① 求一篇关于污水处理的小论文1000字左右
水处理工艺:工艺流程为厌氧或微氧接触混合,短时曝气,分离,好氧饥饿污泥回流或SBR时的直接进水等工序,使原污水与好氧饥饿的污泥充分接触混合、短时曝气、沉降分离;沉降分离后的上清液即处理后的出水,沉降分离后的污泥,大部分在好氧条件下使其饥饿,饥饿污泥再与原污水重复接触,其余部分为剩余污泥排放。工艺系统,主要由依次连接的AC池、AeT池、AS池、AeS池组成
污水处理过程的监视与控制系统由模型、传感器、局部调节器和上位监控策略等4个部分组成。其中,传感器是污水处理厂监控系统中最薄弱,也是最重要、最基础的环节。日益严格的污水排放标准导致了污水处理工艺流程和装备的复杂化,对用于污水处理过程监视与控制的传感器的性能也提出了更高的要求,促进了污水处理领域传感器技术的发展,一些适用于污水处理过程的新型传感器相继问世。污水处理过程是复杂的生化反应过程,所涉及的仪器仪表种类繁多,多数传感器是污水处理过程所特有的,分别应用于不同的场合,反映一个或多个特定变量的状态信息变化。
污水处理工艺一般由机械处理、生化处理和化学处理构成,其中涉及液相、固相、气相三种物质成分。监视这些相态的仪表可以简单地分为通用型和特殊性两大类。
2、污水处理过程的通用仪表
...
h2o123上有不少这类资料,你可以去上面搜搜
② 冶金工业废水处理技术及工程实例的目录
第一篇 冶金工业废水处理概况与技术发展趋势
1钢铁工业废水污染特征与处理现状分析
1.1钢铁工业污染特征与主要污染物
1.1.1钢铁工业排污特征
1.1.2钢铁工业废水特征与主要污染物
1.2钢铁工业废水处理回用现状与节水状况分析
1.2.1钢铁工业废水处理回用现状分析
1.2.2钢铁工业节水潜力与减排现状分析
2有色金属工业废水污染特征与节水减排状况分析
2.1有色金属工业废水污染特征与主要污染物
2.1.1有色金属冶炼废水来源与分类
2.1.2有色金属冶炼废水污染特征与危害性
2.2有色金属工业废水处理现状与节水减排途径
2.2.1有色金属工业冶炼废水处理现状与分析
2.2.2有色金属工业冶炼废水处理回用与节水减排对策
3冶金工业废水处理回用的技术对策与发展趋势
3.1冶金工业废水处理回用的基本方法与途径
3.1.1物理法处理回用技术与途径
3.1.2化学法处理回用技术与途径
3.1.3物理化学法处理技术与途径
3.1.4生物法处理技术与途径
3.2冶金工业废水处理回用技术差距与对策
3.2.1冶金工业环保水平与差距
3.2.2钢铁工业用水安全保障技术与废水处理回用的技术对策
3.2.3有色冶金工业废水处理回用的技术对策
3.3冶金工业废水处理回用技术的发展趋势
3.3.1冶金工业废水的最少量化
3.3.2冶金工业废水的资源化
3.3.3冶金工业废水的无害化
3.3.4循环经济发展模式与废水生态化
第二篇钢铁工业废水处理与回用技术及工程实例
4钢铁工业废水减排途径与清洁生产减排新技术
4.1钢铁工业废水特征与处理工艺选择
4.1.1钢铁工业废水排放特征
4.1.2钢铁工业废水排放与处理工艺选择
4.2钢铁工业节水减排途径与废水处理回用技术的差距
4.2.1钢铁工业节水减排途径与对策
4.2.2钢铁工业废水处理回用的技术差距与分析
5矿山废水处理与回用技术及工程实例
5.1矿山废水特征与污染控制的技术措施
5.1.1矿山废水特征与水质水量
5.1.2控制矿山废水污染的基本途径与减排措施
5.2矿山废水处理与回用技术
5.2.1中和沉淀法处理矿山废水
5.2.2硫化物沉淀法处理矿山废水
5.2.3金属置换法处理矿山废水
5.2.4沉淀浮选法处理矿山废水
5.2.5生化法处理矿山酸性废水
5.2.6中和?混凝沉淀法处理选矿废水
5.2.7氧化还原法处理选矿废水
5.3矿山废水处理回用技术及工程实例
5.3.1南山铁矿酸性废水处理与回用的工程实例
5.3.2硫化法处理某矿山废水的工程实例
5.3.3置换中和法处理某矿山废水的工程实例
5.3.4姑山铁矿选矿废水混凝沉淀法处理回用的工程实例
6烧结厂废水处理与回用技术及工程实例
6.1烧结厂废水特征与水质水量
6.1.1烧结厂用水要求与废水来源
6.1.2烧结厂废水特征与处理技术要求
6.2提高烧结厂废水资源回用技术途径与措施
6.2.1改革工艺设备,消除和减少污染源
6.2.2采用先进处理技术,减少外排废水量
6.2.3合理串接与循环用水,基本实现“零”排放
6.3烧结厂废水处理工艺与回用技术
6.3.1烧结厂废水处理工艺与回用技术发展进程
6.3.2浓缩池?浓泥斗处理与回用工艺
6.3.3浓缩池?水封拉链机处理与回用工艺
6.3.4浓缩?过滤法处理与回用工艺
6.3.5串级?循环综合处理与回用工艺
6.3.6浓缩?喷浆法处理与回用工艺
6.3.7集中浓缩综合处理与回用工艺
6.4烧结厂废水处理回用技术及工程实例
6.4.1浓缩?过滤法处理与回用工程实例
6.4.2磁化?沉淀法处理与回用工程实例
6.4.3浓缩?喷浆法处理与回用工程实例
7焦化废水处理与回用技术及工程实例
7.1焦化废水来源、特征与水质水量
7.1.1焦化废水来源
7.1.2焦化废水特征与水质水量
7.2焦化废水处理存在的难题与解决的途径
7.2.1焦化废水有机物组成
7.2.2预处理后焦化废水中有机物组成与类别
7.2.3焦化废水活性污泥法处理效果与问题
7.2.4厌氧状态下难降解有机物的降解特性与效果
7.3焦化废水处理与资源化技术的研究和开发
7.3.1国内外焦化废水处理现状与发展
7.3.2活性污泥法处理
7.3.3生物铁法处理
7.3.4缺氧?好氧(A?O)法处理
7.3.5厌氧?缺氧?好氧(A?A?O)法处理
7.3.6A?O?O法处理
7.3.7应用HSB技术处理焦化废水的试验研究
7.3.8利用烟道气处理焦化剩余氨水或全部焦化废水
7.4焦化废水处理与资源化技术及工程实例
7.4.1A?O?O法处理焦化废水的工程实例
7.4.2气浮除油+A?O工艺处理焦化废水的工程实例
7.4.3A?A?O法处理焦化废水的工程实例
7.4.4采用深度处理实现焦化废水回用的工程实例
7.4.5利用烟道气处理焦化剩余氨水或焦化废水的工程实例
8炼铁厂废水处理与回用技术及工程实例
8.1炼铁厂废水特征与水质水量
8.1.1炼铁厂废水来源与污染状况
8.1.2炼铁厂废水特征与水质状况
8.2炼铁厂废水处理与回用技术
8.2.1高炉煤气洗涤工艺与废水来源
8.2.2高炉煤气洗涤水的物理化学组成与沉降特性
8.2.3高炉煤气洗涤水资源回用技术路线与工艺
8.2.4高炉煤气洗涤水含氰处理与回用技术
8.2.5高炉冲渣水处理与回用技术
8.2.6炼铁厂其他废水处理与回用技术
8.3炼铁厂废水处理回用技术及工程实例
8.3.1湘潭某钢铁公司高炉煤气洗涤水处理改造工程实例
8.3.2药剂法处理高炉煤气洗涤水与回用工程实例
8.3.3石灰碳化法处理高炉煤气洗涤水与回用工程实例
8.3.4酸化法处理高炉煤气洗涤水与回用工程实例
9炼钢厂废水处理与回用技术及工程实例
9.1炼钢厂废水特征与水质水量
9.1.1炼钢厂废水来源与污染状况
9.1.2炼钢厂废水特征与水质水量
9.2炼钢厂废水处理与回用技术
9.2.1转炉烟气洗涤除尘废水特征
9.2.2转炉除尘废水成分与特性
9.2.3转炉除尘废水处理与回用技术
9.2.4连铸机用水系统与水质要求
9.2.5连铸废水处理典型工艺流程与回用技术
9.3炼钢厂废水处理回用技术及工程实例
9.3.1宝钢转炉烟气OG法除尘废水处理循环回用工程实例
9.3.2武钢转炉烟气OG法除尘废水处理与回用工程实例
9.3.3宝钢连铸浊循环水处理与回用工程实例
10热轧厂废水处理与回用技术及工程实例
10.1热轧厂废水特征与水质水量
10.1.1热轧厂废水来源与特征
10.1.2热轧厂废水的水质水量
10.2热轧废水处理与回用技术
10.2.1热轧厂废水处理技术现状与水平
10.2.2热轧废水处理要求与方案选择
10.2.3热轧废水处理工艺
10.2.4热轧废水处理主要构筑物
10.3热轧厂废水处理回用技术及工程实例
10.3.1柳钢中板热轧废水处理与循环回用工程实例
10.3.2武钢1700mm热连轧带钢厂废水处理与循环回用工程实例
10.3.3宝钢1580mm热轧带钢厂废水处理与循环回用工程实例
11冷轧厂废水处理与回用技术及工程实例
11.1冷轧厂废水特征与废水水质水量
11.1.1冷轧厂废水来源与组成
11.1.2冷轧厂废水特征与水质水量
11.2冷轧厂废水处理工艺与回用技术
11.2.1冷轧含油、乳化液废水处理与回用技术的方案选择
11.2.2化学法处理含油、乳化液废水与资源回用技术
11.2.3有机膜分离法处理含油、乳化液与资源回用技术
11.2.4无机膜分离法处理含油、乳化液与资源回用技术
11.2.5生物法和其他方法处理含油、乳化液废水
11.2.6冷轧含铬废水处理与资源回用技术
11.2.7冷轧酸碱性废水处理技术
11.3冷轧厂废水处理回用技术及工程实例
11.3.11550mm冷轧带钢厂废水处理工程实例
11.3.2鲁特纳法盐酸废液回收技术与工程实例
12钢铁工业净循环用水系统水质处理与水质稳定技术
12.1钢铁工业净循环用水系统
12.1.1钢铁工业净循环用水系统的形式
12.1.2钢铁工业净循环用水系统
12.2烧结厂净循环系统水质处理与回用技术
12.2.1腐蚀与污垢形成及其抑制方法
12.2.2水质稳定剂的种类与处理工艺
12.2.3处理工艺流程与药剂选择
12.3炼铁厂净循环系统废水处理与回用技术
12.3.1高炉冷却方式及其优缺点
12.3.2工业过滤水开路循环冷却系统废水处理与回用
12.3.3软(纯)水密闭循环冷却系统废水处理与回用
12.4炼钢厂净循环废水处理与资源回用技术
12.4.1转炉高温烟气循环冷却系统与回用技术
12.4.2连铸净循环用水系统与回用技术
12.4.3水质结垢或腐蚀倾向的判断与药剂筛选
第三篇有色金属工业废水处理与回用技术及工程实例
13有色金属工业废水减排途径与清洁生产减排新技术
13.1有色金属工业废水特征与减排基本原则与措施
13.1.1有色金属工业废水污染状况与特征
13.1.2有色金属工业废水减排原则与措施
13.2有色金属工业废水处理途径与工艺选择
13.2.1矿山废水处理途径与工艺选择
13.2.2重有色金属冶炼废水处理途径与工艺选择
13.2.3轻有色金属冶炼废水处理途径与工艺选择
13.2.4稀有金属冶炼废水处理途径与工艺选择
13.3有色金属冶炼废水的重金属处理回收与减排技术
14矿山废水处理与回用技术及工程实例
14.1矿山废水特征与水质水量
14.1.1采矿工序废水特征与水质水量
14.1.2选矿工序废水来源与特征及其水质水量
14.1.3矿山废水污染控制与节水减排技术措施
14.2有色矿山采矿废水处理与回用技术
14.2.1中和沉淀法处理工艺与回用技术
14.2.2硫化物沉淀法处理与回用技术
14.2.3铁氧体法处理与回用技术
14.2.4氧化法和还原法处理与回用技术
14.2.5膜分离法处理工艺与回用技术
14.2.6萃取电积法处理工艺与回用技术
14.2.7生化法处理工艺
14.3有色矿山选矿废水处理与回用技术
14.3.1自然沉淀法处理与回用技术
14.3.2中和沉淀与混凝沉淀法处理工艺与回用技术
14.3.3离子交换法处理工艺与回用技术
14.3.4浮上法处理与回用技术
14.4矿山废水处理回用技术及工程实例
14.4.1武山铜矿矿山废水处理技术及工程实例
14.4.2紫金山金矿含铜废水处理技术及工程实践
14.4.3山东招远罗山金矿含氰废水处理技术及工程实例
14.4.4江西德兴铜矿选矿废水处理与回用的工程实例
15重有色金属冶炼废水处理与回用技术及工程实例
15.1重有色金属冶炼废水来源与特征
15.1.1铜冶炼废水来源与特征
15.1.2铅冶炼废水来源与特征
15.1.3锌冶炼废水来源与特征
15.1.4重有色金属冶炼用水及其水质水量
15.2重有色金属冶炼废水处理与回用技术
15.2.1氢氧化物中和沉淀法处理与回用技术
15.2.2硫化物沉淀法处理与回用技术
15.2.3药剂还原法处理与回用技术
15.2.4电解法处理与回用技术
15.2.5离子交换法处理与回用技术
15.2.6铁氧体法处理与回用技术
15.2.7含汞废水处理与回用技术
15.3重有色金属冶炼废水处理回用技术及工程实例
15.3.1贵溪冶炼厂废水处理回用的工程实例
15.3.2富春江冶炼厂废水处理回用的工程实例
15.3.3韶关冶炼厂废水处理回用的工程实例
15.3.4株洲冶炼厂废水处理的工程实例
15.3.5水口山冶炼厂废水处理的工程实例
16轻有色金属冶炼废水处理工艺与回用技术及其工程实例
16.1轻有色金属废水来源与特征
16.1.1铝金属冶炼废水来源与特征
16.1.2镁金属冶炼废水来源与特征
16.1.3钛生产废水来源与特征
16.1.4氟化盐生产废水来源与特征
16.1.5碳素制品生产废水来源与特征
16.2轻有色金属冶炼废水处理与回用技术
16.2.1轻有色金属冶炼废水处理与回用技术
16.2.2含氟废水处理与回用技术
16.2.3煤气发生站含酚氰废水处理
16.2.4盐酸、氯盐等酸性废水处理与资源化技术
16.3轻有色金属冶炼废水处理回用技术及工程实例
16.3.1抚顺铝厂废水处理与回用技术的工程实例
16.3.2湘乡铝厂废水处理与回用技术的工程实例
16.3.3郑州铝厂废水处理与回用技术的工程实例
17稀有金属冶炼废水处理与回用技术及工程实例
17.1稀有金属冶炼废水来源与特征
17.1.1稀有金属冶炼废水来源
17.1.2稀有金属冶炼废水特征与水质状况
17.2稀有金属冶炼废水处理与回用技术
17.2.1稀有金属冶炼废水处理技术
17.2.2稀土含砷废水处理技术
17.2.3稀土放射性废水处理技术
17.2.4稀土酸碱废水处理技术
17.2.5稀土含铍废水处理技术与回用
17.3稀有金属冶炼废水处理与回用技术及工程实例
17.3.1中和沉淀吸附法处理含钇、稀土放射性废水的工程实例
17.3.2氯化钡与废磷碱液处理稀土金属生产废水的工程实例
17.3.3中和吸附法处理稀土金属冶炼废水的工程实例
17.3.4混凝沉淀法处理含氟与重金属废水的工程实例
18黄金冶炼废水处理与回用技术及工程实例
18.1黄金浸出与冶炼废水来源与特征
18.1.1黄金浸出废水来源与特征
18.1.2黄金冶炼废水特征
18.2黄金废水处理与回用技术
18.2.1含金废水处理与回用技术
18.2.2含氰废水处理与回用技术
18.3黄金冶炼废水处理回用技术的工程实例
18.3.1辽宁黄金冶炼厂废水处理与回用技术的工程实例
18.3.2紫金山金矿冶炼厂废水处理与回用技术的工程实例
参考文献
③ 重金属废水来源及其处理原则是什么
重金属废水主要来自矿山、冶炼、电解、电镀、农药、医药、油漆、颜料等企业排出的废水。废水中重金属的种类、含量及存在形态随不同生产企业而异。由于重金属不能分解破坏,而只能转移它们的存在位置和转变它们的物理和化学形态。
例如,经化学沉淀处理后,废水中的重金属从溶解的离子形态转变成难溶性化台物而沉淀下来,从水中转移到污泥中;经离子交换处理后,废水中的重金属离子转移到离子交换树脂上,经再生后又从离子交换树脂上转移到再生废液中。
因此,重金属废水处理原则是:
首先:最根本的是改革生产工艺.不用或少用毒性大的重金属;
其次:是采用合理的工艺流程、科学的管理和操作,减少重金属用量和随废水流失量,尽量减少外排废水量。重金属废水应当在产生地点就地处理,不同其他废水混合,以免使处理复杂化。更不应当不经处理直接排入城市下水道,以免扩大重金属污染。
对重金属废水的处理,通常可分为两类;
一是使废水中呈溶解状态的重金属转变成不溶的金属化合物或元素,经沉淀和上浮从废水中去除.可应用方法如中和沉淀法、硫化物沉淀法、上浮分离法、电解沉淀(或上浮)法、隔膜电解法等;
二是将废水中的重金属在不改变其化学形态的条件下进行浓缩和分离,可应用方法有反渗透法、电渗析法、蒸发法和离子交换法等。这些方法应根据废水水质、水量等情况单独或组合使用。
④ 电子产品提炼黄金废水废气怎么处理
废水你可以找专门的水处理工程公司,但是废气一般因为提炼黄金里面含有酸碱气体,用喷淋洗涤的方式就可以了。
⑤ 跪求《焦化废水处理技术及发展前景》论文大纲
(一)工程概述
1、废水水质
本工程现有一套处理装置,处理量为200m3/d,需要改建;另外增加马上需要投产的二期工程,新建一套废水处理装置,处理废水量为200m3/d,合计废水总量为400m3/d。
表-1 焦化废水水质 (单位为mg/L)
2、水质排放要求
根据上海市污水综合排放标准二级标准,废水处理后需达到的排放标准如表-2所示:
表-2废水处理排放标准 (除温度、pH外,其余单位为mg/L)
(二) 废水处理工艺
1、工艺流程
本改扩建工程包括原有系统改造及新建两部分。根据上海焦化有限公司废水处理的成果,结合原有的废水处理工艺,新扩改工程采用A1-A2-O生物膜工艺。
尽量不改变已有废水处理设施的功能和结构,充分利用已有废水处理构筑物的处理能力,对老系统进行改造,在原有的A/O系统基础上增加一个厌氧酸化池,即改为A1-A2-O生化系统。新建一套A1-A2-O生化系统,两套系统各承担一半的处理水量。
整个废水处理改扩建工程工艺流程图(略)
2、工艺流程说明
(1)从各车间出来的生产废水及生活污水统一进入调节池,调节池的主要作用是均衡废水的水质和水量,保证后续生化处理设施运行的稳定性。由于废水的含磷量极少,故在调节池中加入磷营养盐,提供微生物所需的营养。
(2)调节池出来的废水由两台泵分别提升至新老两套A1-A2-O生化系统,在生化处理系统中,废水的降解过程如下:
a. 焦化废水首先进入厌氧酸化段。在该段,废水中的苯酚、二甲酚以及喹啉、异喹啉、吲哚、吡啶等杂环化合物得到了较大的转化或去除,厌氧酸化段的设置对于复杂有机物的转化与去除是十分有利的。因此,废水经过厌氧酸化段后水质得到了很好的改善,废水的可生化性较原水有所提高,为后续反硝化段提供了较为有效的碳源。
b. 在缺氧段进行的主要是反硝化反应,从酸化段出来的废水进入缺氧段,同时好氧段处理后的出水也部分回流至缺氧段,为缺氧段提供硝态氮。另外,由于焦化废水中所含反硝化碳源不足,需在缺氧池中加入甲醇作为补充碳源。
经过缺氧段的处理,硝态氮被转化为氮气,达到脱氮的目的。同时,废水中的大部分有机物得到了去除,使废水以较低的COD进入好氧段,这对于好氧段进行的硝化反应是十分有利的。
c. 废水经过缺氧段的处理后进入好氧段。在好氧段,由于废水中所含氨氮较高而COD较低。因此,在这里进行的主要是硝化反应,在好氧段需投加纯碱溶液提供硝化反应所需的碱度。废水经过好氧段的处理后,氨氮基本可全部转化为硝酸盐氮(硝酸盐氮通过回流至缺氧段,在缺氧段最终转化为氮气后得到有效脱氮),同时,有机物得到进一步的降解,使最终出水COD达标。
(3)废水经生化系统处理出来后,经过混凝沉淀池进行泥水分离,在混凝部分投加聚铁,以增加沉淀部分污泥的沉淀性能,并且进一步降低出水COD。
二沉池出水接入“北排”管网。
(4)从二沉池排出的剩余污泥定时排至污泥浓缩池进行浓缩稳定处理,浓缩池上清液回流至调节池再次进行处理,浓缩池污泥排入污泥贮池中,定时由污泥脱水机进行脱水处理。脱水前需加入PAM与污泥进行絮凝反应,提高污泥脱水效率。
污泥脱水后外运处置。
4、工艺条件
(1)控制进水水质水量
根据焦化废水主要来源水质水量的原始统计数据,以及设计方案的规定,进入污水处理系统的废水水质水量必须达到设计要求
(2)废水预处理
为降低后续生化处理负荷,减轻有毒物质的冲击负荷,同时为稳定后续生化处理效果,利于操作管理,废水进入系统以前需进行预处理。
a. 控制进水COD含量
进水COD波动过大,会对系统运行带来很大冲击。因此,根据设计要求应严格控制进水COD在设计要求范围内。
b. 控制进水水温
来自老厂区的终冷废水、蒸氨废水和5#、6#焦炉蒸氨废水因水温很高,需经板式冷凝器及雾化冷却器冷却到38℃以下再排入调节池。
c. 控制进水中油类含量
煤气冷凝废水及各处清浊分流的浊水经重力隔油、气浮除油处理(含油低于30mg/L),使含油量低于影响微生物正常生长的浓度后,再排入调节池。
d. 降低氨氮
部分蒸氨废水先通过焦化有限公司固定氨分解装置,将其氨氮浓度由800 mg/L降低到250 mg/L后,排入调节池。
e. 降低灰分
来自“三联供”的废水因灰分较多,需经沉淀除灰后再排入调节池。
登录到世界印染网站上查阅
⑥ 工厂污水处理论文
摘要:本文系统地介绍并分析了污水处理厂流程中各个处理构筑的能耗情况,并针对各个构筑物提出有效的节能途径。指出了常用的污水好氧处理能耗过高的突出问题,建议改用能耗低,但是造价稍高的好氧过滤等处理方法。污水再生利用也是解决污水处理能耗高的途径之一。 关键词:污水能耗与功效 好氧过滤 生态处理 自净 一、前言 目前我国城市污水处理率低、环境污染压力大,但现行的处理技术多数面临高额资金投入的难题,当前迫切需要低能耗、生态型的污水处理技术。并且,随着人民生活水平的提高和城市化的日益加快,我国城市污水排放量持续增长。我国水污染的治理重点已经开始从工业点源为主的控制治理,逐步转变为以城市生活污水污染为主的控制治理。如何经济有效地解决生活污水的污染问题已成为一个亟待解决的难题,引起了人民群众和政府部门的极大关注。 然而污水处理的费用也是一个很大的问题,要想将污水和废水处理好,对环境的污染降到最低,我们就必须以最经济的方式处理污水,这就涉及到一个污水能耗与功效的问题。下面就污水处理厂的整个污水处理的流程进行分析,找到当前常用的污水处理流程中工艺的不足之处,并提出更好的解决方法,使以后的污水处理更加容易,更加全面,将污水对环境的污染降到最低的限度。 二、污水处理厂的工艺流程 目前,常用于我国城市污水处理的方式为集中污水处理系统和传统的三格式化粪池。其它的处理构筑物也都是大同小异的,主要的流程不外乎如此: 污水收集设施[包括污水管道、雨水管道、工厂排放水管道等]-->污水提升泵站-->格栅拦截-->沉砂池-->初沉池-->曝气池、厌氧池等核心处理工艺流程-->二次沉淀池-->排水管道或渠排入水体[①] 其中核心处理流程可分为一级处理和二级及以上的深度处理。深度处理流程主要有好氧处理流程、厌氧处理流程及两者相结合的处理方法。 目前,好氧处理方法有SBR工艺、UASB工艺、氧化沟、氧化塘等工艺,在曝气池里充入空气或氧气,让好氧细菌除去污水中的有机物杂质;厌氧处理流程主要有厌氧流化床、两相厌氧发酵、厌氧滤池等利用厌氧菌进行厌氧发酵的方法除去污水中的有机物的;另外常用的还有像A20及其变种的工艺流程都是好氧处理和厌氧处理相结合的处理流程,其处理效果往往比单一的处理方式好得多。 深度处理构筑物不外乎以下几种:曝气池、厌氧池、氧化塘、厌氧反应器及特殊的除磷脱氮设备,或者是它们的变种工艺,但是处理原理都是大同小异的。 三、各个处理构筑物的能耗分析 3.1、污水处理系统[②] 目前,污水处理系统又有集中污水处理系统和分散式处理系统。前者是指各种城市生活污水,经预处理符合管道排放标准的工业废水和城市融雪、降水等混合废水经过城市下水管道收集,然后集中被输往城市污水处理厂,城市污水处理厂再根据进水的水质,综合规划,采用适宜的措施集中处理;在达到国家排放标准后,排入自然水系的一种污水处理方式。一般用于经济比较发达的大中型城市。该系统初始投资大,需要敷设相应的城市污水管网,运行管理成本很高,因而对于经济欠发达地区的中小城镇有极大的应用局限性。 分散式污水处理系统,是指在小区或一个工厂设置化粪池或小型的污水处理设施,对生活污水进行预处理,对能够利用的中水进行冲厕所、洗车、浇洒路面花坛等。虽然分散式处理流程可能导致处理费用提升,但是这种处理方式是有它的优越性的,特别是现在过于集中的污水处理费用越来越高,处理流量也越来越大的情况下,分散式处理方式更显示了它的优越性。 3.2、污水提升泵站的能耗分析 随着人们对环境污染越来越严重这一状况的认识和对加强环境保护意识的加强,现在大多数城市都纷纷建设了污水处理厂,处理流程也由简单的一级处理升级为二级或更深度的处理。但是对于大中型城市来说,普启遍还是采用集中处理的方式。一个污水处理厂处理的污水面积都很大,这就需要用提升泵站将远处的污水提升到污水处理厂进行集中处理,这些污水提升泵站不仅要保障所有污水都要提升到污水处理厂,还要适应污水量变化的要求,一般其流量都是很大的,输送的路程也很远,再者污水管道一般都埋设较深,泵站需要有很高扬程,电耗十分可观。 电费是污水提升泵站的主根能耗,输送路程越远,电价越高,像武汉的龙王嘴污水处理厂就设有五个污水提升泵站,将附近很大面积的污水汇集起来,其流量还是不大,目前正在扩建的工程处理流量也才15万吨。 3.3、格栅、沉砂池和初沉池的能耗分析 格栅是利用栅条拦截污水中粗大的杂质,污水经过格栅时,由于栅条的阻挡会引起水头损失,这就需要有水泵提升污水以增大污水的势能;再者,栅渣的机械粉碎处理也是耗能过程。这两者是格栅处理流程的主要能耗根源。 沉砂池和初沉池用以除去污水中粗大的砂粒以及细小的悬浮物,除了污水在池子中的水损外,刮砂刮泥设施以及其后续处理会有很大的能耗,但是这些能耗都不大。 3.4、曝气池的能耗分析 曝气池是好氧处理工艺的能耗大户,大部分的能耗都集中于此。能降低曝气池的能耗就相当于解决了好氧处理工艺流程的能耗问题。 常规的曝气池都是用机械的方式向污水中鼓入空气或是从池底充入空气,并且用搅拌等方式让空气和污水充分混合,从而使空气均匀地分布于污水中,提高好氧使理的效果。 污水在曝气池里的停留时间一般会在两个小时以上,其容积是相当大的,不管是采用叶轮旋转曝气还是通气帽在池底鼓入空气的方式曝气,电机的功率很大,且要昼夜运行,其能耗之大是可想而知的了。 3.5、厌氧池及厌氧处理设备的能耗分析 除了好氧处理技术之处,厌氧处理工艺也很容易为人们所接受,厌氧处理工艺的能耗相对较低,并且可以产生沼气,回收利用也很方便,只是厌氧处理过程中,污水停留时间很长,并且要保证好的处理效果,必须要有较好的隔绝空气的措施。尽管如此,厌氧处理的趋势还是很看好的。 3.6、二沉池及其它处理设施的能耗分析 二沉池是处理后的污水进行泥水分离的地方,现在普遍使用的二沉池都设有刮渣挡板,出水排泥等装置,二沉池的面积也比较大。分离出来的污泥还要用污泥泵输送到污泥泵房,污泥的压缩处理等也是耗能很大的。 现在常用的污泥机械压缩处理,浓缩后的污泥外运填进等方法,耗能巨大,并容易引起二次污染。像污泥中的高浓度污染物很容易随雨水再次进入水循环系统,造成二次污染,有关二次污染的处理也是很伤脑筋的事情。 四、污水处理各个环节的节能途径 4.1、再生回用以减少深度处理 城市污水处理出水的再生利用在我国,花费大量投资建设了城市污水处理厂,但经过处理后的再生水并没有得到充分利用,在城市污水处理决策中应充分考虑污水的再生利用。发展再生水在农业灌溉、绿地浇灌、城市杂用、生态恢复和工业冷却等方面的利用。 城市污水再生利用,应根据用户需求和用途,合理确定用水的水量和水质。污水再生利用,可选用混凝、过滤、消毒或自然净化等深度处理技术。因此,缺水城市和水环境污染严重的地区,在规划建设远距离调水之前应积极实施城市污水再生利用工程,同时做好非投资性或低投资性的节水减污工作。 城市污水再生利用规划建设要依照客观需要和实际可能的原则,按照远期规划确定最终规模,以现状水量及用水需求为主要依据确定实施规模。城市污水再生利用技术选择与工程实施要考虑国情、实际条件和用户需求,城市污水再生利用规模、处理程度、处理流程、输水方式、再生水质、使用用途的选择上,既要满足要求,又要经济合理。目前城市污水再生利用应着重于农业灌溉、市政杂用、景观水体、生活杂用、工业冷却、生态环境和补充地表水。 但是,城市污水再生过程和再生水的使用应确保公众和操作人员的健康安全,以及周边的环境安全,尤其要有效地控制病原菌的污染和传播。再生水使用应满足国家和地方有关污水再生利用的水质标准和规定,处理工艺的选择,尤其是工艺的可靠性和安全性的保障,应经过严格的专家论证、评估和主管部门的批准。 4.2、环境自净和生态处理以降低能耗 城市污水处理厂出水也可看作是水文循环的组成部分,将合乎质量要求的出水排放到河流水体中,使河流水体能维持或变成供下游使用的原水源,不仅经济可行,而且可减少风险并发挥河流自净能力。 正是因为自然环境自身有很强的处理污水的能力,我们可以用生态的方法处理污水,这样不仅可以获得很好的处理效果还能省去很多处理费用,是两全其美的办法。 目前的生态处理方法中很多处理方法都存在占地多,处理流量小的问题。所以生态处理方法要因地制宜,用在空地较多、生物生长好的地方,像人工湿地、土壤层微生物滤池、植物浮床等都是很好的生态处理方法,能耗低,很值得推广。 4.3、各个处理构筑物的节能途径 在污水处理流程中,各个污水处理构筑物的节能途径很多,下面就污水处理流程中各个构筑物的节能方法。 污水提升泵站节能途径。将现有的集中式污水处理改成分散式处理,并充分利用一级处理后的中水,可以减小城市污水处理厂的压力,更可以大大减少深度处理所需的费用。同时污水提升泵站的水量也会适当减少,甚至可以取消,全部采用分散处理模式。污水处理厂只负责处理工厂附近、污水量大的用户排放的污水。 格栅的节能途径。尽量将污水处理设备安装在地势较低的地方,可以减小提升泵的功率。污水经过格栅的时候可以凭借其较快的流速通过栅条,必要时再用提升泵将污水提升至沉淀池。 曝气设施的节能途径[③]。不管是好氧处理还是厌氧处理设施,其能耗都是非常大的。因为我们必须要用电力设备将空气充入到污水中,但是我们可以采用多层好氧过滤的方式减小这一能耗开支。好氧过滤的各个滤层的厚度的材料都是不相同的,实现的过滤效果也大相径庭。 好氧过滤具体的方法是:污水经过格栅拦截之后,即可以直接进入第一层好氧过滤层,第一层好氧过滤层的孔隙是很大的,一般用粗大的砂石铺垫,主要去除污水中大的悬浮物并通过水流在砂石中紊动的流动将空气中的氧气混入污水中。然后污水进入第二层好氧过滤层,这一层的砂石粒径相对较小,污水在这一层的停留时间相对较长,主要是好氧微生物对有机物的氧化过程,在这一好氧滤层里,很容易生成生物膜,类似于生物膜的处理。如果污水的有机物的含量不是很高的话,处理水已经基本达到了排放的标准了,也可以将处理后的水收集起来作中水使用。如果污水的有机物含量很高的话,可以让污水继续进行下一层的好氧过滤,滤层的孔隙也将更小,处理时间更长,效果也更好。在这一层中,由于污水的停留时间较长,对污水中的N和P也有较好的去除效果。 进行好氧过滤处理的排放水已经可以达到排放的要求,没有必要设置二次沉淀池进行泥水分离。这种处理流程适用于建设在河湖的旁边,有利用处理水的就近排放,而且可以不用清水管道或管渠即可。 五、结论 上面提到的比较节能的污水处理方法主要是生态的处理方法,其中好氧生物滤池尽管很节能,但是也有它自身的限制因素所在: 1 占地较大。因为这种处理方式全靠生物进行氧化分解有机物的方式处理污水,污水停留时间很长,所以处理流量是十分有限的,但是正如前面提到的,在大部分污水都用分散式处理方式的情况下,处理流量都不会很大,所以这种处理方式是有它的优势所在的。 2 不能进行反冲洗,容易堵塞。由于污水通过滤层的时候,会生成很厚的生物膜,老化的生物膜脱落后很容易堵塞住滤层的孔隙,过滤效果会因此而大为降低。所以我们只能用孔隙较大的滤料层,并且尽量避免用垂直分层的布置方式。 3 初期造价高,但是处理费用低。初期造价主要集中在滤层铺砌和滤层上面草皮的种植上,但是一经运行,其运行费用是很低的。 该处理方案有以下几个方面的特点: 1 如果在滤层上面种植植被的话,可以将过滤和湿地相结合建设,处理效果会更好。 2 这种处理方案只适用于分散式处理方案中,处理流量很小,具体的设施可以同家庭的小花坛、花园合建,并不会影响建设的美观性。处理后的水可以直接渗透到附近的水池里,用于花坛的浇灌,路面浇洒等,甚至可以回用于冲洗厕所。 3好氧过滤可以结合化粪池共同使用,有化粪池进行初步处理,粗大的杂质已经去除,滤层的堵塞的几率会大大减小。 参考文献: [1]《排水工程》第四版,张自杰主编,顾夏声主审,中国建筑工业出版社出版。 [2]《污水处理能耗与能效》[美]W.F.OWEN,章北平、车武译,金儒霖校,能源出版社出版。 [①] :这里没有分析污泥处理流程和能耗。 [②] :这里的污水处理系统分类是针对污水收集和处理方式而言,分为集中处理和分散处理两种。 [③] :二级及以上的深度处理流程未完全列出,只以好氧处理流程中的曝气池为例,提出了曝气处理的新方法。
⑦ 炼金废水处理不当会有什么处罚
难处理的黄金冶炼厂废水的处理方法
发布时间:2018-4-28 17:58:30 中国污水处理工程网
摘要
本发明公开了一种对高盐、氨氮和难生物降解的黄金冶炼厂废水的处理方法,该方法主要采用了脱盐预处理、两段分置蒸发、生化处理等工艺流程。此工艺处理过程采用成熟可靠的技术,具有安全高效、无二次污染,兼具回收有价物料、资源综合利用、成本可控的特点,处理水质达到了一级排放标准与水回用标准。本发明将几种处理技术相结合具有显著的增益效果,突破了原有处理工艺与现有处理方法的技术瓶颈,有效解决了高盐复杂废水难降解的问题,具有良好的环保与经济效益。
权利要求书
1.一种含高盐、氨氮和难生物降解的黄金冶炼厂废水的处理方法,包括如下步骤:
1)原水混合:将冶炼生产过程产生的酸洗废液、电解贫液、开路输碳、洗碳废水混合, 使混合废水pH值控制在2-5,将混合后产生的沉淀过滤,滤渣压滤、干化后填埋, 滤液进入处理步骤2);
2)对步骤1)处理后液投加氢氧化钠,调节pH6~11,并投加生物絮凝剂20~500ppm与 碳酸钠500~2000ppm;搅拌反应10~90min、过滤,滤渣焚烧填埋或者回收有价金属, 滤液进入处理步骤3);
3)将步骤2)上清液输送至一段汽提环节,提供一初始加热源,将液相体系的温度提升 至60~80℃,同时投加少量NaOH控制初始pH值在11.5±0.5;汽提装置容器底部设 曝气装置,外接空压机,控制气液体积比为2000~4000:1;在上述条件下曝气1~4h;
4)将步骤3)处理后液进行二段蒸发,采用单效或者二效蒸发实现盐水分离;蒸发产生 的蒸汽返回至步骤3)作为热交换加热源,取代初始加热源;蒸汽通过热交换持续将 步骤3)的上清液液相体系的温度提升至60~80℃,通过热交换后的蒸汽冷凝进入步 骤5)生化处理环节;蒸发之后的浓缩液冷却,得到无机盐结晶,冷却上清液与步骤 3)处理后液混合循环返回二段蒸发;
5)根据氨氮的含量,按C:N:P=100:4-6:0.5-1.5的比例投加生物营养源,污泥浓度控制在 2000~4000mg·L-1,溶解氧DO=1~2mg·L-1;以成熟的硝化污泥作为菌源,对氨氮进行 同步硝化反硝化处理。
2.根据权利要求1所述的一种高盐、氨氮和难处理的黄金冶炼厂废水的处理方法,其特 征在于:所述的黄金冶炼厂废水,盐度TDS=5~30wt%、[NH3-N]=3000~30000mg·L-1, COD=100~1000mg·L-1。
3.根据权利要求1所述的一种含高盐、氨氮和难生物降解的黄金冶炼厂废水的处理方法, 其特征在于:步骤1)采用过滤精度为0.5μm的陶瓷滤板过滤。
4.根据权利要求1所述的一种高盐、氨氮和难处理的黄金冶炼厂废水的处理方法,其特 征在于:步骤5)的生化法处理过程以成熟的硝化污泥作为菌源,以葡萄糖作为微生物碳源, 采用序批式处理方法。
5.根据权利要求1所述的一种高盐、氨氮和难处理的黄金冶炼厂废水的处理方法,其特 征在于:步骤5)通过曝气装置的分布在反应容器内实现微生物对氨氮的同步硝化反硝化。
说明书
一种高盐、氨氮和难处理的黄金冶炼厂废水的处理方法
技术领域
本发明涉及了一种对含高盐、氨氮和难生物降解的黄金冶炼厂废水的处理方法,属于环 保水处理领域。
背景技术
在黄金精炼的解吸、电积、提纯的工艺过程中产生了以高盐度、污染物成分复杂、直接 生物降解可行性几乎等于零为特征的难处理废水,行业废水排放标准要求水回用率≥80%,在 循环回用的过程中盐度不断累积,其含盐量TDS≥8wt%。一方面,高盐度的存在,提高了废 水的渗透压与粘度,降低了氧化剂在废水中的扩散系数;另一方面,废水中含有稳定的金属 络合物,常规氧化剂的氧化电位无法对其进行直接分解,是此类废水难处理的主要原因。
某黄金冶炼厂原有处理工艺为“碱中和+硫化沉铜+碱氯法除氨氮”,该方法在初期可以降 解氨氮与COD,实现废水的达标排放,一段时间后随着盐度累积,处理效果不断下降,同时 产生了大量废气、废渣等二次污染。
经查新,现有文献与专利中针对高盐废水的主要处理方法有:(1)生化法:筛选、培养 嗜盐菌实现生化处理,同时施加各种生物强化方法;(2)高压膜分离组合工艺;(3)疏水性 膜蒸发工艺;(4)高级氧化方法,如电化学氧化法、催化氧化方法。但以上方法各有不足之 处。
发明内容
本发明的目的在于克服背景技术高盐废水难处理的缺陷,提供一种高盐、氨氮和难处理 的黄金冶炼厂废水的处理方法,本发明方法包括如下步骤:
一种高盐、氨氮和难处理的黄金冶炼厂废水的处理方法,包括如下步骤:
(1)原水混合:将冶炼生产过程产生的酸洗废液、电解贫液、开路输碳、洗碳等废水混 合,使废水水质稳定,并将pH值控制在2-5,将混合后产生的沉淀过滤,滤渣压滤、干化后 填埋,滤液进入步骤2);
(2)对步骤(1)处理后液投加氢氧化钠,调节pH6~11,并投加复合生物絮凝剂 20~500ppm与碳酸钠500~2000ppm;搅拌反应10~80min、过滤,滤渣焚烧填埋或者回收有价 金属,滤液进入步骤3);
(3)将步骤(2)上清液输送至一段汽提环节,提供一初始加热源,将液相体系的温度 提升至60~80℃,同时投加少量NaOH控制初始pH值在11.5±0.5;汽提装置容器底部设曝气 装置,外接空压机,控制气液体积比为(2000~4000):1;在上述条件下曝气1~4h;
(4)将步骤(3)处理后液进行二段蒸发,采用单效或者二效蒸发实现盐水分离;蒸发 产生的蒸汽返回至步骤3)作为热交换加热源,取代初始加热源;蒸汽通过热交换持续将步 骤3)的上清液液相体系的温度提升至60~80℃,通过热交换后的蒸汽冷凝进入步骤5)生化 处理环节;蒸发之后的浓缩液冷却结晶,冷却上清液与步骤(3)处理后液混合循环返回二段 蒸发;
(5)根据氨氮的含量,按C:N:P=100:4-6:0.5-1.5的比例投加生物营养源,污泥浓度控制 在2000~4000mg·L-1,溶解氧DO=1~2mg·L-1;以成熟的硝化污泥作为菌源,对氨氮进行同步 硝化反硝化处理。
所述的难降解的黄金冶炼厂废水,主要特征为高盐度(盐度TDS≥8wt%)、高氨氮 ([NH3-N]=3000~30000mg·L-1,)、COD=300~1000mg·L-1,难生物降解。
所述的混凝剂为下列之一:以各类表面具有絮凝活性的细菌、霉菌、放线菌、球菌、酵 母菌等微生物中的一种或多种为原料制得的两性生物絮凝剂,与现有的无机混凝剂、人工合 成的高分子絮凝剂相比,具有环保、可自然降解、无二次污染的优点。
步骤(5)生化处理优选以成熟的硝化污泥作为菌源,以液态葡萄糖作为微生物碳源,采 用序批式处理的方法。
步骤(5)优选采用SBR运行方式,通过曝气装置的合理分布在反应容器内实现微生物 对氨氮的同步硝化反硝化。
本发明针对高盐度、高难降解的黄金冶炼厂废水开发出一套工艺成熟可靠、过程简单、 成本可控、行之有效的工艺流程。
步骤(1)中,原水混合有调节水质的作用,在本发明中所针对的黄金冶炼厂废水尤其是 不可缺少的一环。其中提纯废液是pH≤1极端酸性废水;电解废水是pH≥12的极端碱性废水, 混合废水pH值为2-5(优选为3~4),采用优选采用滤精度为0.5μm的陶瓷滤板或者同等精 度其它过滤设备对沉淀渣进行分离,泥饼直接外运填埋或者制砖,滤液进入预处理环节。
步骤(2)中,对步骤(1)处理后液投加生物絮凝剂(20~500ppm)、氢氧化钠(调节pH6~11)。 按比例投加碳酸钠(500~2000ppm),可以利用原水中含有的钙离子,生成的CaCO3沉淀。一 方面可以脱除硬度,另一方面可以作为生物絮凝剂的助凝剂,在生物絮凝剂等电点附近实现 快速沉降。滤渣过滤后可焚烧填埋或者回收有价金属。经过此步骤的处理,原水硬度≤50mg/L, 重金属脱除率≥80%,对氨氮去除率为10~20%,COD的去除率为20~50%。
步骤(3)中,将步骤(2)上清液输送至一段汽提环节,此工艺步骤的热源除初始热源 外,之后都来至步骤(4)二段蒸发的蒸汽,通过热交换将液相体系的温度提升至60~80℃, 同时投加少量NaOH控制初始pH值在11.5±0.5左右。汽提装置容器底部设曝气装置,外接 空压机,控制气液体积比为(2000~4000):1。在上述条件下曝气1~4h,直至氨氮氮大部分挥 发,再通过外接吸收装置对挥发氨氮进行吸收,所使用的吸收液优选为20~50wt%的硫酸。在 此过程中,水分的损失率约为1~3wt%,但对盐分的析出基本无影响。步骤(3)对氨氮去除 率为95~98%。剩余的[NH3-H]为50~200mg/l。在氨氮的汽提过程中,pH不断下降至7~9。
步骤(4)中,将步骤(3)处理后液进行二段蒸发。采用单效或者二效蒸发实现盐水分 离。对于≥8wt%的高盐废水,蒸发分离的水回收率可达到90~95%,通过热交换后冷凝进入生 化处理环节。浓缩液冷却上清液与步骤(3)处理后液混合循环返回二段蒸发。步骤(3)与 步骤(4)实现了氨氮去除、盐水分离的分段处理,同时有效的提高了热能的利用效率。步骤 4)出水水质[NH3-H]为30~150mg/l,COD≤50mg/L,电导率≤100μs.cm-1,后续处理方法优选 常规生化法处理。
步骤(5)中,根据氨氮的含量,按C:N:P=100:5:1的比例投加生物营养源,污泥浓度控 制在2000~4000mg·L-1,溶解氧DO=1~2mg·L-1。根据原水量较小、间歇排放的特点,以成熟 的硝化污泥作为菌源,采用SBR运行方式,通过曝气装置的合理分布可以在反应容器内实现 微生物对氨氮的同步硝化反硝化。采用该方法微生物驯化、繁殖迅速,启动时间仅需16~24 小时。营养源无需每日投加,待系统稳定后,根据运行情况定期按比例投加少量葡萄糖作为 碳源即可。此步骤水力停留时间HRT仅需3~5小时。生化处理后液[NH3-N]≤5mg·L-1, COD≤20mg·L-1,出水水质达到污水综合排放一级标准与中水回用标准,投资省,运行费用低。
本发明技术方案与背景技术方法的主要区别在于:
(1)处理对象为TDS≥8wt%的超高盐度废水,水质含盐率变化较大,对微生物的生长抑 制较明显。有中试结果表明生化法处理短期可能有效,但水质一旦发生变化(盐度变化 ≥2wt%),微生物无法适应渗透压的变化而失去降解活性。另一方面,高浓度无机盐带来的渗 透压对污染物具有“包裹覆盖”作用,导致以各类形式发生的氧化剂出现传质受阻的现象。
(2)高压膜组合工艺不适用于TDS≥8wt%的情况,否则会出现产水回收率偏低,能耗偏 高的情况。
(3)疏水性膜蒸发工艺在一定的条件与前提下可以实现氨氮、盐的分离。例如专利CN 102295378采用内压式中空纤维膜,在酸性条件下,冷凝侧抽真空的方式实现无机盐的提浓、 冷却、结晶后回收。但从内容上看出该方法或仅适用于初始含盐≤5wt%以下的废水。这种方 式存在的主要问题是在更高的初始高盐度环境下,水分的渗透蒸发使废水局部过饱和而形成 结晶,导致中空纤维膜内侧堵塞,同时必须定期排浓来解决膜表面浓差极化带来的渗透通量 下降的问题,这也是该方法的处理量维持在一个较低水平的原因。本发明与该专利不同之处 在于:氨氮不是以直接在废水中形成结晶沉淀,而是先从废水中分离,然后在新的液相环境 中源源不断地形成不饱和溶质体系,具有更为连续的可操作性。再例如CN1546393A使用高 浓度硫酸铵吸收膜另一侧的废水中的氨,实现了废水中氨氮的达标排放,但该发明内容未考 虑到高盐度环境对氨氮传质系数的影响,也没有说明该方法在高盐环境下对氨氮的脱除效果。
(4)高盐度废水含有电解质,故采用电化学氧化的方法直接氧化与间接氧化是理论可行 的,直接氧化生成的OH·具有高氧化电位,可以氧化废水中几乎所有还原性污染物质,但是 OH·发生数量少、存在时间短、使用成本高成为了限制其推广的技术瓶颈,另外,Cl2逸出带 来一些安全问题。其余的高级氧化法也存在各种问题而仅限于实验室研究阶段,工业应用较 为少见。
综上所述,本发明提供的联合处理方法解决了现有技术瓶颈与不足之处,能够切实有效 的处理各类高含盐废水,尤其是针对含盐浓度范围为8~25wt%的超高盐度废水与无机盐饱和 废水,实现重金属、COD、NH3-N等污染物的提标处理。
与背景中所述几种技术相比较,本发明技术对废水水质限制要求低,对各类高盐废水更 具普遍适应性。例如,当废水中不含氨氮时,一段汽提可作为多效蒸发中的一环继续工作, 设备不闲置,使用率高。
本发明的优点还在于:与"前置生化法+蒸发”路线为代表的技术相比,本发明技术无需进 行启动时间长的嗜盐菌提取与培养,避免了运行条件复杂、维护要求严格的高盐生化处理, 仅通过低含泥量、低能耗、底成本的常规生化法即可实现废水达标处理。与“蒸发+后置生化 法”的类似技术相比较,本发明通过“一段汽提+二段蒸发”两段分置优化,提高了热能的利用 效率,去除了95%以上的氨氮并资源化,再进行盐水分离,大幅降低了后续生化法的投资与 处理成本。
⑧ 含重金属废水处理的处理方法
含重金属废水处理使用膜处理技术:
其中纳滤可以浓缩废水中金属离子、盐类等,反渗透可以膜截留金属离子和有机添加剂,而让水分子透过膜,而达到分离、浓缩目的。
含重金属废水进入处理系统,根据需要,经过复合试剂预处理,减少其它离子对膜系统的影响,之后通过纳滤膜、反渗透膜实现物料分离、浓缩。
本系统设置多套纳滤装置,既可以辅助实现浓缩倍数的要求,也可以切换实现出水重金属离子实现达标排放的要求。
重金属废水来源及其处理原则:
重金属废水主要来自矿山、冶炼、电解、电镀、农药、医药、油漆、颜料等企业排出的废水。废水中重金属的种类、含量及存在形态随不同生产企业而异。由于重金属不能分解破坏,而只能转移它们的存在位置和转变它们的物理和化学形态。
例如,经化学沉淀处理后,废水中的重金属从溶解的离子形态转变成难溶性化台物而沉淀下来,从水中转移到污泥中;经离子交换处理后,废水中的重金属离子转移到离子交换树脂上,经再生后又从离子交换树脂上转移到再生废液中。
因此,重金属废水处理原则是:首先,最根本的是改革生产工艺.不用或少用毒性大的重金属。其次是采用合理的工艺流程、科学的管理和操作,减少重金属用量和随废水流失量,尽量减少外排废水量。
⑨ 电镀废水提炼黄金的方法
加烧碱,综合酸,再下锌丝,置换后再用硫酸烧锌丝,稀释过滤,烘焙,冶炼出黄金。贫液只有这样提炼。