导航:首页 > 废水知识 > 硅酸盐洗涤液废水处理

硅酸盐洗涤液废水处理

发布时间:2021-02-08 21:15:06

Ⅰ 氟硅酸铵的三废处理和生产流程

—、烟尘废气
1970~1975年,户县磷肥厂王炳义等进行磷肥生产尾气的综合利用研究。他们将该厂生产中排放的氟化氢尾气用水吸收后加入二氧化硅,生成氟硅酸后再用苛性钠中和,生产出氟硅酸钠,并正式进行生产,使原来放空的氟化氢尾气得到回收,回收率达95%以上。1976年向全省磷肥厂推广了这一新技术。
1974~1982年,化工部化肥工业研究所李峻宇等与石油化工科学研究院、上海炼油厂协作,研制成功用于石油炼制过程中烟气除尘的旋流式三级分离器,可用以净化裂化中产生的高温烟道气,并可通过膨胀透平回收利用,以减轻对大气污染。1979~1982年在上海炼油厂年产60万吨催化裂化再生烟气加回收工程运行生产,分离效率为85%~95%,若进口浓度不高于1.5克/立方标米时,出口浓度可降至0.2/立方标米以下。3年共回收催化剂1000吨,节约动力3512万千瓦小时,共收益491万元。该研究1982年获中国石油总公司科研成果一等奖。
西安交通大学锅炉教研室赵国凌等于1976年开始研究抛煤机锅炉二次风消烟除尘技术。1978年经本技术改造后的锅炉热态运行良好,排烟色度达到林格曼一级,基本上消除了黑烟,使排灰量减少了一半,锅炉热效率提高了3%以上。1979年在贾汪发电厂35吨/时抛煤机锅炉上采用,每度电可降低煤耗10克多,每年可节约标准煤4000吨。这一成果分别于1978年和1986年获省科技成果二等奖和国家教委科技进步二等奖。
1978年西安化工厂的技术人员在漂白粉生产中,将长期沿用的贝克曼塔式法生产工艺革新为漂粉机法生产。成功地回收了生产中排出的含氯尾气,并将回收的氯气制成新产品——次氯酸钠,4年中生产出次氯酸钠17932吨,产值达207.99万元,纯利润64.6万元,化害为利,为“三废”综合利用闯出新路。1982年后这项新技术在全国漂白粉生产厂家得到了推广。
二、废水
庆华电器厂环保所尚建河、王有贵等于1976年开始进行D·S共晶和三硝基间苯二酚铅废水治理和综合利用的研究,采用硫酸沉铅、碳酸盐转化及硝酸溶解的方法对高浓度含铅废水进行治理并使之转化为硝酸铅;用活性炭吸附或N503萃取废水中的硝基酚,然后以碱液蒸气再生和酸化吸出的方法回收废水中的硝基酚,所得硝酸铅和硝基酚又回用于生产,取得了较好的经济效益和环境效益。1983年通过部级鉴定,1985年获国防科工委科技成果三等奖。
1963年西安浐河东岸梁家街、闫家滩、官厅、南牛寺村等地的群众,用浅井水浇地以后,发现蔬菜、玉米等农作物生长不良,叶片发黄,出现黄褐斑,严重时干枯死亡。10多年来受灾面积不断扩大,从几十亩增加到7000多亩,每年直接经济损失超过100万元。为查明原因,西安市郊区环保监测站商寿岩、西安市农科所郑泽群等于1978年3月开始系统的调查、分析、检验及盆栽试验。终于查明,农作物受害是由于地下水被浐 河化工厂生产中排放的工业废料——含硼泥浆污染所致。在研究中他们探讨了硼对地下水的污染途径,污染对土壤的影响,硼与农作物生长发育的关系。在探讨了硼对农作物产生有益和有害作用的临界值的基础上,首次提出了国家灌溉中硼含量标准的建议,该建议于1985年被国家环保局采纳,列入中国《农田灌溉水标准》(GB5084-85)中。他们在研究报告中提出了引浐产河上游的清洁水和采深井承压水冲洗硼污染区的土地,以降低硼浓度的治理方法,浐产河化工厂也改进了生产工艺,将含硼量高达100ppm的含硼泥浆进行脱水干燥处理,回收再用含硼废水,所剩干泥达标排放。这些措施的实施,解决了长期存在的硼污染问题,减少直接损失670万元。硼污染对生态系统影响的研究成果,居国内领先地位,1979年获省科技成果三等奖。
1979年省航天系统张鸿钊等进行了臭氧氧化处理液体火箭发动机试车废水的试验研究,1980年底在165试验站建成国内第一座臭氧—紫外线—活性炭法处理污水的污水处理站。臭氧氧化法对偏二甲肼的平均去除率为94.7%,出水浓度降至0.75毫克/升以下。PH和COD均在国家规定的排放标准之内。该工艺于1982年通过部级鉴定,同年获航天部科技成果三等奖。
西安飞机制造公司李积勋和机械工业部第六设计院廖家倬等8人,1979年开始研究电镀气雾喷淋清洗新工艺,1981年用于172厂镀铬件的清洗,可回收电镀及抽风过程中带出的镀液99%以上,使铬酐利用率提高到90%以上,实现了镀件清洗液的闭路循环。该工艺以气雾清洗镀件表面,突破了大量用水清洗的传统方式,使镀件单位面积的耗水量由每平方米25升降到0.051升,取得了良好的经济效益。1981年获省科技成果二等奖。
1980~1982年,陕西钢铁研究所唐希文与冶金部建筑研究总院程志久等5人研究成功湿式空气氧化法和扩散渗析——石灰石法废水处理工艺。通过处理可回收特殊钢酸洗废液中的铁、铬、镍、钴等重金属,使酸析率达75%~90%,再生酸补充新酸配制后可重新用于特殊钢的酸洗,最后排出的废液达到了国家排放标准。每处理一立方米废液可回收的重金属价值达100元,经济效益与环境效益均好,此项工艺系国内首创,1982年获省科技成果二等奖。
机械工业部第七设计研究院环保室涂锦葆等1982~1984年在北京量刃具厂研究成功电镀废水综合治理方法。使废水回用率超过65%,废镀液净化回收率达75%以上,节约了生产用水及镀液,使废水达到国家排放标准。1984年获机械工业部科技成果二等奖。
三、废 渣
陕西省工业废渣以煤粉、炉渣和煤矸石为主。综合利用率近年均有增长。1969年户县热电厂建成煤渣制品厂,年产灰渣砖1923万块。1974年4月,省建筑科学研究所与省第二建筑工程公司合作,研制成功粉煤灰硅酸盐墙板,并在宝鸡市建成粉煤灰墙板生产线。1980年渭河电厂将粉煤灰用作耀县水泥厂的水泥拌合料。1982年西安建筑设计院的粉煤灰在建筑地基中的应用研究获得成功。采用粉煤灰掺白灰作桩基不仅降低了生产费用,而且可以处理杂填土、垃圾土、湿陷性黄土、新堆积土和软土地基,其基础沉降变形小、抗震性能好,质量安全可靠。1985年西北农业大学利用户县热电厂的粉煤灰在陕西、河南2500亩土地上进行改良、施用后,土壤疏松透气,增加了净化活性,明显地改善了土壤中水、肥、气、热状况,有利于农业增产。铜川三里洞煤矿用煤矸石烧砖也取得了废物利用,改善环境的效果。
1975年昆仑机械厂金克文等研究电解排放物的综合利用。对电解沉淀物的相分析结果表明,其主要成分为氢氧化铁和氢氧化亚铁,根据这一结论研究确定了制氯化铁技术方案,1979年制出第一批合格的氯化铁。1981年防腐自动板框滤机安装调试成功,使厂内电解液处理形成全封闭系统,将电解产物的过滤、洗涤和综合利用组成了一条完整的年处理干渣33吨的工艺生产流程。一年节约电解液原料价值和增产氯化铁产品利润约2万元,解决了废液、废渣对环境的污染。1984年获兵器工业部科技成果二等奖。
1988年咸阳彩色显象管总厂环保公司完成了总装含氟及重金属工业废渣综合利用研究,找到了利用总装含氟重金属废渣湿式掺土烧砖的处理方法。该法可确保渣土混合均匀,提高砖的质量;同时还避免了粉尘污染,为大批量的工业废渣找到了出路。

Ⅱ 常见的放射性废水处理方法有哪些

放射性废水的主要去除对象是具有放射性的重金属元素,与此相关的处理技术,简单地可分为化学形态改变法和化学形态不变法两类。

放射性废水处理方法:

其中化学形态改变法包括:

1、化学沉淀法;

2、气浮法;

3、生化法。


化学形态不变法包括:

1、蒸发法;

2、 离子交换法;

3、吸附法;

4、 膜法。


化学沉淀法是向废水中投放一定量的化学絮凝剂,如硫酸钾铝、硫酸钠、硫酸铁、氯化铁等,有时还需要投加助凝剂,如活性二氧化硅、黏土、聚合电解质等,使废水中的胶体物质失去稳定而凝聚何曾细小的可沉淀的颗粒,并能于水中原有的悬浮物结合为疏松绒粒。改绒粒对水中的放射性元素具有很强的吸附能力,从而净化水中的放射性物质、胶体和悬浮物。引起放射性元素与某种不溶性沉渣共沉的原因包括了共晶、吸附、胶体化、截留和直接沉淀等多种作用,因此去除效率较高。

化学沉淀法的优点是:方法简便、费用低廉、去除元素种类较广、耐水力和水质冲击负荷较强、技术和设备较成熟。缺点是:产生的污泥需进行浓缩、脱水、固化等处理,否则极易造成二次污染。化学沉淀法适用于水质比较复杂、水量变化较大的低放射性废水,也可在与其他方法联用时作为预处理方法。


蒸发浓缩法处理放射性废水:除氚、碘等极少数元素之外,废水中的大多数放射性元素都不具有挥发性,因此用蒸发浓缩法处理,能够使这些元素大都留在残余液中而得到浓缩。蒸发法的最大优点之一是去污倍数高。使用单效蒸发器处理只含有不挥发性放射性污染物的废水时,可达到大于10的4次方的去污倍数,而使用多效蒸发器和带有除污膜装置的蒸发器更可高达10的6次方到8次方的去污倍数。此外,蒸发法基本不需要使用其他物质,不会像其他方法因为污染物的转移而产生其他形式的污染物。

尽管蒸发法效率较高,但动力消耗大、费用高,此外,还存在着腐蚀、泡沫、结垢和爆炸的危险。因此,本法较适用于处理总固体浓度大、化学成分变化大、需要高的去污倍数且流量较小的废水,特别是中高放射性水平的废水。

新型高效蒸发器的研发对于蒸发法的推广利用具有重大意义,为此,许多国家进行了大量工作,如压缩蒸汽蒸发器、薄膜蒸发器、脉冲空气蒸发器等,都具有良好的节能降耗效果。另外,对废液的预处理、抗泡和结垢等问题也进行了不少研究。


离子交换法处理放射性废水的原理是,当废液通过离子交换剂时,放射性离子交换到离子交换剂上,使废液得到净化。目前,离子交换法已广发应用于核工艺生产工艺及放射性废水处理工艺。

许多放射性元素在水中呈离子状态,其中大多数是阳离子,且放射性元素在水中是微量存在的,因此很适合离子交换出来,并且在无非放射性粒子干扰的情况下,离子交换能够长时间的工作而不失效。

离子交换法的缺点是,对原水水质要求较高;对于处理含高浓度竞争离子的废水,往往需要采用二级离子交换柱,或者在离子交换柱前附加电渗析设备,以去除常量竞争离子;对钌、单价和低原子序数元素的去除比较困难;离子交换剂的再生和处置较困难。除离子交换树脂外,还有用磺化沥青做离子交换剂的,其特点是能在饱和后进行融化-凝固处理,这样有利于放射性废物的最终处置。


吸附法是用多孔性的固体吸附剂处理放射性废水,使其中所含的一种或数种元素吸附在吸附剂的表面上,从而达到去除的目的。在放射性废液的处理中,常用的吸附剂有活性炭、沸石等。

天然斜发沸石是一种多孔状结构的无机非金属矿物,主要成分为铝硅酸盐。沸石价格低廉,安全易得,处理同类型地放射性废水的费用可比蒸发法节省80%以上,因而是一种很有竞争力的水处理药剂。它在水处理工艺中常用作吸附剂,并兼有离子交换剂和过滤剂的作用。

当前,高选择性复合吸附剂的研发是吸附法运用中的热点。所谓“复合”是指离子交换复合物(氰亚铁盐、氢氧化物、磷酸盐等)在母体(多位多孔物质)上的某些方面饱和,所以新材料结合天然母体材料的优点,具有良好的机械性能、高的交换容量以及适宜的选择性。


离子浮选法属于泡沫分离技术范畴。该方法基于待分离物质通过化学的、物理的力与捕集剂结合在一起,在鼓泡塔中被吸附在气泡表面而富集,借泡沫上升带出溶液主体,达到净化溶液主体和浓缩待分离物质的目的。例子浮选法的分离作用,主要取决于其组分在气-液界面上选择性和吸附程度。所使用捕集剂的主要成分是,表面活性剂和适量的起泡剂、络合剂、掩蔽剂等。

离子浮选法具有操作简单、能耗低、效率高和适应性广等特点。它适用于处理铀同位素生产和实验研究设施退役中产生的含有各种洗涤剂和去污剂的放射性废水,尤其是含有有机物的化学清洗剂的废水,以便充分利用该废水易于起泡的特点而达到回收金属离子和处理废水的目的。


膜处理作为一门新兴学科,正处于不断推广应用的阶段。它有可能成为处理放射性废水的一种高效、经济、可靠的方法。目前所采用的膜处理技术主要有:微滤、超滤反渗透、电渗析、电化学离子交换、铁氧体吸附过滤膜分离等方法。与传统处理工艺相比,膜技术在处理低放射性废水时,具有出水水质好,浓缩倍数高,运行稳定可靠等诸多优点。

不同的膜技术由于去除机理不同,所适用的水质与现场条件也不尽相同。此外,由于对原水水质要求较高,一般需要预处理,故膜法处理法宜与其他方法联用。

如铁凝沉淀-超滤法,适用于处理含有能与碱生成金属氢氧化物的放射性离子的废水。

水溶性多聚物-膜过滤法,适用于处理含有能被水溶性聚合物选择吸附的放射性离子的废水。

化学预处理-微滤法,通过预处理可以大大提高微滤处理放射性废水的效果,且运行费用低,设备维护简单。

Ⅲ 处理水玻璃废水

这股水是无机物为主,都是流失的原料,可以重复利用的,不影响产品质量。
不使用药剂,不产生废渣。既节省处理费用,又减少了原材料流失。
建2间以上小水池,配个小泵。
1、在生产过程中尽量减少水耗
2、生产区严格划分,和特别是和生活活动区分开,避免灰尘、污物进入
3、收集水粗沉淀后继续用于生产

Ⅳ 废水中的硅酸盐,钨酸盐如何去除

蒸发,盐分回收可以产生将经济价值。
硅酸盐就用酸就可以

Ⅳ ~~~跪求~~~ 100t/h三氯氢硅废水处理设计

其会与水激烈反应:2SiHCl3+3H2O—→ (HSiO)2O+6HCl ,可以加碱。他们会发生中和反应生成硅酸盐、氯盐和水

Ⅵ 急!!! 含锆 硅酸盐的强碱性废水 如何处理!!!

请尝试投加氢氧化钙或氧化镁。

Ⅶ 如何出去含硅废水中的硅如何控制硅酸盐的结垢问题

加入氯化钙以及氯化镁,混匀后加入氯化铁,形成矾花絮凝沉淀,反应时间40min左右,版在含硅废水中加入权成核助凝剂,并使含硅废水和成核助凝剂混合,将含硅废水的PH调节至3. 5-9。该方法里然能避免SiO2易凝胶问题,但是此法对活性硅的处理效果并不理想,而且不能对废水中的有用物质进行回收利用。更多处理方法可以去环保通问问。

Ⅷ 水质放射性超标的水怎样处理

提供以下办来法,可以适源当参考:
1.短半衰期放射性核素污水,可以采用存储衰变的方法。一般考虑存储该放射性核素10个半衰期的时间,然后当一般污水排放。
2.长半衰期核素的污水
如果浓度低,可以考虑加水稀释,使其放射性核素浓度达到国家排放标准。
如果浓度高,还是联系专业处理放射性污水的厂家吧。

Ⅸ 硅酸盐 怎么清除啊

那个是炉渣吧,成分应该是硅酸钙和硅酸镁那一类的,用盐酸可以溶解。工业盐酸内相对来说是很便宜的东东了容~
硅酸钙:CaSiO3 + 2HCl = CaCl2 + H2SiO3
硅酸镁:MgSiO3 + 2HCl = MgCl2 + H2SiO3
不过这个方法的缺点是盐酸气味太重,用量不合适的话还会腐蚀炉壁。另外,处理以上反应生成的H2SiO3(偏硅酸)可能也需要一些技巧~

阅读全文

与硅酸盐洗涤液废水处理相关的资料

热点内容
汉兰达6at变速箱滤芯是哪里代工的 浏览:289
某城市污水处理厂工艺流程 浏览:561
豪沃重汽尿素滤芯在哪里图 浏览:745
杨子802空气净化器怎么样 浏览:374
插管式柴油滤芯怎么拆 浏览:430
废水是怎么生产的 浏览:476
即热饮水机的工作原理是什么 浏览:683
油烟净化器怎么维修 浏览:36
空气净化器和香薰怎么平衡 浏览:961
RO反渗透净水器怎么买 浏览:744
补的树脂牙黄 浏览:568
没有装净水器怎么补救 浏览:20
不锈钢精工树脂字 浏览:765
江门醇酸树脂 浏览:723
混凝剂污堵反渗透 浏览:436
过滤驱动摘除tdi 浏览:746
太原纯净水有什么菌 浏览:932
药店里的饮水机怎么用 浏览:251
简阳市的乡镇污水厂有哪些 浏览:890
如何去除污水中的bod 浏览:582