⑴ 处理含铜废水,用哪种硫化钠比较好
含多硫化钠的硫化钠酸化后会析出硫磺,沉淀酸性液中的铜离子时,最好用硫化钠浓度高的溶液,这样可以少加试剂呀,另外,少析出硫磺,建议用颜色浅的硫化钠(含多硫化钠的量少,含硫化钠多,沉淀效果会更好一些)。
⑵ 懂污水药剂或环保工作的专业人士来回答。请问硫化钠在污水处理的过程当中有没有絮凝的作用,请专业人士详
硫化钠没有絮凝作用。
硫化钠是还原剂,通常用于含六价铬的电镀废水或铝箔厂废水,以回及金属表面钝答化处理产生的废水,使六价铬还原成三价铬,再通过形成三价铬的氢氧化物沉淀除去铬离子。负二价硫离子被氧化成亚硫酸根。
如果废水中含有硫化钠,加入亚铁离子可以生成难溶性FeS,但它呈悬浮状细小颗粒,很难沉淀,实践中很少应用。
⑶ 用硫化钠能除废水中的铜离子和汞离子吗
废水除汞,是在废水中加入过量的硫化钠,使汞离子与硫离子生成不溶于水的硫化汞沉淀出来。
化学方程式为:Hg(NO3)2+Na2S=HgS↓+2NaNO3离子方程式为:Hg2+ + 2S2- = 2HgS↓
废水除铜,是在废水中加入过量的硫化钠,使铜离子与硫离子生成不溶于水的沉淀出来。
Na2S+Cu2+ =CuS 黑色沉淀+ 2Na+
(3)硫化钠在焦磷酸铜废水处理扩展阅读:
硫化钠的应用领域:
1、染料工业中用于生产硫化染料,是硫化青和硫化蓝的原料。印染工业用作溶解硫化染料的助染剂。制革工业中用于水解使生皮脱毛,还用以配制多硫化钠以加速干皮浸水助软。
造纸工业用作纸张的蒸煮剂。纺织工业用于人造纤维脱硝和硝化物的还原,以及棉织物染色的媒染剂。制药工业用于生产非那西丁等解热药。此外还用于制硫代硫酸钠、硫氢化钠、多硫化钠等。
2、在铝及合金碱性蚀刻溶液中添加适量的硫化钠可明显改善蚀刻表面质量,同时也可用于碱性蚀刻液中锌等碱溶性重金属杂质的去除。
3、硫化钠还可用于直接电镀中导电层的处理,通过硫化钠与钯反应生成胶体硫化钯来达到在非金属表面形成良好导电层的目的。
4、用作缓蚀剂。也是硫代硫酸钠、多硫化钠、硫化染料等的原料。
5、用于制造硫化染料,皮革脱毛剂,金属冶炼,照相,人造丝脱硝等。
⑷ 硫化钠具有还原性,可作废水中铜离子和汞离子的沉淀剂。这句话错在哪里
做沉淀剂和还原性没关系,主要因为硫酸根离子和铜离子汞离子反应生成沉淀
⑸ 硫化钠在污水处理的过程当中有没有絮凝的作用
硫化物一般用于去除污水中的金属盐用的多一些。一般很少有用这种药剂的,含重金属的废水处理中会用的到
⑹ 为什么用硫化钠作沉淀剂,除去废水中的铜离子和汞离子
重金属对固定化微生物处理电镀废水有机物能力的影响
近年来,国内外对电镀废水处理方法研究甚多,工艺各异,主要有化学法、电解法、离子交换法、电渗析法、生物法等。与传统方法相比,生物法处理电镀废水不同程度的存在投资小、运行费用低、无二次污染等优点,得到较快的发展和广泛的应用。微生物固定化技术可以大大提高微生物对有毒物质的承受能力,可用于高浓度污染物废水的生化处理。聚氨酯泡沫体由于具有较好的亲水性、孔结构、微生物亲和性以及耐生物降解性而被广泛作为固定化微生物载体(填料)用于废水的生物处理。电镀废水成分复杂,其主要污染物是铬、镍、锌等重金属离子、氰化物和 COD。微量重金属是微生物生命活动所需营养物质,但微生物对各种微量重金属的需要量极少,过量反而会引起毒作用,容易造成出水水质的波动。2008 年国家环保部颁布了《电镀污染物排放标准》(GB 21900-2008),其中对新建电镀企业排放的 COD作出了严格规定,目前,针对电镀废水重金属的处理及回收国内外已有大量研究,但对其有机污染物和氨氮的去除研究较少,尤其是废水重金属浓度对微生物处理电镀废水有机物的影响鲜有报道。本研究在电镀废水污泥中分离筛选的复合功能菌群GW,
对金属耐受性强的特点。通过与改性聚氨酯泡沫体固定化后,研究了重金属Cr,Zn浓度对其处理电镀废水有机物的影响,并通过逐步提高废水金属浓度,探讨固定化微生物处理电镀废水对重金属的耐受性,为提高废水生物处理系统运行的稳定性提供理论基础。
1 试验材料与方法
1. 1 试验材料
1.1.1 GW高效复合菌剂。从富含重金属的污泥及废水中分离的高效菌种8株,含多种酶制剂,微生物含量约1.0×10CFU/g,由广州发酵工程技术研究中心生产提供。
1.1.2 聚氨酯泡沫体。市购聚氨酯泡沫体,干态密度为30kg/m,通过重铬酸钾及双氧水浸泡改性,提高固定化微生物负载量。
1.1.3 试验废水。取自广州某电镀企业水解反应池出水,加入少量葡萄糖、尿素、蛋白胨、硫酸亚铁、磷酸二氢钾、硫酸铜等作为微生物生长基质,作为人工废水用于菌种的固定及驯化。水质指标如表1示。 表1 电镀废水水质指标
1.2 试验方法
1.2.1微生物的固定化和驯化
在总体积为10L反应器中,加入约30%反应器体积的改性聚氨酯载体、一定量的交联剂和高效微生物菌群GW,通入30%反应器体积的人工废水和70%体积的自来水,在曝气条件下进行固定化反应。每天更换10%~15%反应器中的人工废水,并补加适量高效微生物菌群及少量无机盐类。同时,每7天测定微生物负载量。当微生物负载量达到35 mg/g干态载体,固定化驯化阶段结束。
1.2.2 重金属浓度对COD及氨氮去除的影响
重金属盐溶液的配制:分别以重铬酸钾、硫酸锌配制含一定体积质量的Cr,Zn溶液。反应器内设有曝气头,均布于生化池底部,用AR-6500型充氧泵(低流量)曝气,改性聚氨酯填料的载体比例为30%,气水体积比控制在(6~15):1 ,测定其进、出水COD、NH-N浓度,试验重复3次,以平均去除率反应处理效果。
1.2.3 重金属耐受性试验
采用循序渐增的方式逐渐提高原水中Cr,Zn金属离子浓度,分别在第 1,7,14,20,29,42 天开始将原水中 Cu浓度提升至 0. 5,1,2,5,10,15 mg / L,研究固定化微生物重金属耐受性对废水有机物处理效果的影响。
关键词: 电镀废水; 固定化微生物; 重金属; 有机物去除; 耐受性
⑺ 为什么用硫化钠作沉淀剂,除去废水中的铜离子和汞离子。发生什么反应了啊能详细解答一下吗各位
废水除汞,是在废水中加入过量的硫化钠,使汞离子与硫离子生成不溶于专水的硫化汞沉淀出来。属
化学方程式为:Hg(NO3)2+Na2S=HgS↓+2NaNO3离子方程式为:Hg2+ + 2S2- = 2HgS↓
⑻ 焦磷酸铜是否可以采用硫化钠处理
Cu2+ + S2- =CuS↓
可以 属于化学沉淀法
⑼ 电镀废水处理中怎么去除过量的硫化钠
随着工业行业渐渐的给人类世界带来利益,现在国内外电镀工业也在迅速发展,可这版也给环境权带来了严重污染,特别是电镀行业产生的络合铜废水。此类废水不仅污染大,而且还难以处理,主要是由于废水中的铜等金属离子是以络合态存在,加大了水质的处理难度,所以必须通过破络还原处理。现在电镀废水除铜常用破络剂有硫化钠及硫酸亚铁等。
在使用硫化钠药剂的同时也会带来药剂残留产生的污染。
一般用硫化钠处理含络合铜废水时,硫化钠的投加量一般超过理论计算投加量的0.2~0.5倍。
使用较常见问题主要是硫化钠的使用投加量,投加少量了除铜效果不佳,而投加过量的硫化钠存在水中又会使水体发黑,在一定程度上也会使COD上升,污染水体。
因此在处理络合铜时,在酸性条件下加入亚铁或者其他还原性物质进行破络,然后再调碱,再加硫化钠。这样处理可以减少硫化钠的用量,也可以防止硫化钠在酸性条件下形成硫化氢气体析出。
过量的硫化钠可以用亚铁去除。
⑽ 用硫酸亚铁和硫化钠处理络合铜废水的加药顺序
含络合铜废水有很多种,有的来源于电镀,有的来源于蚀刻线路板,或者来源于颜料及其他行业。
不同的行业所用的络合剂也有所不同,常见的络合剂有NH3、EDTA、乙二胺、酒石酸。这些络合剂与铜离子配位形成非常稳定的可溶性络合物,与游离态铜离子相比,络合态的铜离子用普通的中和沉淀法是很难去除的。常见的有以下几种:
一、硫化物沉淀法
将硫化物(硫化钠)加入含络合铜的废水中,然后加入氢氧化钠,控制废水的pH值在9.5~11.5之间,再适量添加聚丙烯酰胺(PAM),形成溶度积很小的难溶沉淀物硫化铜(CuS),在PAM的作用下将铜离子从废水中除去。
硫化物沉淀法可以将含络合铜废水中的含铜量降低到0.5mg/L以下。
硫化物沉淀法的操作难度是硫化钠的加入量难以准确控制,S2-一旦过量,会产生恶臭,形成二次污染。
二、硫酸亚铁法
将7水硫酸亚铁按FeSO3。7H2O:Cu2+=15:1的比例加入含络合铜的废水中,搅拌均匀后见加入氢氧化钠,控制pH值在9.0以上,适量添加聚丙烯酰胺(PAM),可以将废水中的含铜量降低到0.5mg/L以下。
硫酸亚铁除铜的原理基于Cu(NH3)2+、EDTA-Cu2+与EDTA-Fe3+的稳定常数的差异,EDTA-Fe3+的稳定常数比EDTA-Cu2+和EDTA-Fe3+的稳定常数高几个数量级,向含络合铜的废水中加入硫酸亚铁,亚铁离子可促成EDTA-Fe3+的结合而将铜离子置换出来,使铜由络合态变成游离态,再通过调高废水的pH值,使铜离子、铁离子变成Cu(OH)2、Fe(OH)3沉淀而实现铜、铁的去除,由于Fe(OH)3的混凝作用,废水中新生成的沉淀物沉淀速度加快,除铜效率提高。
硫酸亚铁法的缺点是加药量大,产生的污泥多。
除了这两种方法,还有氧化法(一般是加氯酸钠)、还原法(常见的是加铁屑)和吸附法(大部分是加活性炭和沸石)等方法。
根据你的描述,你们综合使用硫化物沉淀法与硫酸亚铁法。
加药顺序为:先加硫化钠(Na2S),形成溶度积很小的难溶沉淀物硫化铜(CuS),再加硫酸亚铁,最后加氢氧化钠,调整pH值在9~11之间,硫酸亚铁不仅能消除多余的S2-,还能形成Fe(OH)3沉淀,由于Fe(OH)3的混凝作用,使沉淀速度加快,提高除铜效率。