A. 半导体晶圆在切割时产生的硅粉如何处理
我前一个单位是切割的时候纯水里加了切割液,切割完成后直接纯水清洗的,当然了切割液的浓度会根据晶圆的厚度和尺寸作调整。没刻意去处理切割下产生的硅粉。
B. 晶圆的制造工艺
热CVD(HotCVD)/(thermalCVD)
此方法生产性高,梯状敷层性佳(不管多凹凸不平,深孔中的表面亦产生反应,及气体可到达表面而附着薄膜)等,故用途极广。膜生成原理,例如由挥发性金属卤化物(MX)及金属有机化合物(MR)等在高温中气相化学反应(热分解,氢还原、氧化、替换反应等)在基板上形成氮化物、氧化物、碳化物、硅化物、硼化物、高熔点金属、金属、半导体等薄膜方法。因只在高温下反应故用途被限制,但由于其可用领域中,则可得致密高纯度物质膜,且附着强度极强,若用心控制,则可得安定薄膜即可轻易制得触须(短纤维)等,故其应用范围极广。热CVD法也可分成常压和低压。低压CVD适用于同时进行多片基片的处理,压力一般控制在0.25-2.0Torr之间。作为栅电极的多晶硅通常利用HCVD法将SiH4或Si2H。气体热分解(约650oC)淀积而成。采用选择氧化进行器件隔离时所使用的氮化硅薄膜也是用低压CVD法,利用氨和SiH4 或Si2H6反应面生成的,作为层间绝缘的SiO2薄膜是用SiH4和O2在400--4500oC的温度下形成SiH4+O2-SiO2+2H2或是用Si(OC2H5)4(TEOS:tetra ethoxy silanc)和O2在750oC左右的高温下反应生成的,后者即采用TEOS形成的SiO2膜具有台阶侧面部被覆性能好的优点。前者,在淀积的同时导入PH3 气体,就形成磷硅玻璃( PSG: phosphor silicate glass)再导入B2H6气体就形成BPSG(borro ? phosphor silicate glass)膜。这两种薄膜材料,高温下的流动性好,广泛用来作为表面平坦性好的层间绝缘膜。 离子布植将硼离子 (B+3) 透过 SiO2 膜注入衬底,形成P型阱离子注入法是利用电场加速杂质离子,将其注入硅衬底中的方法。离子注入法的特点是可以精密地控制扩散法难以得到的低浓度杂质分布。MOS电路制造中,器件隔离工序中防止寄生沟道用的沟道截断,调整阀值电压用的沟道掺杂, CMOS的阱形成及源漏区的形成,要采用离子注入法来掺杂。离子注入法通常是将欲掺入半导体中的杂质在离子源中离子化, 然后将通过质量分析磁极后选定了离子进行加速,注入基片中。
退火处理
去除光刻胶放高温炉中进行退火处理 以消除晶圆中晶格缺陷和内应力,以恢复晶格的完整性。使植入的掺杂原子扩散到替代位置,产生电特性。
去除氮化硅层
用热磷酸去除氮化硅层,掺杂磷 (P+5) 离子,形成 N 型阱,并使原先的SiO2 膜厚度增加,达到阻止下一步中n 型杂质注入P 型阱中。
去除SIO2层
退火处理,然后用 HF 去除 SiO2 层。
干法氧化法
干法氧化法生成一层SiO2 层,然后LPCVD 沉积一层氮化硅。此时P 阱的表面因SiO2 层的生长与刻蚀已低于N 阱的表面水平面。这里的SiO2 层和氮化硅的作用与前面一样。接下来的步骤是为了隔离区和栅极与晶面之间的隔离层。
光刻技术和离子刻蚀技术
利用光刻技术和离子刻蚀技术,保留下栅隔离层上面的氮化硅层。
湿法氧化
生长未有氮化硅保护的 SiO2 层,形成 PN 之间的隔离区。
生成SIO2薄膜
热磷酸去除氮化硅,然后用 HF 溶液去除栅隔离层位置的 SiO2 ,并重新生成品质更好的 SiO2 薄膜 , 作为栅极氧化层。
氧化
LPCVD 沉积多晶硅层,然后涂敷光阻进行光刻,以及等离子蚀刻技术,栅极结构,并氧化生成 SiO2 保护层。
形成源漏极
表面涂敷光阻,去除 P 阱区的光阻,注入砷 (As) 离子,形成 NMOS 的源漏极。用同样的方法,在 N 阱区,注入 B 离子形成 PMOS 的源漏极。
沉积
利用 PECVD 沉积一层无掺杂氧化层,保护元件,并进行退火处理。
沉积掺杂硼磷的氧化层
含有硼磷杂质的SiO2 层,有较低的熔点,硼磷氧化层(BPSG) 加热到800 oC 时会软化并有流动特性,可使晶圆表面初级平坦化。
深处理
溅镀第一层金属利用光刻技术留出金属接触洞,溅镀钛+ 氮化钛+ 铝+ 氮化钛等多层金属膜。离子刻蚀出布线结构,并用PECVD 在上面沉积一层SiO2 介电质。并用SOG (spin on glass) 使表面平坦,加热去除SOG 中的溶剂。然后再沉积一层介电质,为沉积第二层金属作准备。
(1) 薄膜的沉积方法根据其用途的不同而不同,厚度通常小于 1um 。有绝缘膜、半导体薄膜、金属薄膜等各种各样的薄膜。薄膜的沉积法主要有利用化学反应的CVD(chemical vapor deposition) 法以及物理现象的PVD(physical vapor deposition) 法两大类。CVD 法有外延生长法、HCVD , PECVD 等。PVD 有溅射法和真空蒸发法。一般而言, PVD 温度低,没有毒气问题; CVD 温度高,需达到1000 oC 以上将气体解离,来产生化学作用。PVD 沉积到材料表面的附着力较CVD 差一些, PVD 适用于在光电产业,而半导体制程中的金属导电膜大多使用PVD 来沉积,而其他绝缘膜则大多数采用要求较严谨的CVD 技术。以PVD 被覆硬质薄膜具有高强度,耐腐蚀等特点。
(2) 真空蒸发法( Evaporation Deposition )采用电阻加热或感应加热或者电子束等加热法将原料蒸发淀积到基片上的一种常用的成膜方法。蒸发原料的分子(或原子)的平均自由程长( 10 -4 Pa 以下,达几十米),所以在真空中几乎不与其他分子碰撞可直接到达基片。到达基片的原料分子不具有表面移动的能量,立即凝结在基片的表面,所以,在具有台阶的表面上以真空蒸发法淀积薄膜时,一般,表面被覆性(覆盖程度)是不理想的。但若可将Crambo真空抽至超高真空( <10 – 8 torr ),并且控制电流,使得欲镀物以一颗一颗原子蒸镀上去即成所谓分子束磊晶生长( MBE : Molecular Beam Epitaxy )。
(3) 溅镀( Sputtering Deposition ) 所谓溅射是用高速粒子(如氩离子等)撞击固体表面,将固体表面的原子撞击出来,利用这一现象来形成薄膜的技术即让等离子体中的离子加速,撞击原料靶材,将撞击出的靶材原子淀积到对面的基片表面形成薄膜。溅射法与真空蒸发法相比有以下的特点:台阶部分的被覆性好,可形成大面积的均质薄膜,形成的薄膜,可获得和化合物靶材同一成分的薄膜,可获得绝缘薄膜和高熔点材料的薄膜,形成的薄膜和下层材料具有良好的密接性能。因而,电极和布线用的铝合金( Al-Si, Al-Si-Cu )等都是利用溅射法形成的。最常用的溅射法在平行平板电极间接上高频( 13.56MHz )电源,使氩气(压力为1Pa )离子化,在靶材溅射出来的原子淀积到放到另一侧电极上的基片上。为提高成膜速度, 通常利用磁场来增加离子的密度, 这种装置称为磁控溅射装置( magnetron sputter apparatus ),以高电压将通入惰性氩体游离,再藉由阴极电场加速吸引带正电的离子,撞击在阴极处的靶材,将欲镀物打出后沉积在基板上。一般均加磁场方式增加电子的游离路径,可增加气体的解离率,若靶材为金属,则使用DC 电场即可,若为非金属则因靶材表面累积正电荷,导致往后的正离子与之相斥而无法继续吸引正离子,所以改为RF 电场(因场的振荡频率变化太快,使正离子跟不上变化,而让RF-in 的地方呈现阴极效应)即可解决问题。
光刻技术定出 VIA 孔洞
沉积第二层金属,并刻蚀出连线结构。然后,用 PECVD 法氧化层和氮化硅保护层。
光刻和离子刻蚀
定出 PAD 位置。
最后进行退火处理
以保证整个 Chip 的完整和连线的连接性。
C. 大直径晶圆国内有生产的吗
18寸的有,我见了。
D. 12寸晶圆厂有污染吗,我朋友想在周边买房。
高压线,没有污染,辐射很小,而且没有危险。高压线周围产生的负离子对空气净化专和人体都有好处。晶属圆厂的洁净度要求很高的,所以粉尘污染也可以忽略不计。至于废水污染问题,估计不会有的,国际级的企业,是不可能的。
放心买吧,升值空间很大。
E. 晶圆拿来制造什么
圆晶也叫硅晶,是一种半导体材料,是cpu的核心部件。
现在已经生产到纳米级(nm),通过切片,光刻,腐蚀,等工艺来处理。
貌似也有圆晶电阻
F. 薄膜太阳能电池的种类
非晶硅(Amorphous Silicon, a-Si)、微晶硅(Nanocrystalline Silicon,nc-Si,Microcrystalline Silicon,mc-Si)、化合物半导体II-IV 族[CdS、CdTe(碲化镉)、CuInSe2]、色素敏化染料(Dye-Sensitized Solar Cell)、有机导电高分子(Organic/polymer solar cells) 、CIGS (铜铟硒化物)..等 GaAs属于III-V族化合物半导体材料,其能隙为1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LPE技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错,反应压力,III-V比率,总流量等诸多参数的影响。GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右),产品耐高温和辐射,但生产成本高,产量受限,现今主要作空间电源用。以硅片作衬底,MOCVD技术异质外延方法制造GaAs电池是降用低成本很有希望的方法。已研究的砷化镓系列太阳电池有单晶砷化镓,多晶砷化镓,镓铝砷--砷化镓异质结,金属-半导体砷化镓,金属--绝缘体--半导体砷化镓太阳电池等。
砷化镓材料的制备类似硅半导体材料的制备,有晶体生长法,直接拉制法,气相生长法,液相外延法等。由于镓比较稀缺,砷有毒,制造成本高,此种太阳电池的发展受到影响。除GaAs外,其它III-V化合物如Gasb,GaInP等电池材料也得到了开发。
1998年德国费莱堡太阳能系统研究所制得的GaAs太阳能电池转换效率为24.2%,为欧洲记录。首次制备的GaInP电池转换效率为14.7%。另外,该研究所还采用堆叠结构制备GaAs,Gasb电池,该电池是将两个独立的电池堆叠在一起,GaAs作为上电池,下电池用的是GaSb,所得到的电池效率达到31.1%。
砷化镓(GaAs)III-V化合物电池的转换效率可达28%,GaAs化合物材料具有十分理想的光学带隙以及较高的吸收效率,抗辐照能力强,对热不敏感,适合于制造高效单结电池。但是GaAs材料的价格不菲,因而在很大程度上限制了用GaAs电池的普及。 铜铟硒CuInSe2简称CIC.CIS材料的能降为1.1 eV,适于太阳光的光电转换,另外,CIS薄膜太阳电池不存在光致衰退问题。因此,CIS用作高转换效率薄膜太阳能电池材料也引起了人们的注目。
CIS电池薄膜的制备主要有真空蒸镀法和硒化法。真空蒸镀法是采用各自的蒸发源蒸镀铜,铟和硒,硒化法是使用H2Se叠层膜硒化,但该法难以得到组成均匀的CIS。CIS薄膜电池从80年代最初8%的转换效率发展到现今的15%左右。日本松下电气工业公司开发的掺镓的CIS电池,其光电转换效率为15.3%(面积25 px2)。1995年美国可再生能源研究室研制出转换效率17.1%的CIS太阳能电池,这是迄今为止世界上该电池的最高转换效率。预计到2000年CIS电池的转换效率将达到20%,相当于多晶硅太阳能电池。CIS作为太阳能电池的半导体材料,具有价格低廉,性能良好和工艺简单等优点。 CdTe是Ⅱ-Ⅵ族化合物半导体,带隙1.5eV,与太阳光谱非常匹配,最适合于光电能量转换,是一种良好的PV材料,具有很高的理论效率(28%),性能很稳定,一直被光伏界看重,是技术上发展较快的一种薄膜电池。碲化镉容易沉积成大面积的薄膜,沉积速率也高。CdTe薄膜太阳电池通常以CdS/CdTe异质结为基础。尽管CdS和CdTe和晶格常数相差10%,但它们组成的异质结电学性能优良,制成的太阳电池的填充因子高达FF =0.75。
制备CdTe多晶薄膜的多种工艺和技术已经开发出来,如近空间升华、电沉积、PVD、CVD、CBD、丝网印刷、溅射、真空蒸发等。丝网印刷烧结法:由含CdTe、CdS浆料进行丝网印刷CdTe、CdS膜,然后在600~700℃可控气氛下进行热处理1h得大晶粒薄膜。近空间升华法:采用玻璃作衬底,衬底温度500~600℃,沉积速率10μm/min.真空蒸发法:将CdTe从约700℃加热钳埚中升华,冷凝在300~400℃衬底上,典型沉积速率1 nm/s. 以CdTe吸收层,CdS作窗口层半导体异质结电池的典型结构:减反射膜/玻璃/(SnO2:F)/CdS/P-CdTe/背电极。电池的实验室效率不断攀升,现今突16%。20世纪90年代初,CdTe电池已实现了规模化生产,但市场发展缓慢,市场份额一直徘徊在1%左右。商业化电池效率平均为8%-10%。
人们认为,CdTe薄膜太阳电池是太阳能电池中最容易制造的,因而它向商品化进展最快。提高效率就是要对电池结构及各层材料工艺进行优化,适当减薄窗口层CdS的厚度,可减少入射光的损失,从而增加电池短波响应以提高短路电流密度,较高转换效率的CdTe电池就采用了较薄的CdS窗口层而创了最高纪录。要降低成本,就必须将CdTe的沉积温度降到550℃以下,以适于廉价的玻璃作衬底;实验室成果走向产业,必须经过组件以及生产模式的设计、研究和优化过程。至今,不仅有许多国家的研究小组已经能够在低衬底温度下制造出转换效率12%以上的CdTe太阳电池,而且在大面积组件方面取得了可喜的进展,许多公司正在进行CdTe薄膜太阳电池的中试和生产厂的建设,有的已经投产。 在广泛深入的应用研究基础上,国际上许多国家的CdTe薄膜太阳电池已由实验室研究阶段开始走向规模工业化生产。1998年美国的CdTe电池产量就为0.2MW,日本的CdTe电池产量为2.0MW。德国公司将在Rudisleben建成一家年产10MW的CdTe薄膜太阳电池组件生产厂,预计其生产成本将会低于$1.4/W。该组件不但性能优良,而且生产工艺先进,使得该光伏组件具有完美的外型,能在建筑物上使用,既拓宽了应用面,又可取代某些建筑材料而使电池成本进一步降低。
CdTe薄膜太阳电池是薄膜太阳电池中发展较快的一种光伏器件。美国南佛罗里达大学于1993年用升华法在25px2面积上做出效率为15.8 %的太阳电池,随后,日本报道了CdTe基电池以CdTe作吸收层,CdS作窗口层的n-CdS/ p-CdTe半导体异质结电池,其典型结构为MgF2/玻璃/ SnO2:F/ n-CdS/ p-CdTe/背电极,小面积电池最高转换效率16%,成为当时CdTe薄膜太阳能电池的最高纪录,如今,太阳电池的研究方向是高转换效率,低成本和高稳定性。因此,以CdTe为代表的薄膜太阳电池倍受关注,面积为90000px2电池转换效率达到11.1%的水平。美国国家可再生能源实验室提供了Solar Cells lnc的面积为171975px2CdTe薄膜太阳电池的测试结果,转换效率达到7.7%;Bp Solar的CdTe薄膜太阳电池,面积为113500px2,效率为8.4%,面积为17650px2的太阳电池,转换效率达到10.1%;Goldan Photon的CdTe太阳电池,面积为88200px2,转换效率为7.7%。
碲化镉薄膜太阳电池的制造成本低,现今,已获得的最高效率为16%,是应用前景最好的新型太阳电池,它已经成为美、德、日、意等国研究开发的主要对象。
CdTe薄膜太阳电池较其他的薄膜电池容易制造,因而它向商品化进展最快。已由实验室研究阶段走向规模化工业生产。下一步的研发重点,是进一步降低成本、提高效率并改进与完善生产工艺。CdTe太阳能电池在具备许多有利于竞争的因素下,但在2002年其全球市占率仅0.42﹪,现今CdTe电池商业化产品效率已超过10﹪,究其无法耀升为市场主流的原因,大至有下列几点:一、模块与基材材料成本太高,整体CdTe太阳能电池材料占总成本的53﹪,其中半导体材料只占约5.5﹪。二、碲天然运藏量有限,其总量势必无法应付大量而全盘的倚赖此种光电池发电之需。三、镉的毒性,使人们无法放心的接受此种光电池。
CdTe太阳能电池作为大规模生产与应用的光伏器件,最值得关注的是环境污染问题。有毒元素Cd对环境的污染和对操作人员健康的危害是不容忽视的。我们不能在获取清洁能源的同时,又对人体和人类生存环境造成新的危害。有效地处理废弃和破损的CdTe组件,技术上很简单。而Cd是重金属,有剧毒,Cd的化合物与Cd一样有毒。其主要影响,一是含有Cd的尘埃通过呼吸道对人类和其他动物造成的危害;二是生产废水废物排放所造成的污染。因此,对破损的玻璃片上的Cd和Te应去除并回收,对损坏和废弃的组件应进行妥善处理,对生产中排放的废水、废物应进行符合环保标准的处理。现今各国均在大力研究解决CdTe薄膜太阳能电池发展的因素,相信上述问题不久将会逐个解决,从而使碲化镉薄膜电池成为未来社会新的能源成分之一。 浅谈多元化合物薄膜太阳能电池
据了解,科学家为了寻找单晶硅电池的替代品,除开发了多晶硅、非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。
在上述电池中,尽管硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。
据了解,砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。GaAs等III-V化合物薄膜电池的制备主要采用 MOVPE和LPE技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错、反应压力、III-V比率、总流量等诸多参数的影响。
除GaAs外,其它III-V化合物如GaSb、GaInP等电池材料也得到了开发。
另外,研究所还采用堆叠结构制备GaAs,Gasb电池,该电池是将两个独立的电池堆叠在一起,GaAs作为上电池,下电池用的是Gasb,所得到的电池效率达到31.1%。
铜铟硒CuInSe2简称CIS。CIS材料的能降为1.1 eV,适于太阳光的光电转换,另外,CIS薄膜太阳电池不存在光致衰退问题。因此,CIS用作高转换效率薄膜太阳能电池材料也引起了人们的注目。
CIS作为太阳能电池的半导体材料,具有价格低廉、性能良好和工艺简单等优点,将成为今后发展太阳能电池的一个重要方向。唯一的问题是材料的来源,由于铟和硒都是比较稀有的元素,因此,这类电池的发展又必然受到限制。
G. 半导体晶圆厂有毒吗
半导体晶圆厂主要生产的产品是半导体晶体棒或是半导体晶片。常见的有硅片、专镓属砷片、铟磷片等等。其主要原料是含有上述元素的化合物,至于毒性,要具体分析。原料上,二氧化硅并没有毒,但是粉末状的二氧化硅气溶胶就会引起尘肺和肺癌,就是有毒的。
另外,半导体厂常用的掺杂原料多数有毒,比如硅烷、砷烷等,或是三甲基镓等等化合物。它们或直接是剧毒物质,或其与空气、水等反应后生成的物质有毒。另外,传统生产晶圆的厂,会对晶体棒进行切割,其加工过程中产生的粉末也是有害的,原理和粉尘差不多。
晶圆制造厂把这些多晶硅融解,再在融液里种入籽晶,然后将其慢慢拉出,以形成圆柱状的单晶硅晶棒,由于硅晶棒是由一颗晶面取向确定的籽晶在熔融态的硅原料中逐渐生成,此过程称为“长晶”。
硅晶棒再经过切段,滚磨,切片,倒角,抛光,激光刻,包装后,即成为集成电路工厂的基本原料——硅晶圆片,这就是“晶圆”。
H. 半导体生产企业有没有残留的污染
一楼的回答完全是非科学的!什么叫“半导体都是用元素做的”?!似是而非!
半导体晶圆厂主要生产的产品是半导体晶体棒或是半导体晶片。常见的有硅片、镓砷片、铟磷片等等。其主要原料是含有上述元素的化合物,比如二氧化硅、氧化砷等等。至于毒性,要具体分析。原料上,二氧化硅并没有毒,但是粉末状的二氧化硅气溶胶就会引起尘肺和肺癌,就是有毒的。另外,半导体厂常用的掺杂原料多数有毒,比如硅烷、砷烷等,或是三甲基镓等等化合物。它们或直接是剧毒物质,或其与空气、水等反应后生成的物质有毒。另外,传统生产晶圆的厂,会对晶体棒进行切割,其加工过程中产生的粉末也是有害的,原理和粉尘差不多。
关于辐射、据我了解,半导体晶圆厂的辐射并不大。辐射分为电磁辐射和电离辐射。电磁辐射,通电的电线就会有辐射,但是一般能量很小,不会有任何影响。电离辐射,比较危险,但晶圆厂似乎用不到吧。顶多X射线探伤用一下?这个我不确切知道。
总之,半导体相关行业有毒的多,但严格执行规章、正确操作设备,是完全安全的。一般生产设备都有严格的防护措施,废弃物有后处理工艺。我们单位有从事相关危险工种的老员工,干了几十年,身体棒棒的!呵呵。所以,你完全不用担心在里面工作。
I. 集成电路生产车间污染物的主要来源有哪些
摘要:本文主要叙述了半导体集成电路在封装过程中,环境因素和静电因素对IC封装方面的影响,同时对封装工艺中提高封装成品率也作了一点探讨。
关键词:环境因素;静电防护;封装
引言
现代发达国家经济发展的重要支柱之一--集成电路(以下称IC)产业发展十分迅速。自从1958年世界上第一块IC问世以来,特别是近20年来,几乎每隔2-3年就有一代产品问世,至目前,产品以由初期的小规模IC发展到当今的超大规模IC。IC设计、IC制造、IC封装和IC测试已成为微电子产业中相互独立又互相关联的四大产业。微电子已成为当今世界各项尖端技术和新兴产业发展的前导和基础。有了微电子技术的超前发展,便能够更有效地推动其它前沿技术的进步。随着IC的集成度和复杂性越来越高,污染控制、环境保护和静电防护技术就越盲膨响或制约微电子技术的发展。同时,随着我国国民经济的持续稳定增长和生产技术的不断创新发展,生产工艺对生产环境的要求越来越高。大规模和超大规模Ic生产中的前后道各工序对生产环境提出了更高要求,不仅仅要保持一定的温、湿度、洁净度,还需要对静电防护引起足够的重视。
2 环境因素对IC封装的影响
在半导体IC生产中,封装形式由早期的金属封装或陶瓷封装逐渐向塑料封装方向发展。塑料封装业随着IC业快速发展而同步发展。据中国半导体信息网对我国国内28家重点IC制造业的IC总产量统计,2001年为44.12亿块,其中95%以上的IC产品都采用塑料封装形式。
众所周知,封装业属于整个IC生产中的后道生产过程,在该过程中,对于塑封IC、混合IC或单片IC,主要有晶圆减薄(磨片)、晶圆切割(划片)、上芯(粘片)、压焊(键合)、封装(包封)、前固化、电镀、打印、后固化、切筋、装管、封后测试等等工序。各工序对不同的工艺环境都有不同的要求。工艺环境因素主要包括空气洁净度、高纯水、压缩空气、C02气、N:气、温度、湿度等等。
对于减薄、划片、上芯、前固化、压焊、包封等工序原则上要求必须在超净厂房内设立,因在以上各工序中,IC内核--芯粒始终裸露在外,直到包封工序后,芯粒才被环氧树脂包裹起来。这样,包封以后不仅能对IC芯粒起着机械保护和引线向外电学连接的功能,而且对整个芯片的各种参数、性能及质量都起着根本的保持作用。在以上各工序中,哪个环节或因素不合要求都将造成芯粒的报废,所以说,净化区内工序对环境诸因素要求比较严格和苛刻。超净厂房的设计施工要严格按照国家标准GB50073-2001《洁净厂房设计规范》的内容进行。
2.1 空调系统中洁净度的影响
对于净化空调系统来讲,空气调节区域的洁净度是最重要的技术参数之一。洁净厂房的洁净级别常以单位体积的空气中最大允许的颗粒数即粒子计数浓度来衡量。为了和国际标准尽快接轨,我国在根据IS014644-1的基础上制定了新的国家标准GB50073-2001《洁净厂房设计规范》,其中把洁净室的洁净度划分了9个级别,具体见表1所示。
结合不同封装企业的净化区域面积的大小不一,再加之由于尘粒在各工序分布的不均匀性和随机性,如何针对不同情况来确定合适恰当的采集测试点和频次,使洁净区域内洁净度控制工作既有可行性,又具有经济性,进而避免偶然性,各封装企业可依据国家行业标准JGJ71-91《洁净室施工及验收规范》中的规定灵活掌握。具体可参照表2进行。
由于微电子产品生产中,对环境中的尘粒含量和洁净度有严格的要求,目前,大规模IC生产要求控制0.1μm的尘粒达到1级甚至更严。所以对IC封装来说,净化区内的各工序的洁净度至少必须达到1级。
2.2超纯水的影响
IC的生产,包括IC封装,大多数工序都需要超纯水进行清洗,晶圆及工件与水直接接触,在封装过程中的减薄工序和划片工序,更是离不开超纯水,一方面晶圆在减薄和划片过程中的硅粉杂质得到洗净,而另一方面纯水中的微量杂质又可能使芯粒再污染,这毫无疑问将对封装后的IC质量有着极大的影响。
随着IC集成度的进一步提高,对水中污染物的要求也将更加严格。据美国提出的水质指标说明,集成度每提高一代,杂质都要减少1/2~1/10。表3所示为最新规定的对超纯水随半导体IC进展的不同要求。
从表3可以看到,随着半导体IC设计规则从1.5~0.25μm的变化,相应地超纯水的水质除电阻率已接近理论极限值外,其TOC(总有机碳)、DO(溶解氧)、Si02、微粒和离子性杂质均减少2-4个数量级。
在当前的水处理中,各项杂质处理的难易程度依次是TOC、SiO2、DO、电阻率,其中电阻率达到18MΩ·cm(25℃)是当前比较容易达到的。由于TOC含量高会使栅氧化膜尤其是薄栅氧化膜中缺陷密度增大,所以栅愈薄要求TOC愈低,况且现在IC技术的发展趋势中,芯片上栅膜越来越薄,故降低TOC是当前和今后的最大难点,因而已成为当今超纯水水质的象征和重心。据有关资料介绍,在美国芯片厂中,50%以上的成品率损失起因于化学杂质和微粒污染;在日本工厂中由于微粒污染引起器件电气特性的不良比例,已由2μm的70%上升到0.8μm超大规模IC的90%以上,可见IC线条宽度越细,其危害越突出。相应的在IC封装过程中超纯水的重要性就显而易见了。
在半导体制造工艺中,大约有80%以上的工艺直接或间接与超纯水,并且大约有一半以上工序,硅片与水接触后,紧接着就进人高温过程,若此时水中含有杂质就会进入硅片而导致IC器件性能下降、成品率降低。确切一点说,向生产线提供稳定优质的超纯水将涉及到企业的成本问题。
2.3纯气的影响
在IC的加工与制造封装中,高纯的气体可作为保护气、置换气、运载气、反应气等,为保证芯片加工与封装的成品率和可靠性,其中一个重要的环节,就是严格控制加工过程中所用气体的纯度。所谓"高纯"或"超纯"也不是无休止的要求纯而又纯,而是指把危害IC性能、成品率和可靠性的有害杂质及尘粒必须减少到一定值以下。表4列出了半导体大规模IC加工与制造中用的几种常用气体的纯度。
例如在IC封装过程中,把待减薄的晶圆,划后待粘片的晶圆,粘片固化后待压焊的引线框架(LF)与芯粒放在高纯的氮气储藏柜中可有效地防止污染和氧化;把高纯的C02气体混合人高纯水中,可产生一定量的H+,这样的混合水具有一定的消除静电吸附作用,代划片工序使用可有效地去除划痕内和芯粒表面的硅粉杂质,以此来减少封装过程中的芯粒浪费。
2.4 温、湿度的影响
温、湿度在IC的生产中扮演着相当重要的角色,几乎每个工序都与它们有密不可分的关系。GB50073-2001《洁净厂房设计规范》中明确强调了对洁净室温、湿度的要求要按生产工艺要求来确定,并按冬、夏季分别规定。见表5。
根据国家要求标准,也结合我厂IC塑封生产线的实际情况,特对相关工序确定了温、湿度控制的范围,运行数年来效果不错。控制情况见表6。
但是,由于空调系统发生故障,在2001年12月18日9:30~9:40期间,粘片工序工作区域发生了一起湿度严重超标事故。当时相对湿度高达86.7%RH,而在正常情况下相对湿度为45~55%RH。
当时湿度异常时粘片现场状况描述如下:
所有现场桌椅板凳、玻璃、设备、晶圆、芯片以及人身上的防静电服表面都有严重的水汽,玻璃上的水汽致使室内人看不清过道,用手触摸桌椅设备表面,都有很明显的手指水迹印痕。更为严重的是在粘片工序现场存放的芯片有许多,其中SOPl6L产品7088就在其列,对其成品率的影响见表7所示。所有这些产品中还包括其它系列产品,都象经过了一次"蒸汽
浴"一样。
从下表可看出或说明以下问题:
针对这批7088成品率由稳到不稳,再到严重下降这一现象,我们对粘片、压焊、塑封等工序在此批次产品加工期间的各种工艺参数,原材料等使用情况进行了详细汇总,没有发现异常情况,排除了工艺等方面的原因。
事后进一步对废品率极高的18#、21#、25#、340、55#卡中不合格晶进行了超声波扫描,发现均有不同程度的离层,经解剖发现:从离层处发生裂痕、金丝断裂、部分芯片出现裂纹。最后得出结论如下:
(1)造成成品率下降的原因主要是封装离层处产生裂痕,导致芯片裂纹或金丝断裂。
(2)产生离层的原因是由于芯片表面水汽包封在塑封体内产生。
由此可见,温、湿度对IC封装生产中的重大影响!
2.5其它因素的影响
诸如压差因素、微振因素、噪声因素等对IC封装加工中都有一定的影响。鉴于篇幅所限,这里就不再逐一赘述。
3静电因素对IC封装的影响
首先,静电产生的原因是随处可见的。
在科技飞速发展和工业生产高度自动化的今天,静电在工业生产中的危害已是显而易见的,它可以造成各种障碍,限制自动化水平的提高和影响产品质量。这里结合我厂在集成电路封装、生产过程的实际情况来说明之所以有静电的产生,主要有以下几个方面的原因。
3.1 生产车间建筑装修材料多采用高阻材料
IC生产工艺要求使用洁净车间或超净车间。要求除尘微粒粒径从以往的0.3μm变到0.1μm拟下,尘粒密度约为353个/m3。为此,除了安装各吸尘设备之外,还要采用无机和有机不发尘材料,以防起尘。但对于建材的电性能没有作为一项指标考虑进去。工业企业洁净厂房设计规范中也未作规定。IC工厂的洁净厂房主要采用的室内装修材料有:聚氨酯弹性地面、尼纶、硬塑料、聚乙烯、塑料壁纸、树脂、木材、白瓷板、瓷漆、石膏等等。上述材料中,大部分是高分子化合物或绝缘体。例如,有机玻璃体电阻率为1012~1014Ω·cm,聚乙烯体电阻率为1013~1015n·cm,因而导电性能比较差,某种原因产生静电不容易通过
它们向大地泄漏,从而造成静电的积聚。
3.2人体静电
洁净厂房操作人员的不同动作和来回走动,鞋底和地面不断的紧密接触和分离,人体各部分也有活动和磨擦,不论是快走、慢走,小跑都会产生静电,即所谓步行带电;人体活动后起立,人体穿的工作服与椅子面接触后又分离也会产生静电。人体的静电电压如果消不掉,而去接触IC芯片,就可能在不知不觉中造成IC的击穿。
3.3 空气调节和空气净化引起的静电
由于IC生产要求在45-55%RH的条件下进行,所以要实行空气调节,同时要进行空气净化。降湿的空气要经过初效过滤器、中效过滤器、高效过滤器和风管送人洁净室。一般总风管风速为8~10m/s,风管内壁涂油漆,当干燥的空气和风管,干燥的空气和过滤器作相对运动时,都会产生静电。应该引起注意的是静电与湿度有着较敏感的关系。
另外,运送半成品和IC成品在包装运输过程中都会产生静电,这都是静电起电的因素之一。
其次,静电对IC的危害是相当大的。
一般来说,静电具有高电位、强电场的特点,在静电起电-放电过程中,有时会形成瞬态大电流放电和电磁脉冲(EMP),产生频谱很宽的电磁辐射场。另外,与常规电能量相比,静电能量比较小,在自然起电-放电过程中,静电放电(ESD)参数是不可控制的,是一种难于重复的随机过程,因此它的作用往往被人们所忽视。尤其在微电子技术领域,它给我们造成的危害却是惊人的,据报道每年因静电造成直接经济损失高达几亿元人民币,静电危害以成为发展微电子工业的重大障碍。
在半导体器件生产车间,由于尘埃吸附在芯片上,IC尤其是超大规模集成电路(VLSI)的成品率会大大下降。
IC生产车间操作人员都穿洁净工作服,若人体带静电,则极易吸附尘埃、污物等,若这些尘埃、污物被带到操作现场的话,将影响产品质量,恶化产品性能、大大降低Ic成品率。如果吸附的灰尘粒子的半径大于100μm线条宽度约100μm时,薄膜厚度在50μm下时,则最易使产品报废。
再次,静电对IC的损害具有一定的特点。
(1)隐蔽性
除非发生静电放电,人体不能直接感知静电,但发生静电放电人体也不一定能有电击的感觉,这是因为人体感知的静电放电电压为2~3kv,所以静电具有隐蔽性。
(2)潜在性
有些汇受到静电损伤后的性能没有明显的下降,但多次累加放电会给IC器件造成内伤而形成隐患。因此静电对IC的损伤具有潜在性。
(3)随机性
IC什么情况下会遭受静电破坏呢?可以这么说,从一个IC芯片产生以后一直到它损坏以前,所有的过程都受到静电的威胁,而这些静电的产生也具有随机性,其损坏也具有随机性。
(4)复杂性
静电放电损伤的失效分析工作,因微电子IC产品的精、细、微小的结构特点而费时、费事、费财,要求较高的技术并往往需要使用高度精密仪器,即使如此,有些静电损伤现象也难以与其它原因造成的损伤加以区别;使人误把静电放电损伤的失效当作其它失效,这在对静电放电损害未充分认识之前,常常归因于早期失效或情况不明的失效,从而不自觉地掩盖了失效的真正原因。所以分析静电对IC的损伤具有复杂性。
总而言之,在IC的加工生产和封装过程中建立起静电防护系统是很有必要的!
IC封装生产线对静电的要求更为严格。为了保证生产线的正常运行,对其洁净厂房进行防静电建筑材料的整体装修,对进出洁净厂房的所有人员配备防静电服装等采取硬件措施外,封装企业可根据国家有关标准和本企业的实际隋况制定出在防静电方面的企业标准或具体要求,来配合IC封装生产线的正常运转。随着我国IC封装线的扩建、封装能力的逐年提高、封装品种的增加以及对产品质量和成品率的更高要求,相应地对各种软、硬件要求和对全体从业人员的静电防护意识的加强就显得更为重要,而这也正扮演和充当着影响我们产品质量的"主要角色"和"无形杀手"。所以说,静电防护将是目前和今后摆在我们整个IC行业的一大课题。
4结束语
综上所述,环境诸多因素和静电因素始终对IC的封装加工过程起着很重要的作用,这也是IC的发展趋势和封装加工过程的固有特性所决定的,微电子半导体IC的超前发展,就势必要求我们在环境与静电方面紧紧跟上IC的发展,使之不要成为制约IC封装加工发展的障碍和"绊脚石"。本文也正是出于这样的考虑来进行抛砖引玉的。
J. 关于含氟废水和CMP废水的处理
根据bod cod ph 金属危害来实际分析