104t、贵州869.58×104t),综合利用率为5.83%。矿山固体废渣的综合治理利用较复杂,既与固体废渣利用价值有关,也与西南地区矿山废渣综合利用技术水平和资金投入有关。西南地区能源矿山废渣综合利用效率较高,一般在30%以上,如四川为31.85%,贵州为38.37%,重庆为48.94%,云南较低为20.32%。非金属矿山废渣综合利用率次之,一般为10%以上,如云南14.52%,重庆31.85%,四川偏低为7.2%。金属矿山废渣综合利用率最低,为1.5%~2.7%。

表6-6 四川省矿山废水废液统计 单位:104m3

⑥ 选矿废水处理的特点及其危害

废水排放量大,是我国选矿厂废水的特点之一
选矿废水具有水量大,悬浮物含量高,含有害物质种类较多而浓度较低等特点。每吨矿石的选矿用水量为5~10吨。1973年中国选矿废水排放量达10亿立方米。
我国选矿厂废水的特点之二,是废水成分较复杂,有毒有害成分较多,但浓度较低。
选矿废水中的主要有害物质是重金属离子和选矿药剂。重金属离子有铜、锌、铅、镍、铁、钡、镉等,以及砷和稀有元素等。在选矿过程中加入的浮选药剂有如下几类:①捕集剂:黄药(ROCSSMe)、黑药【(RO)2PSSMe】、白药【CS(NHC6H5)2】。②抑制剂:氰盐(KCN,NaCN)、水玻璃(Na2SiO3)。③起泡剂:松根油、甲酚(C6H4CH3OH)。④活性剂:硫酸铜、重金属盐类。⑤硫化剂:硫化钠。⑥矿浆调节剂:硫酸、石灰等。一些金属矿山选矿废水水质如表。
选矿废水不经处理排放或流失会严重污染水源和土壤,危害水产和植物,淤塞河流、湖泊。第二次世界大战期间,日本三井金属矿业公司神冈铅锌矿选矿废水和冶炼厂镉车间废水排入神通川,水体和农作物受到污染,当地居民由于长期食用受镉污染的水和稻米,1951~1968年有200多人患镉中毒症,称痛痛病。中国的有色金属矿山大多分布在长江以南,选矿废水的排放对河流、湖泊水源和农业、渔业生产造成很大威胁。有的河流、湖泊被尾矿淤积,浮选剂臭气四溢,使鱼类受污染而不能食用,渔业减产。

⑦ 邱廷省的科研项目

·1、复杂难选铅锌矿石清洁高效选矿新工艺研究.项目主要负责人之一(个人排名第三).2003-04-11.会议鉴定.四川省科学技术厅.鉴定结论为“国际先进”.
·2、铅锌硫化矿高效选矿新技术研究与应用.项目主要负责人之一(个人排名第二).2005-12-26.会议鉴定.江西省科学技术厅.鉴定结论为“国际领先”.
·3、主持完成江西省教育厅教育科学研究项目“提高矿物加工工程专业教学效率及培养学生创新能力的研究”(2002~2004);江西省教育厅评审通过;2005年5月.
·4、主持完成“南京栖霞山锌阳矿业有限公司铅锌原矿工艺矿物学综合研究”,2005年4月通过单位评审,评审结果为“研究工作揭示了公司深部矿体矿石性质的变化规律,同时也澄清了过去的许多错误的认识,很好地指导了公司选矿的生产”.
·5、主持完成“会东铅锌矿稀贵元素的选矿研究与综合评价”,2005年10月通过单位评审,评审结果为“详细具体地揭示了会东铅锌矿矿石中镓、锗、铟、银等稀贵金属的分布规律与稀贵元素主要载体矿物的嵌布特征,对镓、锗、铟、银等稀贵金属在选矿各产品中的走向与回收效果等进行了详细分析并做出综合评价,对我矿镓、锗、铟、银等稀贵元素的综合回收提出了合理化建议,为我矿下一步调整选矿工艺与药剂制度,进一步综合回收这些稀贵元素具有一定的指导意义”.
·6、主持完成“提高会理锌矿深部矿体中高铜高硫铅锌矿石综合选矿指标的试验研究”与“提高会理锌矿深部矿体中高铜铅锌矿石综合选矿指标的工业试验研究”,该项目自2006年3月起在会理锌矿全面生产应用.
·7、主持完成“南京栖霞山锌阳矿业有限公司提高含碳含铜铅锌矿石选铅指标的研究”,2006年4月通过单位评审.
·8、主持完成“铜陵化工集团新桥矿业有限公司含铅、锌的铜硫矿石选矿试验研究”,2006年4月通过单位评审.
·9、主持“会理锌矿选矿厂生产废水循环利用工艺研究”,2003.9~2006.12.
·10、主持“会东铅锌矿选矿厂生产废水循环利用工艺研究”,2004.3~2007.12.

⑧ 重金属废水怎么处理

目前,重金属废水处理的方法大致可以分为三大类:(1)化学法;(2)物理处理法;(3)生物处理法。
化学法
化学法主要包括化学沉淀法和电解法,主要适用于含较高浓度重金属离子废水的处理,化学法是目前国内外处理含重金属废水的主要方法。
2.1.1化学沉淀法
化学沉淀法的原理是通过化学反应使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物,通过过滤和分离使沉淀物从水溶液中去除,包括中和沉淀法、硫化物沉淀法、铁氧体共沉淀法。由于受沉淀剂和环境条件的影响,沉淀法往往出水浓度达不到要求,需作进一步处理,产生的沉淀物必须很好地处理与处置,否则会造成二次污染。
2.1.2电解法
电解法是利用金属的电化学性质,金属离子在电解时能够从相对高浓度的溶液中分离出来,然后加以利用。电解法主要用于电镀废水的处理,这种方法的缺点是水中的重金属离子浓度不能降的很低。所以,电解法不适于处理较低浓度的含重金属离子的废水。
物理处理法
物理处理法主要包含溶剂萃取分离、离子交换法、膜分离技术及吸附法。
2.2.1溶剂萃取分离
溶剂萃取法是分离和净化物质常用的方法。由于液液接触,可连续操作,分离效果较好。使用这种方法时,要选择有较高选择性的萃取剂,废水中重金属一般以阳离子或阴离子形式存在,例如在酸性条件下,与萃取剂发生络合反应,从水相被萃取到有机相,然后在碱性条件下被反萃取到水相,使溶剂再生以循环利用。这就要求在萃取操作时注意选择水相酸度。尽管萃取法有较大优越性,然而溶剂在萃取过程中的流失和再生过程中能源消耗大,使这种方法存在一定局限性,应用受到很大的限制。
2.2.2离子交换法
离子交换法是重金属离子与离子交换剂进行交换,达到去除废水中重金属离子的方法。常用的离子交换剂有阳离子交换树脂、阴离子交换树脂、螯合树脂等。几年来,国内外学者就离子交换剂的研制开发展开了大量的研究工作。随着离子交换剂的不断涌现,在电镀废水深度处理、高价金属盐类的回收等方面,离子交换法越来越展现出其优势。离子交换法是一种重要的电镀废水治理方法,处理容量大,出水水质好,可回收重金属资源,对环境无二次污染,但离子交换剂易氧化失效,再生频繁,操作费用高。
2.2.3膜分离技术
膜分离技术是利用一种特殊的半透膜,在外界压力的作用下,不改变溶液中化学形态的基础上,将溶剂和溶质进行分离或浓缩的方法,包括电渗析和隔膜电解。电渗析是在直流电场作用下,利用阴阳离子交换膜对溶液阴阳离子选择透过性使水溶液中重金属离子与水分离的一种物理化学过程。隔膜电解是以膜隔开电解装置的阳极和阴极而进行电解的方法,实际上是把电渗析与电解组合起来的一种方法。上述方法在运行中都遇到了电极极化、结垢和腐蚀等问题。
2.2.4吸附法
吸附法是利用多孔性固态物质吸附去除水中重金属离子的一种有效方法。吸附法的关键技术是吸附剂的选择,传统吸附剂是活性炭。活性炭有很强吸附能力,去除率高,但活性炭再生效率低,处理水质很难达到回用要求,价格贵,应用受到限制。近年来,逐渐开发出有吸附能力的多种吸附材料。有相关研究表明,壳聚糖及其衍生物是重金属离子的良好吸附剂,壳聚糖树脂交联后,可重复使用10次,吸附容量没有明显降低。利用改性的海泡石治理重金属废水对Pb2+、Hg2+、Cd2+ 有很好的吸附能力,处理后废水中重金属含量显著低于污水综合排放标准。另有文献报道蒙脱石也是一种性能良好的粘土矿物吸附剂,铝锆柱撑蒙脱石在酸性条件下对Cr 6+的去除率达到99%,出水中Cr 6+含量低于国家排放标准,具有实际应用前景。
生物处理法
生物处理法是借助微生物或植物的絮凝、吸收、积累、富集等作用去除废水中重金属的方法,包括生物吸附、生物絮凝、植物修复等方法。
2.3.1生物吸附
生物吸附法是指生物体借助化学作用吸附金属离子的方法。藻类和微生物菌体对重金属有很好的吸附作用,并且具有成本低、选择性好、吸附量大、浓度适用范围广等优点,是一种比较经济的吸附剂。用生物吸附法从废水中去除重金属的研究,美国等国家已初见成效。有研究者预处理假单胞菌的菌胶团后,将其固定在细粒磁铁矿上来吸附工业废水中Cu,发现当浓度高至100 mg/L时,除去率可达96%,用酸解吸,可以回收95%铜,预处理可以增加吸附容量。但生物吸附法也存在一些不足,例如吸附容量易受环境因素的影响,微生物对重金属的吸附具有选择性,而重金属废水常含有多种有害重金属,影响微生物的作用,应用上受限制等,所以还需再进行进一步研究。
2.3.2生物絮凝
生物絮凝法是利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法。生物絮凝法的开发虽然不到20年,却已经发现有17种以上的微生物具有较好的絮凝功能,如霉菌、细菌、放线菌和酵母菌等,并且大多数微生物可以用来处理重金属。生物絮凝法具有安全无毒、絮凝效率高、絮凝物易于分离等优点,具有广阔的发展前景。
2.3.3植物修复法
植物修复法是指利用高等植物通过吸收、沉淀、富集等作用降低已有污染的土壤或地表水的重金属含量, 以达到治理污染、修复环境的目的。植物修复法是利用生态工程治理环境的一种有效方法,它是生物技术处理企业废水的一种延伸。利用植物处理重金属,主要有三部分组成:
(1)利用金属积累植物或超积累植物从废水中吸取、沉淀或富集有毒金属: (2)利用金属积累植物或超积累植物降低有毒金属活性,从而可减少重金属被淋滤到地下或通过空气载体扩散: (3)利用金属积累植物或超积累植物将土
壤中或水中的重金属萃取出来,富集并输送到植物根部可收割部分和植物地上枝条部分。通过收获或移去已积累和富集了重金属植物的枝条,降低土壤或水体中的重金属浓度。在植物修复技术中能利用的植物有藻类植物、草本植物、木本植物等。
藻类净化重金属废水的能力主要表现在对重金属具有很强的吸附力。褐藻对Au的吸收量达400mg/g,在一定条件下绿藻对Cu、Pb、La、Cd、Hg等重金属离子的去除率达80%~90%。浩云涛等分离筛选获得了一株高重金属抗性的椭圆小球藻(Chlorella ellipsoidea),并研究了不同浓度的重金属铜、锌、镍、镉对该藻生长的影响及其对重金属离子的吸收富集作用。结果显示,该藻Zn 和Cd 具有很高的耐受性。对四种重金属的耐受能力依次为锌>镉>镍>铜。该藻对重金属具有很好的去除效果,15μmol/L Cu2+、300μmol/L Zn2+、100μmol/L Ni2+、30μmol/L Cd2+浓度72h处理,去除率分别达到40.93%、98.33%、97.62%、86.88%。由此可见,此藻类可应用于含重金属废水的处理。
草本植物净化重金属废水的应用已有很多报道。风眼莲(Eichhoria crassipes Somis)是国际上公认和常用的一种治理污染的水生漂浮植物,它具有生长迅速,既能耐低温、又能耐高温的特点,能迅速、大量地富集废水中Cd、Pb、Hg、Ni、Ag、Co、Cr等多种重金属。张志杰等的研究结果表明,干重lkg的风眼莲在7~l0d可吸收铅3.797g、镉3.225g。周风帆等的 研究发现风眼莲对钴和锌的吸收率分别高达97%和80%。香蒲(Typhao rientaliS Pres1)也是一种净化重金属的优良草本植物,它具有特殊的结构与功能,如叶片成肉质、栅栏组织发达等。香蒲植物长期生长在高浓度重金属废水中形成特殊结构以抵抗恶劣环境并能自我调节某些生理活动, 以适应污染毒害。招文锐等研究了宽叶香蒲人工湿地系统处理广东韶关凡口铅锌矿选矿废水的稳定性。历时10年的监测结果表明,该系统能有效地净化铅锌矿废水。未处理的废水含有高浓度的有害金属铅、锌、镉经人工湿地后,出水口水质明显改善,其中铅、锌、镉的净化率分别达99.0%,97.%和94.9%,且都在国家工业污水的排放标准之下。此外,还有很多草本植物具有净化作用,如喜莲子草、水龙、刺苦草、浮萍、印度芥菜等。
采用木本植物来处理污染水体,具有净化效果好,处理量大,受气候影响小,不易造成二次污染等优点,越来越受到人们的重视。胡焕斌等试验结果表明,芦苇和池杉两种植物对重金属铅和镉都有较强富集能力,而木本植物池杉比草本植物芦苇具有更好的净化效果。周青等研究了5种常绿树木对镉污染胁迫的反应,实验结果表明,在高浓度镉胁迫下,5种树木叶片的叶绿素含量、细胞质膜透性、过氧化氢酶活性及镉富集量等生理生化特性均产生明显变化,其中,黄杨、海桐,杉木抗镉污染能力优于香樟和冬青。以木本植物为主体的重金属废水处理技术,能切断有毒有害物质进入人体和家畜的食物链,避免了二次污染,可以定向栽培,在治污的同时,还可以美化环境,获得一定的经济效益,是一种理想的环境修复方法。

⑨ 选矿废水怎么处理

这种废水很难处理,以前我们厂选矿都是由韶关运田环保来处理的。

⑩ 选矿厂的污水如何有效处理

(一) 混凝斜管沉淀法处理选矿废水

来自车间的废水,首先通过沉砂池进行固液分离,沉砂池沉砂通过卸砂门排入尾矿砂场。沉砂池溢流出的上清液,通过投药混合后进入反应器充分混凝反应,然后流入斜管沉淀器,使细粒悬浮物、有害物进一步去除,斜管沉淀器的沉泥,通过阀门排至尾矿砂场。通过此工艺后,废水即达国家允许排放标准。根据环保的要求,斜管沉淀器出水进入清水池,用清水泵打回车间回用,节约用水,并使废水闭路循环,实现零排放。其工艺流程如图1。

(二) 混凝沉淀-活性炭吸附-回用工艺

此法是目前国内选厂采用较多的选矿废水回用方法,通过对不同矿山的选矿废水试验研究发现,对同一选矿废水投入不同药剂或同一药剂不同的量,其结果也不一样。但其共同点如下:

①凝剂效果比较试验:分别采用聚合硫酸铁(PFS)、混合氯化铝(PAC)、明矾作混凝沉淀剂,结果表明,采用明矾作为混凝剂较为经济合理,其最佳用量一般可控制在30mg/L左右。

②聚丙烯酰胺PAM对混凝效果的影响:PAM的加入,进一步提高了废水的混凝处理效果,但由于其是有机高分子,导致水中COD值上升.在实践中,将混凝处理效果的变化和COD值的增加结合考虑,一般采用PAM的投入量0.2mg/L即可。

③沉降时间对废水的影响:确立混凝后的静置时间为30min。

④吸附试验:粉末活性炭的用量比颗粒活性炭的用量少,基本在其一半的情况下,即可达到相同的效果。同时,由于粉末活性炭易进入精矿,不会在水循环中积累,故选用其做为吸附剂。其最佳用量一般为50~100mg/L。

⑤浮选试验:废水经混凝沉淀、活性炭吸附后,可全部回用,且对选矿指标无任何影响。经过明矾(30mg/L)、PAM(0.2mg/L)}昆凝沉淀,然后用粉末活性炭(50~100rag/L)工艺净化后,出水水质不但达到国家矿山废水排放标准,而且回用结果表明,经该工艺处理后的废水,不仅可以全部回用,不影响选矿指标,在选矿过程中还减少了浮选药剂用量,给企业带来了相当的经济效益。同时,由于废水的回用,使每天的新鲜水用量减少,这对于水资源短缺的我国来说,更具有减少污染、净化环境的社会意义。该法流程简单,效果好,具有广泛的工业应用前景。

(三) 选矿废水资源化利用综合方法

专业人士经过大量的水处理试验和选矿对比试验综合研究,总结出一条解决矿山选矿废水的较好方案。以铅锌矿为例,其工艺流程如图2所示。

由于各种废水水质不同,在回用处理过程中,调节池起着调节水质、水量的作用。混凝沉淀池可加强混凝剂与废水的混合,使微细粒子成长,使之变成可通过沉淀除去的悬浮物。反应池用于废水进一步深化处理,利用消泡剂把废水中多余的起泡剂反应掉,削弱对浮选指标的影响。

阅读全文

与某铜铅锌多金属矿选厂废水回用设计相关的资料

热点内容
深度过滤器厂家 浏览:381
米家空气净化器2怎么拆开 浏览:917
工业润滑油过滤市场 浏览:495
医院污水池除臭排放标准 浏览:166
阴离子阳离子交换膜 浏览:123
戴森空气净化器滤芯怎么拆 浏览:928
净化器上面显示复位什么意思 浏览:999
净水器里有什么水可以做雾化 浏览:396
蒸馏石油的分馏 浏览:744
饮水机水桶为什么会变绿 浏览:803
饮水机热水往上出是什么意思 浏览:627
如何当好污水处理厂的班长 浏览:327
微动力污水处理器 浏览:729
四氯化碳如何蒸馏水 浏览:950
废水资源化问题与出路 浏览:705
树脂补牙还要打磨 浏览:189
什么叫做雨污水阴阳管 浏览:438
废水处理ph是什么意思 浏览:17
反渗透净水器有废水比是什么意思 浏览:507
净化器过滤芯怎么取出 浏览:837