㈠ RO(反渗透)浓水的处理方法
可以先做预抄处理,由于COD比较袭高,可以用活性污泥法或者投加絮凝剂的方法对有机物进行清除,由此反渗透进水水质达到要求.经过反渗透后,纯水可以回收利用,浓水则回流于活性污泥池或絮凝池,这样可以减少污水或者不进行污水排放.
㈡ 发电厂水处理除盐水,给水,凝结水都是经过什么形成的
首选说你的给水是指的整个电厂的用水来水吧?
那么水质最好的是除专盐水,其次为凝属结水,然后是循环水(循环水主要看工艺,看用在哪,不过一般情况这个水就是循环冷却水),再一个工业水(其实电厂的工业用水很少有处理过的,我做过华电的项目这个水就是软化水),生活水(一般生活水与工业水差不多,但要看电厂是怎么做的,要是取得预脱盐水,那这个水就比工业水好),给水(原水了),消防水(一般惯例回取原水,也有电厂选择系统的浓水)
不知道工艺,只能给你这么大体排一下。
㈢ 高盐废水处理工艺有哪些
废水中主要含有高有机物和高盐分物质,废水为混合废水,由于盐分过高将抑制微生物处理,首先需要将盐分和有机物进行初步分离,建议找专业的环保公司出详细的解决方案,这样才能实质解决达标问题
㈣ 反渗透浓水目前处理回收的技术都有哪些
渗透及反渗透是一种物理现象,含有盐份的水有一种自然渗透压力,当把含盐水(原水)与纯水用微孔直径为万分之一微米的半透膜隔开时,纯水由于渗透压的作用将透过半透膜而进入原水侧。相反,要是在原水侧施加一高于其本身渗透压的压力,则原水中的分子将透过半透膜而进入纯水侧,但原水中的盐份、细微杂质、有机物等成分却不能进入纯水侧,这就是反渗透。基于此种原理,人们发明了反渗透膜和反渗透技术,并将其应用于水处理。
反渗透技术的应用 反渗透技术可用于苦咸水淡化,饮用纯净水生产,优质饮用水生产,工业低含盐低硬度生产用水制备,工业纯水及高纯水制备,工业废水循环利用等。
反渗透水处理的主要特点 物理方法除盐,出水水质稳定 可连续生产,操作简单 运行费用低,废水排放少 占地面积小,适用水质范围宽
㈤ 用超滤+反渗透的除盐水工艺需要用到什么仪器仪表
超滤,用于截留水中胶体大小的颗粒,而水和低分子量溶质则允许透过膜。由膜表面机械筛分、膜孔阻滞和膜表面及膜孔吸附的综合效应,以筛滤为主。所以超滤不能做为脱盐设备,一般用在反渗透前做除盐水预处理设备。
如果在你的问题中选的话只能用离子交换树脂了。
离子交换法是以圆球形树脂(离子交换树脂)过滤原水,水中的离子会与固定在树脂上的离子交换。常见的两种离子交换方法分别是硬水软化和去离子法。硬水软化主要是用在反渗透(RO)处理之前,先将水质硬度降低的一种前处理程序。软化机里面的球状树脂,以两个钠离子交换一个钙离子或镁离子的方式来软化水质。 离子交换树脂利用氢离子交换阳离子,而以氢氧根离子交换阴离子;以包含磺酸根的苯乙烯和二乙烯苯制成的阳离子交换树脂会以氢离子交换碰到的各种阳离子(例如Na+、Ca2+、Al3+)。同样的,以包含季铵盐的苯乙烯制成的阴离子交换树脂会以氢氧根离子交换碰到的各种阴离子(如Cl-)。从阳离子交换树脂释出的氢离子与从阴离子交换树脂释出的氢氧根离子相结合后生成纯水。 阴阳离子交换树脂可被分别包装在不同的离子交换床中,分成所谓的阴离子交换床和阳离子交换床。也可以将阳离子交换树脂与阴离子交换树脂混在一起,置于同一个离子交换床中。不论是那一种形式,当树脂与水中带电荷的杂质交换完树脂上的氢离子及(或)氢氧根离子,就必须进行“再生”。再生的程序恰与纯化的程序相反,利用氢离子及氢氧根离子进行再生,交换附着在离子交换树脂上的杂质。
㈥ 反渗透的浓水一般怎么处理,求助请问反渗透的浓水
常见的反渗透浓水处理方式有:提高回收率、直接或间接排放、综合利用、蒸发浓缩以及去除污染物。
1、蒸馏—结晶技术工艺
蒸馏法处理浓盐水脱盐多采用蒸馏一结晶工艺。它是淡化脱盐方法,工业废水的蒸馏法脱盐技术基本上是从海水淡化技术基础上发展而来的。该技术是把含盐水加热使之沸腾蒸发,再把蒸汽冷凝成淡水、浓缩液进一步结晶制盐的过程。该方法的技术类型主要有多效蒸发、蒸汽压缩冷凝及多级闪蒸等。
2、膜蒸馏一结晶技术
采用膜蒸馏分离技术加蒸发结晶组合的方式。与其它的膜分离过程相比,具有截留率高、能耗低、设备简单,能处理反渗透等不能处理的高浓度废水等优点,其有节能环保的优势膜蒸馏一结晶是膜蒸馏和结晶两种分离技术的耦合。
首先膜蒸馏过程中去除溶液中的溶剂,将料液浓缩至过饱和状态然后在结晶器中得到晶体,该过程中溶剂的蒸发和溶质的结晶分别在膜组件和结晶器中完成该技术可以利用低热值废热,节约能耗时低温的操作条件对膜和设备的机械性能要求较低,可减少总的设备投资和维修成本。
3、浓盐水低温利用—蒸发-结晶工艺
浓盐水低温利用—蒸发-结晶工艺,采用海水淡化工程中的成熟技术,降低温余热作为热源,利用蒸馏浓缩工艺将高含盐水多效蒸发,回收蒸发淡水作为补充水,蒸发结晶后的残留盐渣作为次生废物进一步处理,实现高含盐水的零排放与回用。
(6)除盐浓水处理工艺扩展阅读
随着工业的迅速发展,废水的种类和数量迅猛增加,对水体的污染也日趋广泛和严重,威胁人类的健康和安全。对于保护环境来说,工业废水的处理比城市污水的处理更为重要。
工业废水的处理虽然早在19世纪末已经开始,并且在随后的半个世纪进行了大量的试验研究和生产实践,但是由于许多工业废水成分复杂,性质多变,至今仍有一些技术问题没有完全解决。这点和技术已臻成熟的城市污水处理是不同的。
浓水在工业上一般认为是普通水变为脱盐水除去的部分,也就是说普通水=浓水+脱盐水。
㈦ 什么叫除盐水
溶解于水中盐类等电解质,当水通过强酸性H+型阳树脂层,水中各种阳离子均被树脂上的H+置换到内水中,使其出水显酸容性,其水中含有相当量的碳酸通过除碳器除去2氧化碳。除碳后的水再经过强碱CH型阴树脂层后,水中各种阴离子均被树脂上的CH置换到水中,与水中的H+结合成水,将水中各种盐类几平除尽,这种水被称为除盐水。
㈧ 如何制作除盐水
除盐水
desalted water
除盐水含很少或不含矿物质,通过蒸馏、反渗透、离子交换或这些方法的结合可以做这点。
对心脏病和癌症的研究表明,健康的水是有一定硬度、含一定TDS的水。除盐水作为一种人工软化或纯化的水,不含钙、镁,总溶解固体也很低,饮用它不利于健康。
然而许多人出于自己的考虑仍旧饮用它,通常他们会这样想:我知道应该喝水,可是水被氯等各种化学物质和有毒金属污染,一点儿也不安全,所以我买了蒸馏器或反渗透装置,它们可以将水中所有物质去除,这样水就适于饮用了。这些话听起来耳熟吗?
当我们这样想时,我们只看到了事物的一部分,而不是整体。我们只强调了水中有害成分,却不了解有益的成分。为了喝到健康的水,我们必须从两方面看问题:我们要大幅度减少或消除有害物质,但仍需保留水中有益的矿物质。 大多数情况下,适当的过滤系统或合适的瓶装矿泉水能达到要求——除盐水却不能!
赞成喝脱盐水的人称水中无机矿物质(如钙、镁、硒等)不能被新陈代谢,因而不会导致健康问题,但这是不对的。
事实上,水中的矿物质要比食物中的更易、更好地被人体吸收!矿物质新陈代谢理论权威 John Sorenson博士(西药化学家)说:“饮用水中的矿物质能很好地被吸收。”他发现参与新陈代谢的主要金属元素与非主要元素的比例受水中主要元素数量的影响非常的大;如果所需主要元素得到满足,就很少有或没有非主要元素的吸收,非主要元素就会被排泄掉。
举个例子来说,如果水中钙、镁含量高而铅含量低,人体会选择主要元素(钙、镁),而将非主要元素(铅)排泄掉;但如果钙、镁含量也低,细胞就可能选择非主要元素铅,从而导致蛋白质或酶的机能发生障碍。如果发生这种情况,蛋白质或酶就可能变得有毒。
蒸馏器和反渗透装置能够生产出软化的、不含任何矿物质的脱盐水, 这种软水中任何有害物质的作用都会被放大,脱盐水中少量的有害物质就会比硬水中同等量的有害物质对我们的健康产生更有害、更消极的作用。 所以,出于完全不同的原因,喝被污染的水和除盐水都会对我们的健康造成伤害
㈨ 什么是脱盐水脱盐有哪些方法一般工艺流程怎样
去离子水俗称脱盐水,又称纯水,或深度脱盐水。
一般系指将水中易去除的强导电回质去答除又将水中难以去除的硅酸及二氧化碳等弱电解质去除至一定程度的水。
脱盐可以使用反渗透的方法,这里面的浓水可以再进行晒制,这样可以尽快的把盐的浓度降下来,又可以使浓水中的盐可以得到利用。
主要取决于水质情况,水中盐的浓度等。 蒸发、膜处理、树脂、EDI; 蒸发有普通蒸发,闪蒸;能否拿出盐要取决于水中其他杂质,其他杂质含量如果比较高,怎也不能蒸干,最后也会有 浓水,这是饱和盐水。 膜处理对盐的含量要求较高,一价盐的话只能做到7~10%左右,再高从能耗,设备投资,没耐受等几个方面都会有问题,是用反渗透,不能浓到饱和的主要原因是渗透压,。
如果除二价盐会好些,用纳滤膜可以(如果投资允许的话),这样渗透压问题不会象RO那么突出。但浓水目前无很好方法解决。 树脂脱盐对进水盐含量要求很高,需要较低含盐量,只能作为水深度脱盐使用。 EDI与树脂基本区别不大。
㈩ 含高盐的废水如何处理
高盐废水,其主要来源于化工、制药、石油等企业。该类共同特点是:化学成分复杂、含大量有版机物,包括权有机溶剂、有机酸类、酯类、酮类、酚类等等,而且含盐量高,比如含氯化钠、氯化铵、硫酸铵、硫酸钠或者是多种混合盐等,很难直接用生化方法处理,且物化处理过程较复杂,处理费用较高,是废水处理行业公认的高难度处理废水,高盐废水排放对环境影响巨大,所以得先去除废水中的污染物,才能排放。
为了最大限度的减少此类高有机、杂盐废水排放对环境要求的影响,青岛康景辉在处理该类高有机、杂盐废水的时候,采用多效蒸发(或MVR蒸发)+结晶系统。产生的蒸馏水直接循环回用或达标排放;除盐废物可进一步转换为干燥晶体回收利用或进行进一步处理,从而彻底实现零排放。