A. 危险源辨识与风险评价表C4-1如何填写
第一步:危险源辨识,识别某个过程,以人为中心,考虑机,料,法,环(包括能量释放)可能产生的危险,危险是根源,人不管是场所中的人,也要考虑相关方,举个例子,冬天大风,高层建筑上的广告牌,可能被大风刮下来,砸到路过行人,轻者伤,重者死!!!
第二步:评价过程,针对你选过程用LED或者风险矩阵,确定出重大危险源!
第三步:控制,这才是核心,针对找到危险源采用不同控制方法,最好是能消除,比如拆掉广告牌,但是有时候,这是不可能做到,只能增加防范措施,也是可以接受!当然如果风险评级出来就是不可接受风险,就只能消除,否则对于生产企业就是停工一条路可走!
兄弟,不知道这个答案,能帮上你吗?如果想知道更详细,最好把你所填表格SHOW出来哦! 新年快乐,这是我2011回答的第一问!
控制风险,快乐生活最重要也!
B. 水处理风险有哪些
水处理有饮用水处理和污水处理,饮用水有家用饮用水和自来水厂饮用水,污水内有生活污水、容商业污水、工业污水等。
紫外线杀菌器,也就是紫外线消毒器,是一种水处理物理方法,被广泛用于水处理中,其优势无二次污染,安全可靠放心!
C. 求危险源辩识与风险评价一览表和环境因素识别、影响评价表实例填的内容(最好是市政或建筑的)
危险源:
a施工机械设备可能造成的机械损伤;
b现场施工电器线路可能造成的漏电伤害;
c现场施工用料可能造成的粉尘、气味伤害;
d高温户外施工造成的脱水等、低温户外施工造成的冻伤等、高空作业可能导致的伤害;
e储存、施工时易燃易爆品的燃烧爆炸伤害;
f集体食堂或外包饮食不卫生引发的伤害;
环境因素:
1化工品泄露因素;
2施工引起的固废、气废、液废的排放;
3施工引起的噪音;
4运输车辆排放的废气、维修排放的废油等;
5取暖制冷用设备带来的氟里昂或其他化工用品对大气层影响;
D. 水源地污染风险评价
4.5.2.1 区域地下水污染风险评价
(1)区域污染源危害分级分类
土地利用类型指土地表面覆盖状况,包括农田、居住地、水域等。不同利用类型的土地上会产生不同的污染物种类及强度,同时土地表面的松散程度不同,污染物进入地下水的难易程度也不同。
研究区内主要有农田、村庄、排污沟、渠系、湖泊和工厂等6种土地利用类型。研究区范围内大部分土地利用类型为农田和村庄,村庄呈条带状分布,中间以农田相隔。研究区东北部零星分布有几个湖泊,引水渠则贯穿整个研究区,从研究区西南部黄河上游引水,分为北秦渠、中马莲渠、南汉渠向东北方向流过,工厂主要分区在研究区中部,是金积镇所在地,工厂废水主要排入清二沟和南干沟,两条排污沟均自南向北流向,是研究区内主要的农田退水沟和工业生活废水的排污沟。
本书从污染物排放及向地下入渗角度出发,通过对不同土地利用类型分析,进行分级评分如下:污染物排放主要分为工业、生活和农业活动3个方面,结合研究区现状,可知研究区内糠醛厂、造纸厂、化肥厂等工厂排污量较大,其次为排污沟的影响,研究区内的排污沟收纳生活和工业排放污水,排污沟底部无任何防护措施,且为渗透性较高的砾石层,故对污染风险贡献很大,再次农业面源,化肥施用量较大且农田土地松散利于化肥农药向下渗透,再次为农村居民点,但因村庄地面密实,故相对影响较小,最后为湖泊和渠系,研究区内的湖泊和渠系水质较好基本不收纳污染,故对污染风险贡献最小。
其中,工厂点型污染源以工厂场地面积代表,排污沟线型污染源根据简单评价法由排污沟向两侧各扩展50米,由此给出不同土地利用类型分级评分得,见表4.10,得到区域污染源危害分级见图4.9。
表4.10 污染源危害分级评分
图4.9 区域污染源危害分级图
(2)区域污染风险评价结果及分析
综合上述区域地下水脆弱性分区与区域污染源危害分级分区,基于ARCGIS平台,采用模糊综合评价方法按1:1权重叠加,获得区域地下水污染风险评价,其污染风险评价分区结果如图4.10所示。
图4.10 区域地下水污染风险分区图
从计算结果可以看出,水源地保护区所在区域地下水污染风险相对较低。高污染风险地区(Ⅴ)主要分布于研究区的西南角以及工厂及排污沟所在地;工厂所在地及排污沟污染风险高,主要是受污染源影响控制,它们是研究内主要的污染来源,尤其清二沟的一部分分布在水源地二级保护区内,对水源地存在潜在影响。研究区的南部、东南部以及水源地保护区西北部属较高污染风险地区(Ⅳ),主要控制因素和研究区西南部高污染风险地区相似。中等污染风险地区(Ⅲ)在本书研究范围内分布广泛且分散,水源地保护区所在地主要为中等污染风险地区。较低和低污染风险地区(Ⅱ、Ⅰ)主要分布在村庄城镇所在地及研究区的东北部地区,村庄所在地人类对地表改造较大,地表入渗条件差,因此,上述地区呈现污染风险较低和低的分布状态。
(3)评价结果验证
本书将区内各单点氨氮污染物浓度作为区域污染风险评价结果的验证依据。本区氨氮污染物分布见图4.11所示。
计算各单点地下水环境污染程度和该点地下水污染风险指数的相关程度,用斯皮尔曼相关系数ρ表征。计算公式如下:
地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例
式中:N——样本数量;
d——特征污染物排行和污染风险指数排行名次差;
ρ——斯皮尔曼相关系数,其等级划分见表4.11所示。
图4.11 区域氨氮浓度分区图
表4.11 ρ等级划分表
根据计算可知本区地下水环境污染程度和地下水污染风险指数的相关程度|ρ|大于0.6,因此判定两者关系为中相关或强相关,认为评价结果合理。
4.5.2.2 开采条件下水源地污染风险评价
金积水源目前为吴忠市备用水源地,预计5年之内启用。当水源地开采使用后,势必造成地下水流场和溶质分布发生变化,本书研究拟采用数值模拟方法预测计算出水源地稳定开采后的地下水动态变化,在此基础上进行稳定开采条件下的污染风险评价。
(1)水文地质概念模型
根据实测地下水位数据,插值得到研究区现状地下水等水位线图(图4.12)。研究区地下水流从西南流向东北,研究区西部为黄河,黄河水量巨大,因而黄河水位受水源地开采影响较小,故研究区西部黄河概化为给定水头的边界,为第一类边界条件;研究区南部为汉渠,再以南地区为山区,故概化为给定流量的边界,为第二类边界条件;研究区东部为京藏高速,该边界地下水位等水位线1125m以上部分与实测等水位线几乎垂直,故概化为隔水边界,为第二类边界条件,1125m以下部分为研究区的流出边界,故概化为给定流量的边界,亦为第二类边界条件。
研究区含水层由全新统早期(
由于本区空间地质结构清楚,地层水平分布连续且均匀,具有统一连续的地下水位,由于本区季节性降雨和灌溉影响,地下水系统的物质输入、输出随时间变化,但变化规律稳定,因此概化为稳态。综上,可将研究区地下水流系统概化为均质各向同性二维稳定流水文地质概念模型。水文地质概念模型如图4.12所示。
图4.12 区域地下水等水位线及水文地质概念模型图
(2)边界条件
1)隔水边界:研究区东部,1125m等水位线以上,边界与等水位线垂直,故为隔水边界。
2)补给边界:研究区南部,为补给边界。另外上部补给边界为大气降雨补给和灌溉补给。
3)排泄边界:研究区东北边界,1125m等水位线以下,为排泄边界,另外上部有地下水蒸发排泄。
(3)水文地质参数值的确定
将实测渗透系数插值得到的所建的研究区水流模型中,渗透系数分布见表4.12,其他水文地质参数值的确定,借鉴水源地开采井的成井勘查报告,见表4.12。
(4)数学模型
本书研究采用地下水模拟与预测的专业软件——Visual MODFLOW。
表4.12 水文地质参数表
为真实地反映污染物迁移的运动规律,采用水流和水质耦合模型,其控制方程为:
地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例
其中:
地下水型饮用水水源地保护与管理:以吴忠市金积水源地为例
式中:h——水头;
ρf,
S0——比弹性贮水系数;
Kij——渗透系数张量;
ej——重力方向分量;
fμ——黏滞相关系数;
QEB——扩展的Boussinesq估计量;
R——延迟因子;
Rd——减缓因子;
Dij——水动力弥散系数张量;
ϑ——衰减率;
ε——孔隙率;
Qx——x=ρ时为源汇项,x=C时为污染物溶质;
0——参考浓度;
Cs——最大浓度;
pf——流体的压力;
g——重力加速度;
kij——渗透率张量;
μf,μfo——流体的动力黏滞系数和参考值;
Dd——流体的分子扩散系数;
L,βT——纵向与横向弥散度;
χ(C)——依赖浓度的吸附函数。
上述控制方程与研究区的边界条件一起构成本次地下水模拟的数学模型。
(5)网格剖分
网格剖分的大小影响模拟结果的精度。剖分越细,能够使结果表达的更为细致,比如水位变化更加平滑等,但是过密的剖分导致程序运行计算量加大,导致运行时间加长。本研究综合考虑各方面因素,确定网格间距为13.3m,共剖分4752个网格。剖分结果如图4.13所示。
(6)模型识别
模型识别是数值模拟中重要的过程,通常需要进行多次的参数调整与运算。运行模拟程序,可得到概化后的水文地质概念模型在给定水文地质参数和各均衡条件下的地下水流场空间分布,通过拟合同时期的流场,识别水文地质参数、边界值和其他均衡项,使建立的模型更加符合研究区的水文地质条件。
通过反复调整后,获得稳定流场。用22个实测点位数据进行模型识别,对比模拟值发现,其中17个点,计算值与实测值误差小于0.5m,占总数的77.3%,满足《地下水资源管理模型工作要求》中的规定,说明模型基本准确,计算流场与实际流场基本吻合。
(7)水流模拟
水源地的开采对污染风险的影响主要是通过对地下水流场的改造,水源地开采会产生降落漏斗,扩大水源地地下水的补给来源,从而增大了水源地地下水受污染的可能性,污染风险增高。
吴忠市金积水源地预计开采20年,根据该水源地《成井技术成果报告》中设计的稳定开采量40000m3/d,加入开采井及其抽水量,预测稳定开采条件下水源地降落漏斗范围,如图4.14所示。可以看到,水位高程在1123m以上地区均为水源地的集水地区,水源地保护区的集水区域向两侧和下游发展。
图4.13 模拟区平面网格剖分
(8)验证开采抽水的影响半径
采用“大井法”确定影响半径,首先根据开采井分布的几何图形,《水文地质手册》中查表计算引用影响半径r0。开采井群分布为菱形,故r0=η∗c/2,见图4.15,其中,c=1.2km,θ=68.2°,查表3.41,取η=1.16,故r0=0.696km。故将开采群井转化为半径为0.696km的大井,大井中心位于菱形中心。金积水源地为傍河且含水层各向均质的水源地,《水文地质手册》中查表得其引用影响半径为R0=2d,见图4.16所示,d为大井中心到河岸的距离,d=2.0km,故R0=2d=4.0km。
模拟水源地开采稳定条件的流场显示开采井群的影响半径约为3.9km,如图4.14,与经验公式法计算的4.0km比较接近,故认为模型与实际情况较为吻合。
表4.13 η与θ对应表
由于缺乏长期观测数据,因此无法进行模型验证,但是研究区地质条件简单,而且水位较为稳定,且模拟开采的影响半径与经验公式计算所得较为相近(图4.15,图4.16),故认为经过识别的模型基本可以用来预测模拟。
图4.14 水源地稳定开采条件下的降落漏斗范围图
图4.15 菱形井群引用半径计算公式
图4.16 引用影响半径计算公式图
(9)特征污染物迁移模拟
通过实测研究区地下水水质数据,得出氨氮、TDS、总硬度、亚硝酸盐、铁、锰等为本区的特征污染物,其中超标最严重的为氨氮,故将氨氮作为预测因子。在 VISUAL MODFLOW数值模拟软件中,模拟了水源地开采20年末氨氮污染源的扩展情况,1、2、3、4、5、6、8、10、15、20年的污染晕迁移情况见图4.17。分析可以看到,由于水源地地下水的开采,使得水源地下游和两侧的氨氮污染物向水源地迁移,水源地一级保护区东侧污染源,在开采3年时,污染晕与一级保护区相切,15年的时候已经进入开采井;二级保护区北部的污染源在开采6年的时候,污染晕与一级保护区相切,20年后未进入开采井但距离已经很近;一级保护区南部的污染源向水源地方向迁移,但未进入二级保护区内;保护区东南部和西南部污染源未受水源地开采影响,向下游运移,未进入二级保护区。
图4.17 预测水源地开采污染晕扩展范围图
(10)基于预测的区域地下水污染风险评价
基于上述研究,在ARCGIS平台上,在研究区区域地下水污染风险分区图的基础上,叠加预测的特征污染物氨氮的运移模拟分级图,形成基于Visual Modflow模拟预测的研究区地下水污染风险分区图(图4.18),图中带有稳定开采条件下的流场等值线。
从图中可以看出,相比较图4.18而言,特征污染物氨氮污染晕所在位置污染风险增高,部分已经进入水源地一级保护区,说明现有氨氮分布在开采条件下会对水源地水质造成污染,需要予以治理。
4.5.2.3 水源地污染风险评价
地下水脆弱性表征着研究区地下水本身抵抗污染的能力,污染源危害分级表征着不同污染源对地下水的污染风险水平的大小,二者叠加表征着研究区不同地区地下水污染风险的可能性大小。
(1)现状水源地污染风险评价
综合上述研究区区域污染风险分级图,基于ARCGIS平台,采用模糊综合评价方法按1:1权重叠加,获得水源地污染风险评价,其污染风险评价分区结果如图4.19所示。
图4.18 稳定开采条件下水源地区域污染风险分区图
图4.19 水源地污染风险分区图
从计算结果可以看出:基于水源地保护的水源地污染风险分区图中,污染风险高和较高的地区主要为水源地保护区所在地以及其西南地区,这些地区正是现状流场水源地保护区及其上游地区,这正是水源地水质需要特别保护的地区。另外,排污沟和工厂所在地也是高风险和较高风险地区,它们是主要的污染源,需要加强监管和控制。中等污染风险地区分布较为零散,主要在一级保护区北部村庄所在地,水源地保护区东部、东南部及东北部地区,是水源地污染风险评价中较低或低风险地区,主要是因为它们处于水源地下游地区或者不是保护区地下水的上游来水区域。
(2)预测水源地污染风险评价
综合上述基于Visual Modflow预测的区域地下水污染风险分区图与研究区保护区分区图,基于ARCGIS平台,采用模糊综合评价方法按1:1 权重叠加,获得预测的水源地污染风险分区,如图4.20所示。
图4.20 预测水源地污染风险分区图
从计算结果可以看出:污染风险高和较高的地区主要为水源地保护区所在地及其西南地区,这些地区正是现状流场水源地保护区及其上游地区,正是水源地水质需要特别保护的地区。另外,排污沟和工厂所在地也是高风险和较高风险地区,它们是主要的污染源,需要加强监管和控制。中等污染风险地区分布主要在一级保护区北部村庄所在地、保护区南部和东南部。水源地保护区东部、东南部及东北部地区,是水源地污染风险评价中较低或低风险地区,主要是因为它们处于水源地下游地区或者不是保护区地下水的上游来水区域。
E. 地下水污染风险评价
一、地下水污染风险分析
地下水污染风险是指地下水受到污染的概率,它表示含水层中的地下水由于地表直接的活动造成不能令人接受程度的污染的概率。这种污染是基于地下水用途而制定一系列标准而言的。当污染指标超过该地下水用途所规定的指标时,视其为污染。地下水污染风险评价的目的是确定不同地区地下水受污染的风险大小,以及确定什么样的风险是可以接受的,并将这样的风险降至可接受的最低程度。
地下水污染是由含水层本身的脆弱性与人类活动产生的污染负荷造成的。因此在相关区域内,地下水污染的风险将成为污染荷载和含水层污染的敏感性之间作用的结果。在没有污染荷载存在的情况下,就不会有污染风险的。污染物的荷载可以控制或改变,但是含水层的敏感性是本质的、天然的特性。因此,我们提出从以下三个方面来考虑地下水受污染的风险:
(1)含水层固有脆弱性:它是指在天然状态下含水层对污染所表现的内在固有的敏感属性。
(2)污染源荷载风险:是指各种污染源对地下水产生污染的可能性。
(3)污染危害性:指地下水一旦污染所产生的危害。
二、含水层的固有脆弱性评价
(一)评价指标体系
本系统采用了较成熟的DRASTIC方法来评价含水层的固有脆弱性。DRASTIC方法选取对含水层易污染性影响最大的七项因素作为评价指标。
1.含水层埋深(D)
如果是潜水含水层,由地下水位确定含水层埋深;如果是承压含水层,则取承压含水层顶板为含水层埋深。单位统一为m。
2.净补给量(R)
净补给量主要来源于降雨量,可用降雨量减去地表径流量和蒸散量来估算净补给量,或者用降水入渗系数计算。单位统一为mm。
3.含水层介质类型(A)
根据模型要求,将含水层介质分为以下10类:块状页岩;裂隙轻微发育变质岩或火成岩;裂隙中等发育变质岩或火成岩;风化变质岩或火成岩;裂隙非常发育变质岩或火成岩,冰碛层;块状砂岩、块状灰岩;层状砂岩、灰岩及页岩序列;砂砾岩;玄武岩;岩溶灰岩。
4.土壤介质类型(S)
指土壤层通常为距地表平均厚度2 m或小于2 m的地表风化层。在此,土壤介质分为以下10类:非胀缩和非凝聚性粘土;垃圾;粘土质亚粘土;粉粒质亚粘土;亚粘土;砾质亚粘土;胀缩或凝聚性粘土;泥炭;砂;砾。
5.地形坡度(T)
单位统一为‰。
6.包气带介质类型(J)
是指潜水水位以上或承压含水层顶板以上土壤层以下的非饱和区或非连续饱和区。分为10种类型:承压层;页岩;粉砂或粘土;变质岩或火成岩;灰岩、砂岩;层状灰岩、砂岩、页岩;含较多粉砂和粘土的砂砾;砂砾;玄武岩;岩溶灰岩。
7.含水层渗透系数(C)
影响渗透系数大小的因素很多,主要取决于含水层中介质颗粒的大小、形状、不均匀系数和水的黏滞性等,通常可通过试验方法或经验估算法来确定k值。单位统一为m/d。
基于DRASTIC的评价模型的7项指标的级别与其对应的标准特征值列于表13—2。
表13—2 评价指标的分级标准特征值
含水层介质、土壤介质类型和渗流区介质类型所对应的级别与特征值可根据实际取得的资料由表13—3、表13—4、表13—5查得。
当某一区域的土壤介质由两种类型的土壤组成时,选择最不利的介质类型确定级别。例如,某一区域的土壤有砂和粘土两种介质存在时,可选择砂作为相应的土壤介质;当有三种介质存在时,可选择中间的介质确定级别,例如,有砂、砾和粘土存在时,可选择砂作为相应的土壤介质。
表13—3 含水层介质类型的级别与特征值
表13—4 土壤介质类型的级别与特征值
表13—5 包气带介质类型的级别与特征值
(二)评价方法
采用PCSM指数法模型(计点系统模型,Point Count System Model——PCSM)结合GIS的空间分析功能进行含水层固有脆弱性评价。PCSM 法的综合指数值是通过各参数评分值和各自赋权的乘积叠加得出的,因此又叫权重-评分法。
首先利用GIS将钻孔资料空间插值后得到区域DRASTIC参数分区图,然后将各参数分区图转为栅格图,并根据表13—2重新分类,最后根据以下公式进行叠加分析,得到DRASTIC评价结果。
DRASTIC值=Dr·Dw+ Rr·Rw+ Ar·Aw+ Sr·Sw+ Tr·Tw+ Ir·Iw+ Cr·Cw= Dr·5+Rr·4+ Ar·3+ Sr·2+ Tr·1+ Jr·5+ Cr·3
三、污染源荷载风险评价
(一)污染源荷载风险的评价指标体系
污染源荷载风险等级的计算综合考虑污染的可能性(L)与污染的严重性两个方面,风险计算式:
R=L+S
其中 L=L1+L2;S=Q+A+T
式中:L1为污染源释放污染物的可能性;L2为污染物到达地下水的可能性;Q为污染源释放的污染物的量;A 为污染物运移过程中的衰减;T为污染物毒性。
根据实际情况确定污染源荷载分险的评价指标:污染源种类K(包括毒性)、污染物产生量Q(排放量、污染源尺寸等)、污染物释放可能性L(有无防护措施)、距离D。其中污染源种类K 的取值范围为1~9,见表13—6。污染物数量Q按大、中、小依次取值为1、2、3;污染物释放可能性L分为0、0.5、1;对于距离D,按照污染源周围500 m以内、500~100 m 之间、1000 m以外分别取值2、1、0。
表13—6 污染源种类K的分级标准
续表
(二)评价方法
首先考虑单污染源荷载风险:应用GIS的缓冲区分析,圈定污染源周围的缓冲带,并设置为距离D的取值,单个污染源荷载风险P=K·Q·L·D。表13—7为污染源荷载风险评价分类标准。然后,应用GIS的叠加分析综合考虑研究区内所有污染源的荷载风险,合成结果是风险的相对值。假设各污染源之间不存在拮抗作用和协同作用为前提,用风险值最高的污染源的风险作为叠加结果。
表13—7 污染源荷载风险评价结果重新分类标准
四、地下水污染风险评价
地下水污染风险评价是在含水层固有脆弱性评价、污染源荷载风险、污染危害性评价的基础上进行的。将含水层固有脆弱性评价结果按表13—8重新分类。污染危害性评价以地下水使用目的为分级指标,见表13—9。最后,按表13—10得到地下水污染风险评价结果R,其中“0”表示低污染风险,“1”表示中等污染风险,“2”表示高污染风险。
表13—8 含水层固有脆弱性评价结果重新分类标准
表13—9 污染危害性评价标准
表13—10 地下水污染风险评价
F. 危险源辨识与风险评价表、重大危险源登记表、环境因素识别和评价表重要环境因素登记表、
太多了,如果仅是危险物品,就列出物品性能,有可能的危害,评价分几级,看属于哪一级,登记表做一个就行了,
G. 谁有污水处理厂的危险源识别啊,谢谢
这是说明书
第一章 设计资料
一、自然条件
1、 气候:该城镇气候为亚热带海洋季风性季风气候,常年主导风向为东南风。
2、 水文:最高潮水位 6.48m(罗零高程,下同)
高潮常水位 5.28m
低潮常水位 2.72m
二、城市污水排放现状
1、污水水量
(1)生活污水按人均生活污水排放量300L/人.d;
(2)生产废水量按近期1.5万m3/d,远期2.4万m3/d;
(3)公用建筑废水量排放系数按近期0.15,远期0.20考虑;
(4)处理厂处理系数按近期0.80,远期0.90考虑。
2、污水水质
(1) 生活污水水质指标为
CODcr 60g/人.d
BOD5 30g/人.d
(2) 工业污染源参照沿海开发区指标,拟定为:
CODcr 300mg/L;
BOD5 170mg/L
(3) 氨氮根据经验确定为30md/L。
三、污水处理厂建设规模与处理目标
1、 建设规模
该污水处理厂服务面积为10.09km2, 近期(2000年)规划人口为6.0万人,远期(2020年)规划人口为10.0万人。处理水量近期3.0万m3/d,远期6.0万m3/d。
2、 处理目标
根据该城镇环保规划,污水处理厂出水进入的水体水质按国家3类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为
CODcr≤100mg/L; BOD5≤30mg/L; SS≤30mg/L ; NH3-N≤10mg/L
四、建设原则
污水处理工程建设过程中应遵从下列原则:污水处理工艺技术方案,在达到治理要求的前提下应优先选择基建投资和运行费用少、运行管理简便的先进的工艺;所用污水、污泥处理技术和其他技术不仅要求先进,更要求成熟可靠;和污水处理厂配套的厂外工程应同时建设,以使污水处理厂尽快完全发挥效益;污水处理厂出水应尽可能回用,以缓解城市严重缺水问题;污泥及浮渣处理应尽量完善,消除二次污染;尽量减少工程占地。
第二章 污水处理工艺方案选择
一、工艺方案分析
本项目污水以有机污染为主,BOD/COD=0.54 可生化性较好,重金属及其他难以生物降解的有毒有害污染物一般不超标,针对这些特点,以及出水要求,现有城市污水处理技术的特点,以采用生化处理最为经济。由于将来可能要求出水回用,处理工艺尚应硝化。
根据国内外已运行的大、中型污水处理厂的调查,要达到确定的治理目标,可采用“普通活性污泥法”或“氧化沟”法。
普通活性污泥法,也称传统活性污泥法,推广年限长,具有成熟的设计运行经验,处理效果可靠,如设计合理,运行得当,出水BOD5可达10-20mg/L,它的缺点是工艺路线长,工艺构筑物及设备多而复杂,运行管理困难,运行费用高。
氧化沟处理技术是20世纪50年代有荷兰人首创。60年代以来,这项技术在国外已被广泛采用,工艺及构筑物有了很大的发展和进步。随着对该技术缺点(占地面积大)的克服和对其优点的逐步深入认识,目前已成为普遍采用的一项污水处理技术。
氧化沟工艺一般可不设初沉池,在不增加构筑物及设备的情况下,氧化沟内不仅可完成碳源的氧化,还可实行脱氮,成为A/O工艺,由于氧化沟内活性污泥已经好氧稳定,可直接浓缩脱水,不必厌氧消化。
氧化沟污水处理技术已被公认为一种成功的革新的活性污泥法工艺,与传统活性污泥系统相比较,它在技术、经济等方面具有一系列独特的优点。
1、 工艺流程简单、构筑物少,运行管理方便。一般情况下,氧化沟工艺可比传统活性污泥法少建初沉池和污泥厌氧消化系统,基建投资少。另外,由于不采用鼓风曝气和空气扩散器,不建厌氧硝化系统,运行管理方便。
2、 处理效果稳定,出水水质好。
3、 基建投资省,运行费用低。
4、 污泥量少,污泥性质稳定。
5、 具有一定承受水量、水质冲击负荷的能力。
6、 占地面积少。
污水处理厂的基建投资和运行费用与各厂的污水浓度和建设条件有关,但在同等条件下的中、小型污水厂,氧化沟比其他方法低,据国内众多已建成的氧化沟污水处理厂的资料分析,当进水BOD5在120-180mg/L时,单方基建投资约为700-900元/(m3.d),运行成本为0.15-0.30元/m3污水。
由以上资料,经过简单的分析比较,氧化沟工艺具有明显优势,故采用氧化沟工艺。
二、工艺流程确定:(如图所示)
说明:由于不采用池底空气扩散器形成曝气,故格栅的截污主要对水泵起保护作用,拟采用中格栅,而提升水泵房选用螺旋泵,为敞开式提升泵。为减少栅渣量,格栅栅条间隙已拟定为25.00mm。
曝气沉砂池可以克服普通平流沉砂池的缺点:在其截流的沉砂中夹杂着一些有机物,对被有机物包裹的沙粒,截流效果也不高,沉砂易于腐化发臭,难于处置。故采用曝气沉砂池。
本设计不采用初沉池,原则上应根据进水的水质情况来确定是否采用初沉池。但考虑到后面的二级处理采用生物处理,即氧化沟工艺。初沉池会除去部分有机物,会影响到后面生物处理的营养成分,即造成C/N比不足。因此不予考虑。
拟用卡罗塞尔氧化沟,去除COD与BOD之外,还应具备硝化和一定的脱氮作用,以使出水NH3低于排放标准,故污泥负荷和污泥泥龄分别低于0.15kgBOD/kgss*d和高于20.0d。
氧化沟采用垂直曝气机进行搅拌,推进,充氧,部分曝气机配置变频调速器,相应于每组氧化沟内安装在线DO测定仪,溶解氧讯号传至中控室微机,给微机处理后再反馈至变频调速器,实现曝气根据DO自动控制
为了使沉淀池内水流更稳定(如避免横向错流、异重流对沉淀的影响、出水束流等)、进出水更均匀、存泥更方便,常采用圆形辐流式二沉池。向心式辐流沉淀池采用中心进水,周边出水,多年来的实际和理论分析,认为此种形式的辐流沉淀池,容积利用率高,出水水质好。设计流量 Q=2.85万m3/d=1208.3 m3/h,回流比 R=0.7。
第三章 污水处理工艺设计计算
一、水质水量的确定
1. 水量的确定
近期水量:生活废水Q生活=6.0×104×300L/人•天=1.8×104m3/d
工业废水Q工业=1.5×104m3/d
公用建筑废水Q公用=1.8×104×0.15=0.27×104m3/d
所以近期产生的废水量为Q
Q=Q生活+Q工业+Q公用=(1.8+1.5+0.27)×104 =3.57×104m3/d
近期的处理系数为0.8,故近期污水处理厂的处理量
Qp=3.57×104×0.8=2.856×104m3/d
远期水量:生活废水Q生活=10.0×104×300L/人•天=3.0×104m3/d
工业废水Q工业=2.4×104m3/d
公用建筑废水Q公用=3.0×104×0.2=0.6×104m3/d
所以远期产生的废水量为Q
Q=Q生活+Q工业+Q公用=(3.0+2.4+0.6)×104 =6.0×104m3/d
远期的处理系数为0.9,故远期污水处理厂的处理量
Qp=6.0×104×0.9=5.4×104m3/d
通常设计污水处理厂时远期的设计处理量为近期的两倍,综合考虑近期和远期的处理水量,取近期的设计处理水量Qp=3.0×104m3/d,远期的设计处理水量Qp=6.0×104m3/d。
2. 水质的确定
近期COD:
COD = =242mg/L
近期BOD5:
BOD5= =129mg/L
远期COD:
COD= =240 mg/L
远期BOD5:
BOD5= =128mg/L
NH3-N按规定取为30 mg/L
所以处理厂的处理水质确定为COD=242mg/L,BOD5=129mg/L,NH3-N=30 mg/L
二、曝气沉砂池设计计算说明书
沉砂池的作用是从污水中去除砂子、煤渣等比重比较大的无机颗粒,以免这些杂质影响后续构筑物的正常运行。常用的沉砂池有平流式沉砂池、曝气沉砂池、竖流沉砂池和多尔沉砂池等。平流式沉砂池构造简单,处理效果较好,工作稳定,但沉砂中夹杂一些有机物,易于腐化散发臭味,难以处置,并且对有机物包裹的砂粒去除效果不好。曝气沉砂池在曝气的作用下颗粒之间产生摩擦,将包裹在颗粒表面的有机物除掉,产生洁净的沉砂,通常在沉砂中的有机物含量低于5%,同时提高颗粒的去除效率。多尔沉砂池设置了一个洗砂槽,可产生洁净的沉砂。涡流式沉砂池依靠电动机机械转盘和斜坡式叶片,利用离心力将砂粒甩向池壁去除,并将有机物脱除。后3种沉砂池在一定程度上克服了平流式沉砂池的缺点,但构造比平流式沉砂池复杂。
和其它形式的沉砂池相比,曝气沉砂池的特点是:一、可通过曝气来实现对水流的调节,而其它沉砂池池内流速是通过结构尺寸确定的,在实际运行中几乎不能进行调解;二、通过曝气可以有助于有机物和砂子的分离。如果沉砂的最终处置是填埋或者再利用(制作建筑材料),则要求得到较干净的沉砂,此时采用曝气沉砂池较好,而且最好在曝气沉砂池后同时设置沉砂分选设备。通过分选一方面可减少有机物产生的气味,另一方面有助于沉砂的脱水。同时,污水中的油脂类物质在空气的气浮作用下能形成浮渣从而得以被去除,还可起到预曝气的作用。只要旋流速度保持在0.25~0.35m/s范围内,即可获得良好的除砂效果。尽管水平流速因进水流量的波动差别很大,但只要上升流速保持不变,其旋流速度可维持在合适的范围之内。曝气沉砂池的这一特点,使得其具有良好的耐冲击性,对于流量波动较大的污水厂较为适用,其对0.2mm颗粒的截流效率为85%。
由于此次设计所处理的主要是生活污水水中的有机物含量较高,因此采用曝气沉砂池较为合适。
曝气沉砂池的设计参数:
(1)旋流速度应保持0.25—0.3m/s;
(2)水平流速为0.08—0.12 m/s;
(3)最大流量时停留时间为1—3min;
(4)有效水深为2—3m,宽深比一般采用1~1.5;
(5)长宽比可达5,当池长比池宽大得多时,应考虑设置横向挡板;
(6)1 污水的曝气量为0.2 空气;
(7)空气扩散装置设在池的一侧,距池底约0.6~0.9m,送气管应设置调节气量的阀门;
(8)池子的形状应尽可能不产生偏流或死角,在集砂槽附近可安装纵向挡板;
(9)池子的进口和出口布置,应防止发生短路,进水方向应与池中旋流方向一致,出水方向应与进水方向垂直,并考虑设置挡板;
(10)池内应考虑设置消泡装置。
一、 曝气沉砂池的设计与计算
1. 最大设计流量Qmax
Qmax=Kz×Qp
式中的Kz为变化系数,Kz=1.42
Qmax=1.42×0.347=0.493 m3/s
2. 池子的有效容积
V=60Qmaxt
式中 V——沉砂池有效容积,m3;
Qmax——最大设计流量,m3/s;
t——最大设计流量时的流动时间,min,设计时取1~3min。
所以 V=60×0.493×1.5=44.37m3
3. 水流断面面积
A=
式中 A——水流断面面积,m2
Qmax——最大设计流量,m3/s;
V——水流水平流速,m/s。
所以 A=4.11m2
取 A=4.2m2
4.池宽B
B=
h——沉砂池的有效水深,m。
取h=2m。所以B= =2.1m
B/h=1.05,满足要求。
5. 池长
L= = m,取L=10.5m
此时L/B=5满足要求
6.流速校核
Vmin= m/s,在0.8~1.2m/s之间,满足要求
7.曝气沉砂池所需空气量的确定
设每立方米污水所需空气量 d=0.2m3空气/m3污水
8.沉砂槽的设计
若设吸砂机工作周期为t=1d=24h,沉砂槽所需容积
式中Qp的单位为m3/h
设沉砂槽底宽0.5m,上口宽为0.7,沉砂槽斜壁与水平面夹角60°,
沉砂槽高度为 h1=
沉砂槽容积为
9.沉沙池总高
设池底坡度为0.3,坡向沉砂槽,池底斜坡部分的高度为
h2=0.3×0.7=0.21m
设超高 ,沉沙池水面离池底的高
m
10.曝气系统的设计
采用鼓风曝气系统,罗茨鼓风机供风,穿孔管曝气
(1)干管直径d1:由于设置两座曝气沉砂池,可将空气管供应两座的气量,即主管最大气量为q1=0.0694×2=0.1388m3/s,取干管气速v=12m/s,
干管截面积A= = =0.0116m2
d1= = m=120mm,
因为没有120mm的管径,所以采用接近的管径100mm。
回算气速v=17.7m/s 虽然超过15 m/s,但若取150的管气速又过小,所以还是选择管径100mm。
(2)支管直径d2:由于闸板阀控制的间距要在5m以内,而曝气的池长为10.5米,所以每个池子设置三根竖管,设支管气速为v=5m/s,
支管面积 A= m2
d2= = mm,
取整管径d2=80mm
校核气速v=4.6m/s (满足3—5m/s)
(3)穿孔管:采用管径为6mm的穿孔管,孔出口气速为设5m/s,孔口直径取为5mm(在2~6mm之间)
一个孔的平均出气量 q= =9.81×10-5m3/s
孔数:n= 个
孔间隔 为 ,在10~15mm之间,符合要求。
穿孔管布置:在每格曝气沉砂池池长一侧设置1根穿孔管曝气管,共两根。
二、细格栅的选型和计算
选用XG1000型细格栅,参数如下
设备宽B:1000mm 有效栅宽B1:850㎜ 有效栅隙:5㎜ 耙线速度:2 m/min 电机功率:1.1kw 安装角度:60° 渠宽B3:1050㎜ 栅前水深h2:1.0m/s 流体流速:0.5~1.0m/s
栅条宽度s=0.01m
1. 栅前后的水头损失
水流断面面积 m2
栅前流速
在0.4~0.9m/s范围内,复合要求
设过栅流速为v=0.6m/s
设栅条断面为锐边矩形断面,取k=3 ,则通过格栅的水头损失为:
。
3. 栅槽总长度
栅前的渠道超高设为0.45m,所以渠道高度为1.45m
因为安装高度是取60°,所以格栅所占的渠道长为1.45×ctg =1.45×ctg60°=0.84m
栅后长1米。
所以渠道的总长度
L=0.5+0.84+1=2.34m
三、水面标高
根据经验值污水每经过一个障碍物水面标高下降3~5cm,根据曝气沉砂池的有效水深以及砂斗的高度可推算出各个构筑物的水面标高,本次设计以经过一个障碍物水位下降5cm来计算,以曝气沉砂池的砂槽底为0米进行计算。
曝气沉砂池的水面标高:2.38m
细格栅与曝气沉砂池之间的配水井的水面标高: 2.43m
细格栅栅后水面标高: 2.48m
细格栅栅前水面标高:2.48+0.29=2.77m
配水井外套桶水面标高: 2.82m
配水井内套桶水面标高: 2.88
设配水井超高为0.35m
则整个曝气沉砂池系统的最高标高为3.23m
则曝气沉砂池的超高为h1=3.23-2.38=0.85m
四、配水井的计算
设配水井的平均停留时间为T=1.5min,Qp=0.347 m3/s,假设配水井水柱高为5.03米。
配水井面积为
配水井直径为
因为进水管径为1000,管离底为200mm。所以覆土厚度为1.28m。
五、砂水分离器和吸砂机的选择
(1)选用直径LSSF型螺旋式砂水分离器
(2)根据池宽选用LF-W-CS型沉砂池吸砂机,其主要参数为:
潜污泵型号:AV14-4(潜水无堵塞泵)
潜水泵特性 扬程:2m,流量:54m3/h,功率:1.4kw
行车速度为2-5m/min,提耙装置功率 0.55kw
驱动装置功率: 0.37×2kw
钢轨型号 15kg/mGB11264-89
轨道预埋件断面尺寸(mm) (b1-20) 60 10(b1:沉砂池墙体壁厚)
轨道预埋件间距 1000mm
四、氧化沟
1、设计说明
拟用卡罗塞尔氧化沟,去除COD与BOD之外,还应具备硝化和一定的脱氮作用,以使出水NH3低于排放标准。采用卡式氧化沟的优点:立式表曝机单机功率大,调节性能好,节能效果显著;有极强的混合搅拌与耐冲击负荷能力;曝气功率密度大,平均传氧效率达到至少2.1kg/(kW*h);氧化沟沟深加大,可达到5.0以上,是氧化沟占地面积减小,土建费用降低。
氧化沟采用垂直曝气机进行搅拌,推进,充氧,部分曝气机配置变频调速器,相应于每组氧化沟内安装在线DO测定仪,溶解氧讯号传至中控室微机,给微机处理后再反馈至变频调速器,实现曝气根据DO自动控制
2、设计计算
(1).设计参数:
qv=30000m3/d(设计采用双池,则单池流量=15000 m3/d),
设计温度15℃,最高温度25℃,
进水水质:近期:CODCr=242mg/L,BOD5=129.4mg/L, NH3-N=30mg/L,
远期:CODCr=240mg/L,BOD5=128mg/L, NH3-N=30mg/L,
出水水质:CODCr=100mg/L,BOD5=30mg/L,SS=30mg/L,NH3-N=10mg/L
(2).确定采用的有关参数:
取MLSS=3500mg/L,假定其70%是挥发性的,DO=3.0mg/L,k=0.05,Cs(20)=9.07mg/L
y=0.6mgVSS/mgBOD5,Kd=0.05d-1,qD,20=0.05kgNH3-N/kgMLVSS•d,CS(20)=9.07mg/L,
α=0.90,β=0.94,
剩余碱度:100mg/L(以CaCO3),所需碱度7.14mg碱度/mgNH3-N氧化;产生碱度3.0mg碱度/mgNO3-N还原,硝化安全系数:3。
(3).设计泥龄:
确定硝化速率μN
μN=0.47e0.098(T-15)*N/KN+N*DO/ Ko+DO=0.47*e0.098*(15-15)*30/(100.051*15-1.158+30)*2/(1.3+2)
=0.22d-1
θcm=1/=1/0.22=4.5d,设计泥龄θc=3*4.5=13.5d
为了保证污泥稳定,应选择泥龄为30d
(4).设计池体体积:
①确定出水中溶解性BOD5的量:
出水中悬浮固体BOD5=1.4*0.68*30*70%=20mg/L
出水中溶解性BOD5的量=30-20=10mg/L
②好氧区容积计算:
V1=y*qv*(So-Se)*θc/MLVSS*(1+Kd*θc)=0.6*30000*(129.4-10)*30/(0.7*3500*(1+0.05*30))=9278m3
水力停留时间t1= V1/ qv =9278/30000=0.31d=7.4h
③脱氮计算:
产生污泥量=y*qv*(So-Se)/(1+Kd*θc)=0.6*30000*(129.4-10)/(1000*(1+0.05*30))=860kg/d
假设污泥中大约含12.4%的氮,这些氮用于细胞合成,
用于合成的氮=0.124*860=106.6kg/d,转化为:106.6*1000/30000=3.55mg/L
故脱氮量=30-10-3.55=16.45mg/L。
④碱度计算:
剩余碱度=300-7.14*20+3.0*16.45+0.1(129.4-10)=218.5mg/L(以CaCO3)
大于100mg/L,可以满足pH>7.2
⑤缺氧区容积计算:
qD=qD,20*1.08T-20=0.05*1.0815-20=0.032 kgNH3-N/kgMLVSS•d
V2=qv*△N/qD/MLVSS=30000*16.45/0.032/0.7/3500=6295m3
水力停留时间t2=V2/qv=6295/30000=0.21d=5h
⑥总池容积计算
V=V1+V2=9278+6295=15573m3,t=t1+t2=7.4+5=12.4h
(5).曝气量计算
①计算需氧气量
R=(So-Se)qv*/(1-e-kt)-1.42Px+4.6*qv*△N-2.6*qv*NO3-0.56Px
=30000*(129.4-10)/(1-e-kt)/1000-1.42*856.8+4.6*30000*20/1000
-2.6*30000*16.45/1000-0.56*856.8=5049kg/d=211 kg/h
②实际需氧量
Ro’=1.2*R=1.2*211=253.2kg/d
校核:Ro=R*Cs(20)/α/(β*Cs(T)-C)/1.024T-20=253.2*9.07/0.9/(0.94*8.24-3)/1.024 25-20
=477.6kg/h (在400-500之间 符合)
6.沟型尺寸设计及曝气设备选型
采用卡式氧化沟(两座并联):
取有效水深H=3.5m,单沟的宽度b=7.8m,进水量15000 m3/d,
则单沟长=[V/2-0.5π(2b)2 h-2*0.5πb2 h]/4Hb=53m,
单沟好氧区总长度=单沟长*4* V1 /V=126m
单沟厌氧区总长度=单沟长*4* V2 /V=76m
采用四沟道,两台55kW的立式表曝气机(单池)
曝气设备:PSB3250:D=3.25m,P=132kW,n=30r/min,清水充氧量:252kg/h,
7.配水井设计
污水在配水井的停留时间最少不低于3min(不计回流污泥的量),
设截面中半圆的半径为r,矩形的宽度为r,长度为2r,设计的有效水深为4.0m
(2*r*r+0.5πr2)*4=30000*3/24/60
r=2.7m
8.其它附属构筑物的设计
工程设计中墙的厚度为250mm;氧化沟体表面设置走道板的宽度为800mm;;倒流墙的设计半径为3.9m;配水井的进水管道采用的规格为DN900,污泥回流管道采用的规格为DN500;出水井的设计尺寸为3000mm*1000mm*1000mm,出水堰高为100mm,堰孔直径为40mm,出水管采用的规格为DN700。
五、辐流式二沉池
1.设计说明
1.1二沉池的类型
二沉池的类型有:平流式二沉池、竖流式二沉池、辐流式二沉池、斜流式二沉池。其中,辐流式二沉池又分为:中进周出式、周进周出式、中进中出式。
1.2选择辐流式(中进周出)二沉池的原因
由于平流式二沉池占地面积大;竖流式二沉池多用于小型废水中絮凝性悬浮固体的分离;斜流式二沉池较多时候,在曝气池出口污泥浓度高,而且没有设置专门的排泥设备,容易造成阻塞。因此选择辐流式二沉池。从出水水质和排泥的方面考虑,理论上是周进周出效果最好。但是,实际上,考虑异重流,是中进周出的效果最好。因此,选择了选择辐流式(中进周出)二沉池。
2.设计计算
2.1污泥回流比:
2.2沉淀部分水面面积:
流量: ;
最大流量(设计流量):
单个池子的设计流量:
污泥负荷q取1.1m3/(m2.h), 池子数n为2 。
沉淀部分水面面积:
2.3校核固体负荷:
因为142<150,符合要求。
2.4池子直径
池子直径: 根据选型取池子直径为35.0m。
2.5沉淀部分的有效水深
沉淀时间t为2.5s 有效水深:
2.6沉淀池总高
2.7校核径深比:
径深比为 符合要求。
2.8进水管的设计
单体设计污水流量:
进水管设计流量:
取管径D=700mm ,流速为
因为,0.697>0.6符合要求,所以进水管直径为D=700mm。
2.9稳流筒
进水井的流速为0.8m/s ,则过水面积为
过水面积和泥管面积的总和:
由过水面积和泥管面积的总和求出直径为
筒壁厚为250mm, 取管径为900mm。
进行校核:过水面积为
流速为 。
筒上有8个小孔 ,孔面积为S2= ,所以 。
二沉池采用的是ZBX型周边传动吸泥机,稳流筒的直径为3880mm。
取稳流筒出流速度为0.1m/s, 则过水面积为
稳流筒下部与池底距离为
所以稳流筒下部与池底距离大于0.2m,即符合要求。
2.10配水井
配水井设计为马蹄形,在外围加宽700mm为污泥井。
时间取3分钟 流量为
取配水井直径为D=3000mm 则配水井高度
其中,设计水深为7.0m,超高为0.6m。
2.11出水部分单池设计流量:
出水溢流堰设计
(1) 堰上水头 H=0.05mH2O
(2) 每个三角堰的流量0.783L/s
(3) 三角堰个数 因此取n=223(个)
2.12排泥部分
回流污泥量为
剩余污泥量为
因为剩余污泥量小,所以忽略不计,即总污泥量为0.188m3/s。
取流速为0.8(m/s) 直径为 取直径为D=400mm
校核:流速为 0.6<0.75<0.9 因此符合要求。
综上, 二沉池采用的是ZBX型周边传动吸泥机 池径为35000mm.
希望能够帮助你!
H. 有哪位高手会做危险源辨识与风险评价表
第一步:危险源辨识,识别某个过程,以人为中心,考虑机,料,法,环(包括能量释放)可能产生的危险,危险是根源,人不管是场所中的人,也要考虑相关方,举个例子,冬天大风,高层建筑上的广告牌,可能被大风刮下来,砸到路过行人,轻者伤,重者死!!!
第二步:评价过程,针对你选过程用LED或者风险矩阵,确定出重大危险源!
第三步:控制,这才是核心,针对找到危险源采用不同控制方法,最好是能消除,比如拆掉广告牌,但是有时候,这是不可能做到,只能增加防范措施,也是可以接受!当然如果风险评级出来就是不可接受风险,就只能消除,否则对于生产企业就是停工一条路可走!
兄弟,不知道这个答案,能帮上你吗?如果想知道更详细,最好把你所填表格SHOW出来哦!
控制风险,快乐生活最重要也!