① COD质控样偏高怎么回事如何处理
污水水质COD偏高的原因有以下几个方面:
1、企业生产过程中生产原因引起的COD超标
企业生产过程中不同的生产原料,生产过程导致COD的产生,例如食品厂中多余食物的残留与水体、化工厂中还原性物质S离子和氯离子等及电镀废水在酸洗过程中都是污水COD超标原因。
2、污水水处理系统本身工艺有缺陷也可能导致COD超标
(1)水中溶解氧不够:当水中溶解氧不足以满足菌种自身代谢,会造成菌种乏性。污水COD处理效率大大降低.
(2)生化处理过程中如果温度过低,菌种的活性就会跟着降低,从而降低对COD的分解。
(3)废水中氨氮、重金属浓度过高:污水中某项指标过高会毒害生化池中的菌种,使COD降解不下来。
② 水质总氮和总磷实验质控样是加多少毫升
氮族元素(Nitrogen group)是位于元素周期表ⅤA 族的元素,包括氮(N)、磷(P)、砷(As)、锑(Sb)、铋(Bi)和镆(Mc)共计六种,这一族元素可以呈现-3,0、+1,+2,+3,+4,+5等多种化合价,他们的原子最外层都有5个电子。最高正价都是+5价。
氮族元素原子结构特点是:原子的最外电子层上都有5个电子,这就决定了它们均处在周期表中第ⅤA族。它们的最高正价均为+5价,若能形成气态氢化物,则它们均显-3价,气态氢化物化学式可用某化氢表示。最高氧化物的化学式可用五氧化二某表示,其对应水化物为酸。它们中大部分是非金属元素。
氮族元素随着原子序数的增加,由于它们电子层数逐渐增加,原子半径逐渐增大,最终导致原子核对最外层电子的作用力逐渐减弱,原子获得电子的趋势逐渐减弱,因而元素的非金属性也逐渐减弱。比较明显的表现是它们的气态氢化物稳定性逐渐减弱(NH₃>PH₃>AsH₃);它们的最高价氧化物对应水化物的酸性逐渐减弱(HNO3>H3PO4>H3AsO4);另一方面,随着原子序数的增加,原子失去电子的趋势逐渐增强,元素的金属性逐渐增强,砷虽是非金属,却已表现出某些金属性,而锑、铋却明显表现出金属性。
氮族元素在性质上表现出从典型的非金属元素到典型的金属元素的一个完整的过渡。氮和磷是非金属元素,锑和铋为金属元素,处于中间的砷为准金属元素。本族元素的价层电子构型为ns2、np3,主要化合价有- 3 、0、+ 3 、+ 5。自上而下化合价为+3 的物质稳定性增加,而 +5 化合价的物质稳定性降低。这是因为自上而下过渡到铋时,由于铋原子半径较大,成键时电子云重叠程度较小,铋原子出现了4f 和 5d 能级,而 f、d 电子对原子核的屏蔽作用较小,6S 电子又具有较大的穿透作用,所以6s 能级显著降低,从而使6s 电子成为“惰性电子对”而不易参加成键,铋的化合价常显0价和+3 价。这种自上而下低化合价比高化合价物质稳定的现象,称为惰性电子对效应。
本族元素的成键特征是易形成共价键,这是因为它们同周期系中的前后元素相比,各有相对较高的电离能,共价性较强它们形成-3 价离子比较困难,仅有电负性较大的N 、P 可形成极少数-3 价离子型化合物,但在水溶液中因水解不会存在水合离子。本族元素形成+3 价离子的可能性也很小,只有半径较大的Sb 和Bi能形成 +3 价离子型化合物 。 另外,本族元素既可提供电子对作为配体,又可接受其他配体的电子对作为中心原子形成配位化合物。
希望我能帮助你解疑释惑。
③ 氨氮质控样怎么做
纳氏试剂分光光度法测水中氨氮对显色的时间和显色浓度有很大的要求,显色时间应在25°左右控制在15-30min,少于这个时间显色不充分,多于这个时间显色值偏大,显色浓度偏大时加入掩蔽剂时容易出现浑浊,不知道是不是这方面的问题
④ 用分光光度法测定水样的浊度,如果需要质控样,来检验方法的准确度,质控样的选择需要注意哪些
浊度测定方法的种类中,我国环保部门所承认的是分光光度法和目视比浊法两种。浊度的分光光度法测定适用于饮用水、天然水和高浊度水的测定,它的测定浊度下限为3度。以下是浊度分光光度法的标准液配置和操作步骤。
1、浊度标准溶液配置
浊度的分光光度法测定需要使用到硫酸肼与六次甲基四胺聚合物悬浮液作为浊度标准溶液,来比对待测定水样的浊度值,因此在进行浊度分光光度法测定操作前,我们要先了解浊度标准溶液的配置方法。
浊度标准溶液的配置要使用无浊度水和贮备液。
无浊度水是以蒸馏过的蒸馏水,通过0.2微米的滤膜制备而成的,无浊度水的盛放瓶要保证清洁,应使用过滤水荡洗两次的烧瓶。
贮备液包括硫酸肼贮备液和六次甲基四胺贮备液。硫酸肼贮备液是将1.000g的硫酸肼溶于无浊度水后定容至100mL制得。六次甲基四胺贮备液是将10.00g六次甲基四胺溶于无浊度水后定容至100mL制得。
浊度标准溶液配置时,取5.00mL的硫酸肼贮备液和5.00mL六次甲基四胺贮备液,置入100mL量瓶内混合均匀,在25±3℃的温度条件下静置24小时后,以无浊度水将混合液稀释至100mL标线并混合均匀,即为浊度400度的浊度标准溶液。
2、浊度分光光度法的操作步骤
浊度标准溶液配置完毕后,可以按照水样的浊度吸取适量浊度标准液置于多个试管内,按照比例稀释为不同浊度的系列溶液,例如采用0.50、1.25、2.50、5.00、10.00及12.50mL的浊度标准液,稀释至50mL即可获得4、10、20、40、80和100度的浊度系列溶液。
浊度测定的分光光度法是以吸光度来反应浊度值的,因此要将浊度系列溶液以680nm波长、30mm比色皿来测定溶液的吸光度,绘制浊度溶液的吸光度校准曲线。
浊度待测定水样的浊度如果低于100度则直接取样50.0mL,如果大于100度则取样量酌减并以无浊度水稀释至50.0 mL,以680nm波长、30mm比色皿来测定其吸光度,再将测定结果与校准曲线对比,即获得水样浊度测定值。
⑤ 如何做好水中高锰酸盐指数标样的考核
在我们历年组织的质控考核中,高锰酸盐指数按“保证值土1倍不确定度”的标准评判,合格率较偏低,而且不稳定,年平均合格率在45.8%~86.7%之间,平均为71.0%,甚至连考三次都不合格的情况都时有发生。为使该项目的合格率不至于太低,总站组织的国家水环境监测网站质控考核把该项目的合格标准放宽至:“保证值土3倍不确定度”。分析人员普遍感到:该项目的环境标样不易做好,甚至对标样定值和国家标准分析方法产生怀疑,由此推论,环境水样中高锰酸盐指数测定结果的准确性也不会很高。为提高该项目测定的准确性,我们在该项目的质控考核和密码样检查中,组织进行了该项目的条件影响实验。实验研究结果证明,做好高锰酸盐指数的关键是:
1、实验用水、
国家标准GB/T 11892~1989《水质高锰酸盐指数的测定》(以下简称标准分析方法)中明确规定,测定该项目的水应为: 不含还原性物质的水。但为节省时间,提高效率,有的分析者直接用一次蒸馏水或去离子水代替不含还原性物质的水。然而, 采用普通金属蒸馏器蒸得的一次蒸馏水仅只是将大部份无机盐、碱和某些有机化合物等不挥发性物质除去;通过用离子交换纯水器进一步处理一次蒸馏水得到的去离子水,也只是更进一步除去绝大部份盐类、碱和游离酸,两种方法制得的水都没有完全除去还原性物质。用未除去还原性物质的水测定高锰酸盐指数,带来的问题是空白偏高,空白高对环境水样的测定没有影响,对质控样的测定影响就比较大,直接关系到测定结果的合格与否。原因是:测定环境水样时,因水的纯度达不到要求带来的空白值高所产生的影响,在用标准分析方法给出的公式计算结果时,可全部扣除。而高锰酸盐指数质控样一般为安瓿瓶装20ml液体标样,取其10.OOml稀释定容到250.0ml后才为待测样,如测定该样品时, 所用的水含还原性物质,而使空白偏高所产生的影响,用同样的公式计算就不能完全扣除,因为该公式所消除的空白影响不包括质控待测样从10.00ml稀释到25O.0ml时所用的水对测定结果带来的正误差影响。理论计算,空白值每增加0.10mg/l,这一影响将使测定结果偏高0.096mg/l。
从高锰酸盐指数质控考核和密码样检查的实验用水统计情况来看, 不含还原性物质的水空白值平均为0.2lmg/l,一次蒸馏水和去离子水的空白值分别平均为0.50mg/l和0.71 mg/l,同期用于考核和检查的高锰酸盐指数标样,其保证值的不确定度范围在土0.25mg/l~土0.32 mg/1之间,如不考虑其它因素的影响,空白高于0.33mg/l以上时,测定结果就会高出合格范围。显然,使用一次蒸馏水和去离子水的不合格机率远远大于使用不含还原性物质的水,检查不同实验用水测定结果统计也证实了这一点(详见表l不同实验用水测定结果统计),使用不含还原性物质的水,合格率为100%,使用一次蒸馏水和离子交换水的合格率分别才有62.1% 和50.0%。因此做好高锰酸盐指数质控样的首要条件是:必须使用不含还原性物质的水。表l不同实验用水测定结果统计
实验用水
一次蒸馏水
离子交换水
不含还原性物资的水空白(mg/l)范围值0.23~1.040.34~1.080.20~0.50平均值0.500.710.31合格率(%)62.150.0100.0不合格率(%)37.950.00
2、加热方式
按照标准分析方法测定高锰酸指数质控样,有时会出现结果精密度不好的现象,而且新手更容易碰到这种情况,究其原因:主要是,采用沸水浴加热温度不均匀造成的, 为此,有的分析
者便尝试用直火或直火加回流加热10分钟的方式代替沸水浴加热30分钟的方式,来解决此问题。经调查研究,我们认为:加热温度不均匀确实是造成测定结果精密度不好的主要原因,但加热温度不均匀却不是沸水浴加热方式造成的,而常常是下列两种因素引起的:一是分析者为防止置于沸水内加热的锥形瓶飘浮,未按方法要求, 使沸水浴的水面高于锥形瓶的液面;二是目前所用的多孔水浴锅,有的各孔水温高低不等,靠近加热管的水温度较高,明显沸腾, 远离加热管的水温度较低,几乎看不出沸腾。从不同加热方式测定结果统计来看,采用直火加热的合格率为50.0%,采用水浴加热的合格率达69.0%,高于直火加热的合格率。有关两种加热方式的
[l]对比试验也证明: 直火加热回流与用水浴锅加热反应的测定结果并无显著性差异,仅只是前者与后者相比, 缩短了加热反应的时间,降低了耗电费用。所以,测定时必须严格按照方法要求,使沸水浴面高于锥形瓶的液面,并从锥形瓶放入沸水后水重新沸腾开始计时,同时尽可能保证各样品的加热温度一致。
3、温度
标准分析方法规定:测定高锰酸盐指数的沸水浴温度98℃。参与统计的实验室大多地处高原,绝大部份地区海拔高、气压低,沸水浴温度难以达到98℃, 理论上讲,在此情况下,测定结果应偏低, 但从密码样测定结果来看,沸水浴温度高低对测定结果没有影响(原因是测定时空白值偏高产生的正误差与反应温度偏低产生的负误差部份抵消),但测定时的环境温度却对测定结果有一定的影响,以测定的32 个密码样为例,气温在25℃以上(含25℃) 测定的样品有13个,7个合格,合格率53.8%, 气温在25℃以下测定的样品19个,15个合格,合格率77.8%,气温高时测定合格率低, 说明气温高会导致滴定用高锰酸钾溶液消耗量增加,使测定结果产生正误差。
4、取样量
取样量的大小对高锰酸盐指数测定结果有一定的影响,取样量过小,氧化剂量相对比较大,结果会偏高;而取样量过大时,消耗了一定量的氧化剂,使其氧化能力减弱, 结果又会偏低,
[2]取样量最好保持在使反应后滴定所消耗的高锰酸钾量为加入量的1/5~1/2 范围内。因此,
做高锰酸盐指数质控样时, 取样量的多少,同样是影响测定结果的一个主要因素。试验表明对于含量在4~7mg/1的标样以取50.Oml样为宜;2~4mg/l时则以取 100.0ml为宜;当标样浓度为4mg/l左右时, 无论取50.0ml还是取l00.0ml均无显著性差异。
5、扣空白(f值的修正计算)
按照标准分析方法规定,测定浓度高的高锰酸盐指数样,应酌情少取,并用水稀释至100m1,计算测定结果时,考虑扣除水样稀释引入的空白影响:
计算公式:
IMn??????1010?????10???10?V0?10?f???10?V1VV?????22???C?8?1000V3
式中: IMn——高锰酸盐指数,以每升样品消耗毫克氧数来表示(O2,mg/l);
V1——样品滴走时,消耗高锰酸钾溶液体积,ml;
V2——标定高锰酸钾标液时,所消耗高锰酸钾溶液体积,ml;
V0——空白试验时,消耗高锰酸钾溶液体积,ml;
V3——取样量,ml;
C——草酸钠标准溶液浓度,mol/L:
f——稀释样品时,水在100ml测定样体积内所占比例,例如: lO.0ml样品用
水稀释至10O.0ml, 则:
f?100?10?0.90100
分析环境样品时,用上述公式计算己能完全扣除空白的影响。但分析标准样品时, 就没有把10.Ooml标样稀释定容到25Oml待测样引入的空白影响扣除,如果要将这部分空白影响也考虑在内扣除,公式中的f值必须修正,使稀释的水样中含水的比值包含质控样从10.OOml稀释到250ml所引入的水量, 修正公式:
f,?1?V3B
100
式中:f’——修正后的f值;
V3 ——标样定容后取样量,ml;
B ——标样定容稀释比,对于从10.OOml稀释定容到250ml的质控样,B值为
0.04。
采用上述的f'值修正法,对35个实验室高锰酸盐指数考核检查结果修正计算后,35 个样品中,仅有4个不合格,合格率达到88.6%,比修正前的合格率(65.7%),提高了 22.9%。
虽然f值修正法可以完全消除标样测定时空白偏高的影响,但却有不合理的地方, 因为标样定值时,有的定值单位并没有采用f值修正法,而是按方法要求制备不含还原性物质的水,这样标样的定值范围便包含了质控样稀释过程所用不含还原性物质的水的空白带来的正误差影响。如果我们在做质控样时, 采用f值修正法,实质上是把测定中允许的不含还原性物质的水所固有的空白带来的影响也扣除,其结果是人为的又给测定带来一个负误差,这个负误差的大小,需进一步试验方可求得。因此,使用f值修正法,必须考虑这个负误差的影响,而最合理、可靠的方法还是按方法要求制备不含还原性物质的水。
6、高锰酸钾溶液
高锰酸钾溶液必须放置较长一段时间后才能使用,否则其浓度偏高,有时加10 毫升草酸钠都不能将其反应完全,甚至还可能没滴就已到了终点,这是导致结果偏低的原因之一;补救方法是多加草酸钠,如准确加入12.00ml或13.00ml草酸钠标液。
7、自配高锰酸盐指数标准溶液
为做好质控样,可自配一个浓度接近质控样的高锰酸盐指数标液,以此检查分析者的操作和质控样测定结果的准确性。理论上 1克葡萄糖的高锰酸盐指数测定值为0.63克, 据此采用分步稀释法配制所需浓度的标液。例如:配制4.Omg/l的高锰酸盐指数标液,可准确称取103 ℃干燥1~2h的无水葡萄糖 317.5mg,溶于50O.0ml不含还原性物质的蒸馏水中,再吸取l0.OOml 该溶液,稀释定容到1000.0ml,即为浓度为4.O mg/l的高锰酸盐指数标液。参照方法提供的精密度实验指标, 该自配标液测定结果的相对标准偏差在4.2% 以内。
8、小结
综上所述,测定高锰酸盐指数质控样和环境水样时,必须把握好如下关键因素,才能保证测定结果的准确性。
(1)实验用水:测定质控样时,严格按照标准分析方法规定的实验条件和操作步骤,制备不含还原性物质的水;测定环境水样时,可用一次蒸馏水或去离子水,但空白和样品的测定必须使用同一批水。
(2)加热方式:测定质控样时,在加热反应过程中,沸水浴的水面应超过锥形瓶的液面,
而且要重新沸腾时再计时,并保持反应过程中沸水浴的水始终处于沸腾状态;测定环境水样时,同样。
(3)温度:测定质控样时,尽可能在环境温度低于25℃的条件下测定;测定环境水样时,同样。
(4)取样量:选择合适的样品量;测定环境水样时,同样。
(5)扣空白(f值的修正计算):标样可考虑采用f值修正计算,标准物质按规定扣出;测定环境水样时,不用考虑f值修正计算。
(6)自配标液:自配与待测浓度相近的标液,检查分析者的操作和未知样测定结果的准确性;测定环境水样时,同样。
(7)切忌使用新配高锰酸钾溶液,该溶液应放置较长一段时间后才能使用。
(8)分析人员的责任心:无论是测定质控样,还是测定环境水样,无疑,这是最重要的。
⑥ 水质 总磷如何配制质控样品
质控样品时购买的有证标准物质,稀释后直接使用,或作为加标物使用。
磷标准贮备溶液:称取0.2197土0. 001 g于110C千燥2 h在干燥器中放冷的磷酸二氢钾(KH2PO4),用水溶解后转移至1000mL容量瓶中,加入大约800mL水、加5mL硫酸(3.4)用水稀释至标线并混匀。1. 00 mL此标准溶液含50.0μg磷。
本溶液在玻璃瓶中可贮存至少六个月。
⑦ 水质分析质量控制
水质分析质量控制的目的是把分析工作中的误差,减小到一定的限度,以获得准确可靠的测试结果。
分析质量控制是发现和控制分析过程产生误差的来源,用以控制和减小误差的措施。
分析质量控制过程是通过对有证参考物质 (或控制样品) 的检验结果的偏差来评价分析工作的准确度; 通过对有证参考物质 (或控制样品) 重复测定之间的偏差来评价分析工作的精密度。
(1) 分析误差
分析工作中的误差有 3 类: 系统因素影响引起的误差、随机因素引起的误差和过失行为引起的误差。
测定加标回收率表述准确度。
用重复测定结果的标准偏差或相对标准偏差表述精密度。
(2) 校准曲线和回归
校准曲线是描述待测物质浓度或量与检测仪器响应值或指示值之间的定量关系曲线,分为 “工作曲线”(标准溶液处理程序及分析步骤与样品完全相同) 和 “标准曲线”(标准溶液处理程序较样品有所省略,如样品预处理) 。
图79.5 标准曲线
校准曲线制作 (图79.5)
在测量范围内,配制的标准溶液系列,已知浓度点不得小于 6 个 (含空白浓度) ,根据浓度值与响应值绘制校准曲线,必要时还应考虑基体的影响。
制作校准曲线应与批样测定同时进行。
在校正系统误差后,校准曲线可用最小二乘法对测试结果处理后绘制。
校准曲线的相关系数 (r) 绝对值一般应大于或等于 0.999; 否则需从分析方法、仪器量器及操作等因素查找原因,改进后重新制作。
使用校准曲线时,应选用曲线的直线部分和最佳测量范围,不得任意外延。
理想情况下用校准曲线测定一批试样时,仪器的响应在测定期间是不变的 (不漂移) 。实际上,由于仪器本身存在漂移,需要进行再校准,如间隔分析已知浓度的标准样或样品校正。
(3) 分析方法的适用性检验
分析人员在承担新的监测项目和分析方法时,应对该项目的分析方法进行适用检验,包括空白值测定,分析方法检出限的估算,校准曲线的绘制及检验,方法的误差预测,如精密度、准确度及干扰因素等,以了解和掌握分析方法的原理、条件和特性。
a.空白值测定。空白值是指以实验用水代替样品,其他分析步骤及所加试液与样品测定完全相同的操作过程所测得的值。影响空白的因素有: 实验用水质量、试剂浓度、器皿洁净程度、计量仪器性能及环境条件、分析人员的操作水平和经验等。一个实验室在严格的操作条件下,对某个分析方法的空白值通常在很小的范围内波动。
空白值的测定方法是每批做平行双样测定,分别在一段时间内 (隔天) 重复测定一批,共测定 5~6 批。按式 (79.1) 计算空白平均值:
岩石矿物分析第四分册资源与环境调查分析技术
式中: 为空白平均值; Xb为空白测定值; p 为批数; n 为平行份数。
按式 (79.2) 计算空白平行测定 (批内) 标准偏差:
岩石矿物分析第四分册资源与环境调查分析技术
式中:Swb为空白平行测定(批内)标准偏差;Xij为各批所包含的各个测定值;i为代表批;j为代表同一批内各个测定值;p为批数;n为平行份数。
b.检出限的估算。检出限定义是某特定分析方法在给定的置信度(通常为95%)内可以从试样中检出待测物质的最小浓度。所谓“检出”是指定性检出,即判定试样中存有浓度高于空白的待测物质。检出限受仪器的灵敏度和稳定性、全程序空白试验值及其波动性影响。
根据全程序空白值测试结果来估算检出限
当空白测定次数n≥20时,按式(79.3)计算:
岩石矿物分析第四分册资源与环境调查分析技术
式中:DL为检出限;σwb为空白平行测定(批内)标准偏差(n≥20时)。
当空白测定次数n<20时,按式(79.4)计算:
岩石矿物分析第四分册资源与环境调查分析技术
式中:tr为显著性水平为0.05(单测)、自由度为f的t值;Swb为空白平行测定(批内)标准偏差(n<20时);F为批内自由度,等于p(n-1),p为批数,n为每批平行测定个数。
对各种光学分析方法,可测量的最小分析信号X1,按式(79.5)确定:
岩石矿物分析第四分册资源与环境调查分析技术
式中: 为空白多次测量平均值;Sb为空白多次测量的标准偏差;K为根据一定置信水平确定的系数。当置信水平约为95%时,K=3。
与XL-Xb即(KSb)相应的浓度或量即为检出限DL。
岩石矿物分析第四分册资源与环境调查分析技术
式中:S为方法的灵敏度(即校准曲线的斜率)。
为了评估Xb和Sb,空白测定次数应足够多,最好为20次。
当遇到某些仪器的分析方法空白值测定结果接近于0.000时,可配制接近浓度的标准溶液来代替纯水进行空白值测定,以获得有实际意义的数据进行计算。
不同分析方法的具体规定:某些光度法是以吸光度(扣除空白)为0.010相对应的浓度值为检出限。色谱法以检测器能产生与基线噪声相区别的响应信号时所需进入色谱柱的待测物质最小量为检出限,一般为基线噪声的两倍。
c.测定下限(又称为检测限、测量限)。在限定误差能满足预定要求的前提下,用特定方法能够准确定量被测物质的最低浓度或含量,称为该方法的测定下限。
本篇对测定下限使用了两个术语,即最低检测质量和最低检测质量浓度。
最低检测质量:系方法能够准确测定的最低质量。
最低检测质量浓度:为最低检测质量所相对应的质量浓度。
本篇所列测定下限(最低检测质量),在光度法中系按净吸光度0.02所对应的含量或质量浓度。
d.精密度检验。精密度是指使用特定的分析程序,在受控条件下重复分析测定的均一样品所获得测定值之间的一致性程度。
检验分析方法精密度时,通常以空白溶液(实验用水)、标准溶液(浓度可选在校准曲线上限浓度值的0.1倍和0.9倍)、水样和水样加标样等几种分析样品,求得批内、批间标准偏差。各类偏差值应等于或小于分析方法规定的值。
精密度检验结果的评价:
由空白平行试验批内标准偏差,估计分析方法的检测限。
比较各溶液的批内变异和批间变异,检验变异差异的显著性。
比较水样与标准溶液测定结果的标准值差,判断水样中是否存在影响测定精度的干扰因素。
比较加标样品的回收率,判断水样中是否存在改变分析准确度,但可能不影响精密度的组分。
e.准确度检验。准确度是反映方法系统误差和随机误差的综合指标,检验准确度可采用:
a)使用标准物质进行分析测定,比较测定值与保证值,其绝对误差或相对误差应符合方法规定的要求。
b)测定加标回收率(向实际水样中加入标准,加标量一般为样品含量的0.5~2倍,且加标后的总浓度不应超过方法的测定上限浓度值)回收率应符合方法规定的要求。
c)测定加标回收率应对同一样品用不同原理的分析方法进行比对。
干扰试验:
通过干扰试验,检验实际样品中可能存在的共有物是否对测定有干扰,了解共存物的最大允许浓度,干扰可能导致正或负的系统误差,干扰作用大小与待测物浓度和共存物浓度大小有关,应选择两个(或多个)待测物浓度值和不同浓度水平的共存物溶液进行干扰试验测定。
d)分析质量控制方法与要求。
质量控制图:
常用的质量控制图有均值标准差控制图(X-s图)、均值极差控制图(X-R图)、加标回收控制图(p-控制图)和空白值控制图(Xb-sb图)等。质量控制图绘制与判断见(图79.6)。
图79.6 质量控制图
(a)逐日分析质量控制样达20次以上,计算统计值。绘制中心线、上、下控制线、上、下警告线和上、下辅助线,按测定次序将相对应的各统计值在图上植点,用直线连接各点即成质量控制图。当积累了新的20批数据,应绘制新的质量控制图,作为下一阶段的控制依据。
(b)落于上、下辅助线范围内的点数若小于50%,则表明此图不可靠;连续7点落于中心线一侧则表明存在系统误差;连续7点递升或递降则表明质量异常,凡属上述情况之一者应立即中止实验,查明原因,重新制作质量控制图。
(c)在日常分析时,质量控制样与被测试样同时进行分析,然后将质量控制样测试结果标于图中,判断分析过程是否处于控制状态。
(d)控制限(3s)。如果一个测量值超出控制限,立刻重新分析。如果重新测量的结果在控制限内,则可以继续分析工作;如果重新测量的结果超出控制限,则停止分析工作并查找问题予于纠正。
(e)警告限(2s)。如果3个连续点有2个超过警告限,分析另一个样品。如果下一个点在警告限内,则可以继续分析工作了;如果下一个超出警告限,则需要评价潜在的偏差并查找问题予于纠正。
平行双样法:
测定率要求。每批测试试样品随机抽取10%~20%进行双样测定。若试样数量较少时,应增加平行双样测定比例。
允许差。表79.3列出了不同浓度平行双样分析结果的相对偏差最大允许参考数值,其相对偏差的计算见式(79.7):
岩石矿物分析第四分册资源与环境调查分析技术
式中:η为相对偏差,%;X1、X2为同一水样两次平行测定的结果。
DZ/T0130—2006(第6部分水样分析)规定,重复分析相对偏差允许限依据下列数学模型计算:
岩石矿物分析第四分册资源与环境调查分析技术
式中:y为重复分析相对偏差允许限,%;x为各组分分析结果的浓度,ng/L;c为重复分析相对偏差允许限系数(见DZ/T0130—2006附录A表A.01。附录A中未列项目,c值依据客户对质量的要求自行确定,一般取c=1)。
表79.3 平行双样分析相对偏差允许值
注:平行双样分析包括密码平行双样分析,它反映测试结果的精密度。
加标回收分析:
在测定试样时,于同一试样中加入一定量的标准物质进行测定,将测定结果扣除试样的测定值,计算回收率。加标回收分析在一定程度上能反映测试结果的准确度。在实际应用时应注意加标物质的形态、加标量和试样基体等。每批相同基体类型的试样应随机抽取10%~20%进行加标回收分析。
按下式计算回收率:
岩石矿物分析第四分册资源与环境调查分析技术
式中:P为回收率,%;μa为加标水样测定值;μb为原水样测定值;m为加入标准的质量。
标准参考物(或质控样)对比分析:
标准参考物是一种或多种经确定了高稳定度的物理、化学和计量学特性,并经正式批准可作为标准使用,以便用来校准测量器具、评价分析方法或给材料赋值的物质或材料,用于评价测量方法和测量结果的准确度。采用标准参考物(或质控样)和试样同步进行测试,将测试结果与标准样品值相比较,以评价其准确度和检查实验室内(或个人)是
否存在系统误差。
不同分析方法对比分析:对同一试样采用具有可比性的不同分析方法进行测定,若结果一致,表明分析质量可靠。多用于标准物质的定值等。
(4)水质分析数据的正确性与判断
各种离子在水体中处于一种相互联系,相互制约的平衡状态之中,任何一种平衡因素的变化,都必然会使原有的平衡发生改变,从而达到一种新的平衡。因此利用化学平衡的理论,如电荷平衡沉淀平衡等,可以及时发现较大的分析误差和失误,控制和核对数据的正确性,弥补分析质量不能对每份样品提供可靠控制的不足。表79.4中列出了水体的各种化学平衡和误差计算公式。
表79.4 水体中各种化学平衡、误差计算公式及评价标准
续表
注:为了计算方便,可建立测定数据正确性检验的计算机程序。在报告结果的同时,报告正确性检验的计算结果。
参考文献
生活饮用水标准检验方法水样的采集与保存(GB/T5750.2—2006)[S].2006.北京:中国标准出版社
生活饮用水标准检验方法水质分析质量控制(GB/T5750.3—2006)[S].2006.北京:中国标准出版社
水质采样样品保存和管理技术规定(GB12999—91)[S].1991.北京:中国标准出版社
中国地质调查局.2006.地下水污染调查评价规范1∶50000~1∶250000[S].北京:中国标准出版社
中华人民共和国地质矿产部.1987.水样的采取、保存和送检规程[S].北京:地质出版社
⑧ 如何做水质情况分析
你可以在中国水质网上找一找你所需要的答案,上面很全面,希望对你有所帮助。
http://www.water800.com/jspx/jspx.htm
要分析结果真实可靠,首先自然需要所分析的样品具有代表性。在分析之前,如何采样得到具有代表性的样品,是一个不可掉以轻心的问题。
一、如何获得一个具有分析意义的典型样品
获得一个有代表性的样品是任何分析中非常重要的一部分,在取样过程中的过失和误差在以后的分析中是不可能校正的。样本的来源不同,取样的方法也会有所不同。因为样品量的大小(sample size)和不均匀性(inhomogeneity)的不同。有的情况下采样可能是一个难题。
在不均匀的大环境中取样,许多情况下不得不多次采样。任何在特定环境、区域和时间所采的单一的样品,虽然它们在局部有代表性,但对于整个样本母体可能就不具有代表性。
如果我们需要对一个化工厂对大气污染的影响作一个研究,随着上、下风这样的因素上的不同和采样点三维的位置不同,取样可能会有所偏差。如果样本母体含有溶液和悬浮物,所采样品可能是不均一的。被分析物也可能以不同的浓度分布在不同的两相中。要想获得有典型价值的样品,多点取样是必需的。应该根据可操作的采样方案进行采样,有可能的话应对这些方案根据统计学加以验证。
在职业卫生研究中,取样计划通常必须既要考虑一个工人暴露在有毒化合物的瞬间高峰值(peak transient value),也要考虑一个常规工作日中的加权平均值(weighted average)。
这两种分析对应的采样频率有非常大的区别:前一种情况下需在短期中作重复的采样(re—petitive sampling),另一种需要作累积的采样(accumulative sampling)。植物样品本质上是不均匀的,并且其形式不适于直接拿去作仪器分析。对它们去作采样可能要做烘干、切断、 粉碎、挤压、混合或者筛选韵工作,以减小样品的不均匀性和样品的体积。对于所得到的干燥、细碎、流动性的粉末样品,可以重新混合制备一个均匀的二次取样的样品。为了使最终的分析数据可靠并且有意义,采样过程应严格按照计划认真细心地进行,有可能的话这些采样方案应尽可能通过统计学的验证。这些采样方案应该包括在向管理和审批部门(比如药监局)呈交的申报材料中,或者作为符合上述部门各项规定建立起来的草案的一部分。
如果发生了样品的污染、对样品进行粗枝大叶的采集和处理,以及样品在储存过程中发生变化等问题时,和分析过程中出错一样,所得的分析结果也都不可能反映真实的情况。在微量分析的水平,几乎被分析物接触的任何表面都可能变成污染源。从采样到分析样品的时间里,样品发生遇光分解(photo—decomposition)、吸附(adsorption)、挥发损失(vaporization loss)、受热分解(thermal decomposition)、被细菌侵蚀(microbial action)、发生化学反应等等都可能使最终的分析结果无效。留作以后分析用的样品应该避光,盛放在玻璃容器中在低温下保存,来尽可能地抑制发生以上所述的变化,也可能要求采用加入防腐剂、抗氧化剂和调节样品的pH值等方法。组织和食物样品在浸泡时可能会释放酶,导致所储存样品的化学组成发生变化。因此这些样品最好是整个放在液氮中冷冻储存,在分析前再对样品解冻后,再作处理、测定。样品中被分析物和基质的特性都影响分析者所应采取的措施,以保持到分析的时候为止样品的真实完整。
⑨ 水样采取的质量控制
水样采取的质量控制的目的是检验采样过程的质量,是防止样品采集过程中水样受到污染或发生变质的措施。
(1) 现场空白
现场空白是指在采样现场以纯水作样品,按照测定项目的采样方法和要求,与样品相同条件下装瓶、保存、运输,直至送交实验室分析。
(2) 运输空白
运输空白是以纯水作样品,从实验室到采样现场又返回实验室。运输空白可用来测定样品运输、现场处理和贮存期间或由容器带来的可能沾污。
每批样品至少有一个运输空白。
(3) 现场平行样
现场平行样是指在同等采样条件下,采集平行双样密码送实验室分析,测定结果可反映采样与实验室测定的精密度。当实验室精密度受控时,主要反映采样过程的精密度变化状况。
现场平行样要注意控制采样操作和条件的一致。对水质中非均相物质或分布不均匀的污染物,在样品灌装时摇动采样器,使样品保持均匀。
(4) 现场加标样或质控样
取一组现场平行样,将实验室配置的一定浓度的被测物质的标准溶液,等量加入到其中一份已知体积的水中,另一份不加标样,然后按样品要求进行处理,送实验室分析。将测定结果与实验室加标样对比,掌握测定对象在采样、运输过程中的准确变化情况。现场加标除加标在采样现场进行外,其他要求应与实验室加标样相一致。现场使用的标准溶液与实验室使用的一致。
现场质控是指标准样与样品基体组分接近的标准控制样带到采样现场,按样品要求处理后与样品一起送实验室分析。
现场加标样或质控的数量,一般以控制在样品总量的 10%左右,每批样品少于 2 个。
⑩ 水质监测的质控手段是哪些
现场质控:全程序空白,现场平行,现场加标
实验室内质控:平行双样,加标回收,盲样考核