A. 有哪些溶剂可用在清洁剂中最好是低毒、高效、环保的
切 削 液 系 列
BP-30水基透明切削液:用于黑色金属切、磨削加工
BP-35水基合成切削液:不含亚硝酸钠,用于机加工冷却润滑
BP-55乳化切削液 :钢铁切削及磨削加工
BP-55A乳化切削液 :含极压剂用于各种加工
BP-70微乳化切削液 :适用于各类机床及加工方式
BP-75线切割液 :用于线切割加工,灭菌性好
BP-75拉伸油 :用于各种板件拉伸冲压润滑
BP-80防锈切削油 :各类金属加工时冷却润滑
清 洗 剂、脱 脂 剂
AF-100电器设备清洗剂:用于高低压设备带电清洗
AF-105精密电子仪器清洗剂:可带电清洗电子仪器的油污、粉尘
SM-210强力水基清洗剂:除去金属表面油污、设备黄袍
SM-220超生波清洗剂 :超声波清洗机专用清洗材料
SM-230有色金属清洗剂:用于铜、铝合金清洗
SM-240中性粉状清洗剂:去除金属表面油污
SM-260水系统除垢剂 :锅炉、空调、热交换器清洗
润 滑 油 脂
AC-45标准液压油:普通液压系统使用
AC-50高级抗磨液压油:精密液压系统,润滑性好
AC-51锂基润滑脂:代替黄油、润滑性好
AC-53齿轮油:齿轮箱用润滑油
防 锈 油、防 锈 剂、保 护 剂
EP-08铸件防锈油:铸件防锈,防锈期长
EP-10薄膜防锈油:油膜薄防锈一年以上
EP-12水基防锈剂:不含亚硝酸钠,用于钢铁件防锈
EP-14脱水防锈油:渗透力强,脱水快防锈期长
AC-60液扳手 :松锈、润滑、渗透、防锈
EP-18软膜防锈油:柔性保护膜,防锈半年左右
WD-40润滑保护剂:松锈、清洗、润滑、保护、导电
磷 化 液
MS-30常温锌系磷化液:稳定性好,利于控制,用于涂装防锈
MS-32中文黑色磷化液:黑膜,可代替煮黑
MS-36常温铁系磷化液:沉渣少,磷化膜薄,防锈期长
除 锈 剂、脱 漆 剂、脱 膜 剂
CW-10快速除锈剂:常温去锈速度快,使用安全
CW-10B除锈防锈剂:带锈磷化防锈,可浸泡涂擦
CW-15醇酸带锈底漆:耐水性好,附着力强,防锈期长
CW-20带锈防锈剂:适用于钢铁表面处理,长期防锈
CW-22脱漆剂:除去各类喷塑、烤漆等涂装层
CW-26脱膜剂:塑料及橡胶制品行业用
其他辅助产品、工具
TB-01杀菌剂:配槽时除去管路中细菌
TB-02消泡剂:除泡性好,被有各种型号
TB-10钝化剂:配合除锈剂使用
金属应急修补胶棒:用于管道、设备的跑、冒、滴、漏
长颈喷枪 :配合电器设备清洗剂使用
安全喷壶 :配合各种水基清洗剂使用
MS-32磷化用表调剂:磷化之前调整工件表面状态
表面活性剂废水的处理既要去除废水中的大量表面活性剂, 同时也要考虑降低废水的COD 和 BOD 等。不同类型的表面活性剂废水要采用不同的处理方法,目前国内外对于表面活性剂废水主要有以下几种处理技术:
1 泡沫分离法
泡沫法是发展比较早、并己经有了初步应用的一种物理方法,是在含有表面活性剂的废水中通入空气而产生大量气泡,使废水中的表面活性剂吸附于气泡表面而形成泡沫,泡沫上浮升至水面富集形成泡沫层,除去泡沫层即可使废水得到净化。研究表明,用微孔管布气,气水比6 ∶1~9 ∶1 ,停留时间 30~40 min ,泡沫层厚度0. 3~0. 4 m ,此时泡沫分离对废水中LAS 的去除率可达90 %以上。宋沁 表明当进水LAS 低于70 mg ·L - 1 时,经处理后的出水LAS < 5 mg ·L - 1 ,LAS 平均去除率> 90 %。韦帮森采用泡沫分离技术在10 d 连续运行中,进水COD 平均浓度783. 14 mg ·L - 1 ,出水COD 平均浓度为49. 02 mg ·L - 1 , COD 平均去除率为 9315 %,出水做鼓泡试验无泡沫产生,说明表面活性剂浓度小于10 mg ·L - 1 ,处理效果好。泡沫分离法尤其是适用于较低浓度情况下的分离。但泡沫分离法对表面活性剂废水的COD 去除率不高,需要与其他方法联合使用。
2 吸附法
吸附法是利用吸附剂的多孔性和大的比表面积,将废水中的污染物吸附在表面从而达到分离目的。常用的吸附剂有活性炭、吸附树脂、硅藻土、高岭土等。常温下对表面活性剂废水用活性炭法处理效果较好,活性炭对LAS 的吸附容量可达到55. 8 mg ·g - 1 ,活性炭吸附符合Freundlich 公式 。但活性炭再生能耗大,且再生后吸附能力亦有不同程度的降低,因而限制了其应用。天然的粘土矿物类吸附剂货源充足、价廉,应用较多,为了提高吸附容量和吸附速率,对这类吸附剂研究的重点在于吸附性能、加工条件的改善和表面改性等方面 。吸附法优点是速度快、稳定性好、设备占地小,主要缺点是投资较高、吸附剂再生困难、预处理要求较高。
3 混凝法
混凝反应不仅能去除废水中胶体颗粒和吸附在胶体表面上的表面活性剂,还能与溶解在水相中的表面活性剂形成难溶性的沉淀。常用于表面活性剂废水处理的混凝剂有铁盐、铝盐及其聚合物和各种有机混凝剂。丁娟研究了三氯化铁、硫酸铝、聚合氯化铝对表面活性剂废水的混凝效果,指出聚合氯化铝为处理表面活性剂废水循环利用的最佳混凝剂。混凝法虽然处理成本低、工艺成熟,但其占地面积大、药剂用量大,并产生大量废渣与污泥,要常与其它的处理方法联合使用才能达到完全去除的目的,一般作为处理高浓度表面活性剂废水的预处理。宋爽利用混凝法预处理了洗涤剂生产废水中大量的SS、油脂类物质及表面活性剂,具有较好的效果,对保证后续处理达标有重要作用。
4 膜分离法
膜分离法指利用膜的高渗透选择性来分离溶液中的溶剂和溶质。常应用膜分离技术有反渗透、超滤、微滤、电渗析和纳滤,其中超滤膜和纳滤膜对表面活性剂废水有很好的处理效果。膜分离法效率高、能耗小,但膜易污染,清洗困难,操作费用高。王锦利用聚丙烯、聚丙烯腈和聚砜3 种不同材质超滤膜处理洗涤污水,发现聚丙烯腈膜较优,能有效去除了水中浊度、悬浮物、油脂等污染物,一定程度保留了游离阴离子表面活性剂,长期循环洗涤对衣物的白度无不良影响。薛罡令洗浴废水经微絮凝纤维过滤- 超滤组合工艺处理后,使原水中超标的COD、浊度、LAS 得到有效降低,而且工艺流程简单、占地面积小、运行操作简易,实现了洗浴废水的简易物化处理法。膜分离的关键是寻找高效高渗透膜和提高处理量,并解决好膜污染问题。近年来膜生物反应器污水处理技术发展较快,它是将膜分离技术中的膜组件与污水生物处理工程中的生物反应器相互结合的新型技术,目前对LAS 废水的处理正处在小试阶段。这种技术综合了膜分离和生物处理技术的优点,在废水回用方面是极具有发展前景的处理技术。
5 催化氧化法
催化氧化法是对传统化学氧化法的改进与强化。常用的Fenton 处理法就是催化氧化法的一种, 属均相氧化法,处理时,如果铁盐浓度较高,则LAS 的去除主要靠絮凝作用;浓度低时,则主要靠氧化作用而去除。近年出现了多相催化氧化法和光催化氧化法。王效成等用多相催化氧化法处理COD 为 840 mg ·L - 1 、LAS 为360 mg ·L - 1的废水,处理后 COD 去除率为84. 8 %,LAS 去除率为88. 3 % ,去除率随反应温度升高而降低,p H 的变化对去除率没有影响。光催化氧化法是在光与催化剂的作用下, 利用反应过程中产生的HO ·等自由基离子来氧化分解表面活性剂的。单建国以TiO2 / GAC 作光催化剂,用太阳光作光源对洗涤剂模拟废水进行光催化降解。结果表明,1 g TiO2 / GAC 可将120 mg 左右、起始质量浓度为150 mg ·L - 1 的LAS 降至 20 mg ·L - 1 。光催化降解速率与表面活性剂的分子结构、离子电荷、吸附性能有很大关系。研究发现,表面活性剂分子中芳环部分比烷基链或烷氧基更易受到·OH、·OOH 的攻击而实现断链降解, 芳香族衍生物比脂肪族衍生物易于光催化降解,在相同条件下光催化降解速率一般为阴离子型> 非离子型> 阳离子型。Hidaka等利用人工光源研究了LAS 和BDDAC 在TiO2 表面上的催化降解, 发现阴离子表面活性剂比阳离子表面活性剂降解快,芳环部分比烷基部分降解快。
6 生物法
生物法降解表面活性剂是目前研究得最多的一种方法,而且已经被一些污水处理厂采用。该法可以粗略地分为活性污泥法、厌氧消化法和利用土壤的自净作用的方法,他们均是利用微生物可以将表面活性剂作为唯一碳源加以利用的特性来完成对表面活性剂的降解。研究发现假单胞菌的许多菌属, 包括沟槽假单胞菌属、孔雀尾假单胞菌属、德阿昆哈假单胞菌属、膜状假单胞菌属、小田假单胞菌属、克罗斯韦假单胞菌属等和克雷伯氏菌属、无色细菌属、黄杆菌属、微球菌属等都可以降解表面活性剂,但对于高浓度的表面活性剂废水,这些细菌的降解活性会受到一定程度的限制。
C. 溶剂性清洁剂有哪些
根据溶剂的溶解力不同,视操作需要,一般为120#,200#溶剂油,甲苯,丙酮,丁酮等,都可以作为相应的清洁剂使用
D. 回用溶剂是什么
回流 溶剂提取后 加热蒸发 再冷凝 循环提取
E. 有机溶剂回收技术的有机溶剂回收方法
(1)吸收法
根据同性相溶的原理,将溶剂空气混合气体从下进入设备,通过上淋高沸点且粘度不大的油性液体(譬如废机油[3]或柴油等)的填料层,气液逆向对流,溶剂分子被油性液体所吸收并溶解其中。通过调节填料层的高度和淋下的油性液体的流量使最后排放的尾气达到环保要求。吸收了溶剂的油性液体可直接用作燃料(如重油用于锅炉燃烧),或通过分馏将溶剂与油性液体分离。采用此法须考虑如下问题:1)混合气体里的溶剂气体浓度如太低而风量又较大时,吸收效果不会太好;2)一天24小时生产,回收的含溶剂的油量必定很大,锅炉燃烧可能会用不完,不用锅炉的单位其含溶剂的油的安全存放是个问题;3)要蒸馏提纯后再投入使用,而蒸馏必须有蒸馏的技术,必须投资建立生产线等。
(2)冷冻冷凝法
有的混合气体里的溶剂气体单一,浓度又高(如夏天加油站的汽油罐装油时,其出气口排出来的只有汽油蒸气),且其饱和蒸气压随温度的变化很大。遇到这种情况,可以采用冷冻冷凝的办法,即将混合气体通过蛇管或壳管式冷凝器进行降温冷凝,溶剂会从混合气体中变成液体而分离出来,降温可用氟利昂等制冷剂,也可用液氮蒸发制冷,根据回收的需要和条件状况采用不同的制冷剂。采用此法所回收的溶剂纯度很高,不加其他处理即可使用。但如下几种情况不适用此方法:1)排出气体量大而溶剂含量偏低;2)饱和蒸气压随温度的变化不大;3)混合气体里含多种溶剂气体,它们的饱和蒸气压随温度的变化情况不一样等。
(3)固体吸附法
用做固体吸附剂的有分子筛、活性炭和活性碳纤维。
分子筛由于其微孔较小、价格昂贵、用于气体干燥而较少大规模用于溶剂回收生产,多用于气体净化。
活性炭是大量用于溶剂回收的吸附剂,从二十世纪初至今仍长盛不衰。活性炭从溶剂空气混合气体里截留溶剂气体的效果较好,又容易为水蒸汽解吸再生而一直获得应用。对于不易氧化的溶剂气体,如烷烃类溶剂,可由热空气解吸;对于易氧化的溶剂气体,可由热惰性气体如纯氮气解吸等等。目前,采用颗粒状活性炭回收溶剂仍是国内溶剂回收的主流。脱除的溶剂需经蒸馏或膜分离达到纯溶剂的标准才能返回使用。蒸馏提纯一般是1种溶剂用1个塔。
活性碳纤维是二十世纪六十年代发展起来的用于溶剂回收的一种新型吸附剂,其价格更加昂贵,甚至比分子筛还高得多,但与活性炭相比较,由于其特殊的微孔结构—它主要含微孔(r<1nm)和少量中孔(1nm<r25nm),中孔和微孔,造成其吸附快,脱除快,烘干容易,使用寿命长(一般3年,活性炭一般只有1年),节约能源(同等溶剂量其解吸和烘干消耗的水蒸汽仅为活性炭消耗量的1/3~1/2),且能实现清洁生产[5]而有光明的前途。其缺点是投资较大。我国从日本进口的照相胶片生产线就配有活性碳纤维吸附器的溶剂回收生产线。国内新设计的溶剂回收生产线多用活性碳纤维吸附器;部分原采用活性炭吸附器的老生产线也有改为活性碳纤维吸附器的趋势。
F. 中水回用的处理方式
一、按用途分类
中水因用途不同有三种处理方式
1. 一种是将其处理到饮用水的标准而直接回用到日常生活中,即实现水资源直接循环利用,这种处理方式适用于水资源极度缺乏的地区,但投资高,工艺复杂;
2. 另一种是将其处理到非饮用水的标准,主要用于不与人体直接接触的用水,如便器的冲洗,地面、汽车清洗,绿化浇洒,消防,工业普通用水等,这是通常的中水处理方式。
3.工业上可以利用中水回用技术将达到外排标准的工业污水进行再处理,一般会加上软化器,RO,EDI/混床等设备使其达到软化水,纯化水,超纯水水平,可以进行工业循环再利用,达到节约资本,保护环境的目的。
二、按处理方法分类
按处理方法,中水处理工艺一般分为 3 种类型:
1 .物理处理法:
膜滤法,适用于水质变化大的情况。
采用这种流程的特点是:装置紧凑,容易操作,以及受负荷变动的影响小。
膜滤法是在外力的作用下,被分离的溶液以一定的流速沿着滤膜表面流动,溶液中溶剂和低分子量物质、无机离子从高压侧透过滤膜进入低压侧,并作为滤液而排出;而溶液中高分子物质、胶体微粒及微生物等被超滤膜截留,溶液被浓缩并以浓缩形式排出。
2 .物理化学法:
适用于污水水质变化较大的情况。一般采用的方法有:砂滤、活性炭吸附、浮选、混凝沉淀等。这种流程的特点是:采用中空纤维超滤器进行处理,技术先进,结构紧凑,占地少,系统间歇运行,管理简单。
3 .生物处理法
适用于有机物含量较高的污水。一般采用活性污泥法、接触氧化法(如图所示)、生物转盘等生物处理方法。或是单独使用,或是几种生物处理方法组合使用,如接触氧化 + 生物滤池;生物滤池 + 活性炭吸附;转盘十砂滤等流程。这种流程具有适应水力负荷变动能力强、产生污泥量少、维护管理容易等优点。
当前,由于一些国家和地区在过度地、毫无节制地开发水资源的同时,环境保护意识比较差,使地表水和地下水均受到了不同程度的污染,使原本具有良好水质的新鲜水供应受到限制;其次,待开发的新鲜水源离集中供水点距离较远,一次性投资费用高昂,这样一些缺水地区无力扩大供水能力。理到非饮用的程度,在此引出了中水概念。中水也就是将人们在生活和生产中用过的优质杂排水(不含粪便和厨房排水)、杂排水(不含粪便污水)以及生活污(废)水经集流再生处理后回用,充当地面清洁、浇花、洗车、空调冷却、冲洗便器、消防等不与人体直接接触的杂用水。因其水质指标低于城市给水中饮用水水质标准,但又高于污水允许排入地面水体排放标准,亦即其水质居于生活饮用水水质和允许排放污水水质标准之间,故取名为“中水”。
中水开发与回用技术得到了迅速发展,在美国、日本、印度、英国等国家(尤以日本为突出)得到了广泛的应用。这些国家均以本国度、区域的特点确定出适合其国情国力的中水回用技术,使中水回用技术越来越臻于完善。在中国,这一技术已受到各级政府及有关部门重视并对建筑中水回用做了大量理论研究和实践工作,在全国许多城市如深圳、北京、青岛、天津、太原等开展了中水工程的运行并取得了显著的效果。我国的国有工业企业和部分民企,比如污染严重和水资源利用较多的企业都建成了中水回用项目,为低碳生产和节能减排的国家级号召做出了贡献。