导航:首页 > 耗材问题 > B48N固体树脂

B48N固体树脂

发布时间:2025-06-02 15:08:12

㈠ 环氧树脂胶粘剂的应用

改性环氧树脂胶粘剂及制备方法,克服了一般环氧胶粘剂的脆性、耐温性差的缺点,其主要技术特征是以聚氨酯预聚物改性环氧树脂(A组分)与自制的固化剂(B组分)按10∶1~1∶1(重量比)的比例配制成耐高温、韧性好、反应活性大的固化体系。其中聚氨酯预聚物为端羟基聚硅氧烷和二异氰酸酯按一定比例在一定条件下反应制成异氰酸酯基团封端的聚硅氧烷聚氨酯预聚物,再采用此聚氨酯预聚物对环氧树脂进行改性处理。而自制的固化剂由二元胺、咪唑类化合物、硅烷偶联剂,无机填料以及催化剂组成。此改性环氧树脂胶粘剂可室温固化,在200℃下可长期使用,或-5℃固化耐温150℃;粘接强度达15-30MPa;T型剥离强度达35-65N/cm,具有优异的耐油、耐水、耐酸、碱、耐有机溶剂的性能,可粘接潮湿面,油面及金属、塑料、陶瓷、硬质橡皮、木材等。
⑴涂料领域
应用于汽车:底盘底漆、部件漆,槽车内壁涂料
应用于容器:食品罐内、外壁涂料,贮槽内外壁防腐涂料,压力罐防腐
应用于工厂设备:设备、管道防腐涂料,冰箱、洗衣机外层涂料,电器设备绝缘涂料
应用于土建:桥梁防腐涂料,钢结构防腐涂料,水坭制品防渗涂料,地坪涂料,装饰涂料,功能涂料、钢丝网水泥闸门
应用于船舶:底货仓内壁涂料,海上集装箱涂料,钢铁部件防腐涂料
应用于其它:钢家具粉末涂料,电阻元件粉末涂料,钢制部件粉末涂料,阀体防腐、重防腐超耐磨陶瓷,屏蔽立式管道泵、太阳能热水器、太阳能电池板、武器
⑵复合材料领域
应用于汽车:玻璃钢车壳,玻璃钢地板,玻璃钢槽车,控制系统仪器仪表电器零部件,显示器,汽车干式点火线圈,玻璃钢部件、防滑粒方向盘套、环氧树脂局部加强材料、
应用于工厂设备:玻璃钢氧气瓶,玻璃钢贮槽,玻璃钢容器、管道,模具,螺旋浆,织机箭杆,飞机蜂窝结构件,引擎盖,辊筒,轴,装机基础找平,自流平地坪、电磁线圈,先导阀、玻璃零部件、玻璃钢泵阀,电碳制品、建筑工程结构件、机用传动装置部件
应用于绝缘材料:覆铜板,玻璃钢板、管、棒,变压器,继电器,高压开关,绝缘子,互感器,阻抗器,电缆头,电子器件、元件的密封或包封和塑封,报警器、固体电源、FBT回扫变压器、聚焦电位器、摩托车、汽车等机动车辆点火线圈、电子、电器零部件、发光二极管,信号灯,全封闭蓄电池,电机封装,温度变送器、录音机磁头、线路板封闭、集成电路、二、三极管分立器件、无源滤波器、LED的结构封装、封装太阳能电池板、电源组件、IC 调节器和固态继电器、煤矿安全巡查系统、本质安全型模块、自动重合器
应用于体育用品:玻璃钢安全帽,球拍,高尔夫球杆,钓鱼杆,保龄球,雪撬,冲浪板,玻璃钢赛艇、帆船、赛车、躺椅、曲棍球杆
应用于其它:飞机机身、直升机螺旋叶片,风力发电机叶片,医学仪器、手术刀柄,心脏起搏器、工艺品 珠宝、阀门密封件、水工建筑工程、场致发光屏、混凝土抗磨层、保温材料、动物模型、航天飞行器、船用尾轴、舵轴、化学木材、塔身加固、磁悬浮列车轨道、太阳能电池乐器、环氧装饰品、玻璃钢帐篷杆具、刀柄、窗户、家具、泵、拐杖、显卡、红外滤光器、数字显示器、矩阵辐射器、发光二极管与光电二极管、实验室台面、彷真树、预制磨石 道路桥梁路面
⑶粘接剂领域
应用于:室温快速固化韧性环氧树脂粘结剂,导电胶,常温固化静电植绒粘合剂、光学结构胶、沙狐球胶、化学锚固胶、真丝的高功能化、人工花、磁力书写板、汽车维修胶、石材胶等。
⑷增韧环氧树脂在胶粘剂中的应用
以增韧环氧树脂为基础,配以功能性填料和固化剂而形成的高分子合金胶粘剂克服其性脆、冲击性、耐热性差等缺点。在机械、电子、电器、航天、航空、涂料、粘接等领域得到了广泛的应用,有万能结构胶之称。
1、固化体系的选择
环氧树脂的固化剂有胺类、酸酐等,通常固化以胺类为主,有电性能要求的以酸酐类为常用.以咪唑类为促进剂。
伯胺和仲胺含有活泼的氢原子,很容易与环氧基发生亲核加成反应,使环氧树脂交联固化。固化过程可分为三个阶段:
1)伯胺与环氧树脂反应,生成带仲胺基的大分子
2)仲胺基再与另外的环氧基反应,生成含叔胺基的更大分子
3)剩余的胺基、羟基与环氧基发生反应
酸酐在环氧树脂的羟基、微量水和含羟基化合物的作用下开环,生成的羧基与环氧基加成得到酯基,酯化反应生成的羟基和环氧树脂的羟基在高温时催化环氧开环发生醚化反应,这样,开环一酯化一醚化不断反复进行,直至环氧树脂交联固化,这就是酸酐的固化机理。
咪唑是含有两个氮原子的五元环,一个氮原子构成仲胺,另一个氮原子构成叔胺,既可用作环氧树脂的固化剂,又可用作环氧树脂固化的促进剂。可在中温固化环氧树脂,却有优良的耐热性和力学性能,能与芳胺固化剂相媲美,只是耐介质性和耐湿热老化性稍有逊色。
咪唑类固化剂的分子含有一个仲胺基和一个叔胺基,对环氧树脂的固化可分为两步进行,首先是仲胺上的活泼氢同环氧基加成,然后是叔胺催化环氧树脂的均聚反应,固化反应有两个放热峰.分别是60℃和1110℃。为改善其耐湿热老化性.可加入少量的芳胺。
2、填料的选择研究
胶粘剂的耐热性能除了与体系的基础聚合物、硫化交联剂等组分的类型、品种和分子结构有关外,还与体系所选用的耐热性填料有密切关系。配方中合适地引入耐热性填料往往会使体系的耐热性获得明显的改进。
常用的耐热填料有经表面改性的气相法Si02、表面处理的Zn0、Fe203和Al2O3等。经表面处理后的填料可明显地提高其耐热性,例如采用经(MeSi)2NH处理的白碳黑为填料的硅橡胶体系.即使经250℃表化48hr,其抗伸强度为9.3Mpa,伸长率为335%,如采用未经表面处理的同种白碳黑为
填料的相同硅橡胶体系。经上述相同条件下热老化后,其拉伸强度和伸长率分别为6.6Mpa和228%。可见。耐热填料对硅橡胶的耐热性能的提高是非常显著的。
各种炭黑、纳米级碳酸钙、钛白粉等。具有补强、改善各种物理性能、增稠、降低成本、着色等作用。填料对降低产品的收缩。减小内应力。提高综合性能具有重要意义。如石英粉能提高胶层硬度和灌封胶的流动性;硅微粉可提高粘接强度但储存期会变短:加入少量铬酸锌可提高耐湿热和耐盐雾性能:加入325目的玻璃鳞片具有优异的耐腐蚀和耐水性;加入硫酸钙晶须,有明显的增韧和增强作用,提高耐热、耐沸水作用,阻燃剂、三氧化二锑提高氧指数,264抗氧剂,延长固化物使用寿命。
3、高分子合金修补材料
美国Belzona Molecular公司l952年成立,针对工业设备腐蚀、磨损、老化等问题而最早致力于研究、开发并生产高分子修补材料的跨国机构,其生产的高分子合金修补剂首先应用于化工设备腐蚀后的修复。德国TipTop公司其产品在皮带维修方面应用始终处于世界领先地位,是全球最大的冷、热硫化橡胶材料的制造商。其产品有:橡胶粘接所需的冷硫化粘接材料和热硫化粘接材料、PvC粘接剂、滚筒包胶材料及工具设备、输送带修复材料等等。其它如Devcon,E—wood公司等均有类似产品.是指以高分子聚合物与特殊功能填料(如石墨、二硫化钼、金属粉末、陶瓷粉末和纤维)组成的复合胶粘剂材料(或称修补剂,也可称粘涂剂)。该新型材料可实现高的结合力、优良的耐腐蚀性、耐磨性和高抗压强度.同时还具有密封性能好、耐潮湿和绝缘等性能。故广泛应用于机械、建筑、电子、轻工、石油、化工、舰船、航空等工业部门装备维修领域,一方面可以直接作为铆接、焊接、螺纹连接以外的一种新型连接方法;另一方面可以对任何装备发生磨耗、破裂、划伤、腐蚀、侵蚀、尺寸超差、铸造缺陷等情形。在最短的时间内予以修复。高分子合金修补剂又被称为“冷焊”或“工业上的医生”,它可修补零件上的各种裂纹、划伤、尺寸超差、铸造缺陷等,也可用作零件磨损、腐蚀的尺寸恢复和预保护涂层。
高分子合金的聚合物主要还是以增韧环氧树脂为主体配制而成的,其它诸如改性丙烯酸酯、聚氨酯等也可作为胶粘剂材料,也可对上述聚合物进行改性,赋予材料新的特性。而不同功能填料的加入。则赋予材料导电、导热、导磁、耐温、隔热等功能,对零件无热影响区和变形,使用方便,可以不加热、不加压。室温操作,不需要专用设备,修理快速简便,并可现场作业,有通用型、耐磨型、减摩型、耐腐蚀型、快速固化型、湿面修补型、耐高低温型、高强度型。导电与绝缘灌封型等多种修补剂,适用于修补金属、橡胶、陶瓷、混凝土等物质。用户可根据设备的材质、运行温度、压力、化学介质、停机时间、现场环境等因素,灵活的选用相应产品。它在船用轴类、泵类、管道类设备上应用广泛,具有操作简单、性能可靠、缩短坞修周期的特点。
重点应用如下:
1)船用主机、辅机的修复;
2)换热器、油仓加热管的修复和密封;
3)尾轴、舵销、舵销座孔的修复再生和防腐防磨处理;
4)螺旋桨叶片的修复再生及抗气蚀腐蚀;
5)甲板、罐体的防腐蚀保护
4、改性环氧结构胶
1)建筑用结构胶钢板加固胶。植筋胶,锚固胶,纤维增强胶
2)航空航天用结构胶胶膜.糊状。室温固化,加温固化
4)其它工业用胶耐环境,耐高低温,耐振动,耐老化等五、参考文献(略)

㈡ 宝马3系的2.0T是新款低功率版刷ECU能实现高功率

最近我在抖音号上发了发动机排名,许多人对宝马B48很大兴趣,问宝马新3系上用的B48发动机到底是新款还是旧款,宝马3系、5系、X3等上面好多2.0T发动机,还有高低功率之分,它们有没有本质区别,如果只刷电脑,是不是就可以从低功率刷到高功率等,那这篇文章我就详细说说这些事。
B48是宝马发动机进入模块化的产物,取代之前的N系列以及更早的M系列。B38是直列3缸1.5T,B48是直列4缸2.0T,B58是直列6缸3.0T,从这些缸数和排量,大家应该看出来了,每气缸都是0.5L只要增加缸数,4缸和6缸就很容易实现,就像搭积木一样,宝马也把模块化应用了发动机制造上,如此一来,气门、活塞、缸套、连杆等部件都可以通用,制造成本可以降低。
B系列发动机从2015年就开始装机了,算一下,到今天已经有5年时间了,目前宝马销售的5系、X3上的2.0T发动机,基本还是最早期的B48,所以,去年宝马全新3系上市的时候,发动机铭牌上依然是B48B20之类的代号,好多网友就说全新3系竟然还用老发动机!其实不然,全新3系用的是中期改款后的B48系列发动机,内部叫B48TU,只是铭牌上不体现TU字母,所以看上去跟以前一样都是B48。
B48TU最早用在X2 M35i上,后来新3系、Z4开始普及,B48TU和B48相比,其实已经做了非常多的技术提升,从外面看也能看出区别,如下图,头盖上Twin Power Turbo字母横排和宝马LOGO并列,旁边5道杠没外框的是B48TU系列;而老款B48系列的Twin Power Turbo是纵向排列,旁边是7道杠且有外框圈住。这是外部能看到的区别,内部看不到的区别还有很多。
B48TU缸盖和之前B48有了区别,B48TU缸盖分两种,高功率版的缸盖不集成排气歧管,而低功率版缸盖集成了排气歧管,差别还是挺大。主要是低功版更适合日常代步兼顾低油耗和排放,集成排气歧管能快速热车,对节油和排放都有好处,也有助于实现涡轮尽早介入工作,减少涡轮迟滞现象。而高功率版不集成排气歧管,主要为了减少排气干涉,并在大功率输出的时候更容易控制缸盖温度。
不论高低功率版本B48TU,曲轴和连杆相对B48都做了升级,强度不变的情况下,曲轴和连杆做了减重设计,还采用了新科技涂层,很复杂的化学名称,简单点叫树脂结合固体润滑剂吧,可以更有效减小摩擦。另外B48TU的正时链条也从之前2条缩减成1条,还减少了一个张紧器,在噪音改善和可靠性方面有提升。
B48TU相对B48还有个大改进,就是冷却系统。之前B48冷却循环只分大循环和小循环两种,B48TU在机械水泵基础上,增加了电动水泵及热管理控制系统,可以单独对某块区域进行冷却,如只实现缸盖冷却,涡轮及中冷器冷却、整体冷却等,所以B48TU可以实现不同等级的三循环,从快速热机到大功率输出状态,都有高效且精确的冷却控制策略。
在喷油系统B48TU也做了调整,此前的B48系列采用非恒定的180-250Bar喷油压力,而B48TU提升为恒定350Bar喷油压力,提高了汽油雾化效果,使得燃烧质量和节油性能都可以增加。此前B48的高压油轨通过钢管连接喷油嘴,新的B48TU把喷油嘴直接装在高压油轨上,省略了中间钢管,因此减少了共振带来的噪音问题,轻量化也有促进。
小总结一下就是,从B48进化到B48TU ,新发动机从缸盖、曲轴/连杆、正时链条、冷却系统、喷油系统等都有了较大变化,所以如果你买全新3系的话,这个新发动机的含金量还是挺高。有些人心中的疑问,就是刷3系ECU的电脑程序,是不是就可以从低功率刷到高功率?看来不那么容易,高低功率版其缸盖结构不同,冷却效果不同,另外机械水泵和电动水泵新增冷却控制策略,单独刷电脑可能会引起冷却控制策略紊乱。
从另一个方面来说,高低功率版本的B48TU发动机,其实在活塞、缸体、连杆等基础部件上都是一样的,低功率版本承受高功率版本的强度不是问题,问题主要在于热管理,也就是当高功版动力显著增强时,散发的热量也会大幅增加,此时如何冷却发动机,控制发动机爆震以及避免发动机烧坏这是要考虑的问题,所以,如果只简单通过刷ECU提升B48TU的动力,其实很有限,这个道理也适用于其它发动机上。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

㈢ 上海三井中石化生产双酚A使用的催化剂和上海拜耳生产双酚A使用的催化剂是一样的吗

不一样,双酚A催化剂种类繁多。请看介绍:
双酚A(简称BPA)主要用于生产聚碳酸酯、环氧树脂、阻燃剂等多种化工产品,近年来其消费量持续增长。目前,国内外主要采用改性离子交换树脂合成双酚A。然而,现有的改性树脂也存在一些问题:容易中毒而失去活性,文献[3]报道了金属离子、醇、氧气都能使其失活,这就使得工业化中对原料、设备等要求非常高;另外,树脂不易在线再生活化、催化剂强度差、对床层阻力影响大、不易长期保存、热稳定性差、容易结垢等。因此,人们一方面立足于树脂的改性工作,以期能得到满意的改性树脂;另一方面着手寻求更优的催化剂。近年来,各种固体酸催化剂、离子液体等新型催化剂体系研究活跃,并将其应用于双酚A反应中,取得了较好的效果。

1 改性离子交换树脂

改性树脂中巯基与磺酸树脂之间主要以共价键和离子键结合,实现途径可以是通过树脂酸与改性催化剂间的还原作用、酯化反应、中和反应等。到目前为止,人们研究了多种类型的改性树脂。以共价键方式结合的有:含硫酚、巯基烷基磺酰胺、巯基烷基磺酸酯等类型的树脂;以离子键结合的主要是巯基烷基胺类改性树脂,主要有含单氨基烷基硫醇、叔氨基烷基硫醇、氮原子杂环结构的烷基硫醇、季铵盐型烷基硫醇等类型的树脂。其中以离子键结合的各种不同结构巯基烷基胺类改性树脂已成为现代双酚A工业的主流,所用改性剂结构的微小差别可以导致树脂性能的很大不同。目前,人们对离子交换树脂的改性工作主要集中于对现有树脂的进一步改性。

三菱化学株式会社早期研究发现:当巯基烷基胺类改性树脂中氮原子没有氢原子,并且巯基和氮原子间有3~4个C原子时,丙酮的转化率和稳定性都比较好,由此得出:N,N-二甲基-3-巯基丙胺、N,N-二甲基-4-巯基丁胺应该是两种比较好的助催化剂。在此基础上,陈群等以N,N-二甲基-3-巯基丙胺与卤代烷反应先生成季铵盐,然后用此季铵盐对磺酸型阳离子交换树脂进行改性,得到丙酮转化率高、双酚A选择性好的合成催化剂,其中卤代烷为Cl或 Br取代的碳原子数为2~4的烷基。

随后,陈群等在以巯基烷基胺改性的树脂上引进卤素(包括氟、氯、溴)、硝基或羰基等吸电子基团,结果发现,树脂的耐温性能明显提高、磺酸基降解率低,并具有活性中心利用率高、催化剂孔道不易堵塞的优点,催化活性、选择性和寿命均能满足双酚A生产的需要。

工业上基本采用固定床式反应器生产双酚A,这种反应器存在一个弊端:混合物料的流动方向是垂直的,当物料向下流动时,通过磺酸树脂催化剂床层的压降是一个大问题,它限制了反应物与产物的流通,最终阻碍了双酚A的生成。磺酸树脂被压缩变形是产生压降的主要因素,另外,催化剂床层的压力促使流动管道变形,导致反应物的流动不均匀,所以催化剂不能被利用完全。Lundquist将砜交联引入到由聚苯乙烯/二乙烯基苯(PS,DVB)共聚物制成的强酸性阳离子交换树脂球中,结果发现,这种砜交联提高了树脂的耐变形性。但不会对该催化剂在双酚A生产时的活性和选择性产生不利影响且产率高。

通用电气公司制备含有聚硫硫醇促进剂的磺化聚合物树脂催化剂,并将其应用到双酚A合成反应中,聚硫基是含有氮或磷的带正电官能团的侧链,优选氮杂环。

早期研究发现,即使用同样的巯基化合物对同样的树脂改性,由于具体操作方法不同,树脂活性可能有很大差异。岩原昌宏等在固定床反应器中填充强酸性离子交换树脂,向其中注入酸水溶液和在该酸水溶液中达到平衡浓度量的含硫的胺化合物,将强酸性离子交换树脂改性。结果发现,这种方法能够制备不破损、改性均一且催化性能优异的用于双酚A制备的改性催化剂。

2 分子筛

分子筛是一类典型的固体酸催化剂材料,活性高,选择性好,同时具有很高的热稳定性,不被有机和无机溶剂溶解和溶胀。因而催化剂活性组分不易流失,使用寿命长,容易活化再生,且本身无毒,无腐蚀性,不会对环境造成污染。

Singh最先报道了用沸石催化合成双酚A反应。将RE-Y、H-Y、H-mordenite、H-ZSM-5沸石与Amberlyst-15型离子交换树脂进行比较,在363 K、大气压下合成双酚A。研究结果表明,几种沸石对双酚A合成反应都有活性,孔开口大的沸石催化活性高,但远低于Amberlyst-15型树脂,可能是双酚A分子太大而无法进入沸石孔道内。主要反应产物是双酚A、双酚A异构体。异构体与丙酮缩合而成的色满量很大(4.6%~15%)。色满的存在不仅降低了反应收率,而且由于其含有游离羟基,在下游产品聚碳酸酯的合成中,游离羟基阻碍了聚合物链的生成,使聚合物的相对分子质量降低,影响了产品质量。

Perego等研究了沸石的空间指数对双酚A转化率的影响,并报道了沸石催化剂再生的方法。在反应物的物质的量比5:1、1g催化剂、180℃条件下反应12h,分别考察了β型、Y型、ERB-1和 ZSM-12沸石对双酚A反应的转化率和产物选择性的影响。4种沸石中β型沸石催化的转化率和选择性最高。基本的规律是随着沸石本身空间指数的下降,丙酮转化率明显下降,表现为:β型沸石>ERB-1沸石>ZSM-12沸石。除了空间指数外,转化率和选择性还与沸石本身的孔道和孔穴有关,例如β型沸石的空间指数低于Y型沸石,而双酚A的转化率和选择性却高于Y型沸石。

Knifton利用酸性蒙脱土黏土催化双酚A合成反应,酸性黏土用酸预处理,可用的酸为氢氟酸、硫酸、三氟甲基磺酸。

美国Mobil公司的科学家成功的合成了X41S系列分子筛,如MCM-41、MCM-48、MCM-50,吸引了许多研究者的注意。介孔分子筛以其大孔径比、高比表面积、高孔隙率、表面富含不饱和基团等优点,成为合成大分子底物的潜能催化剂,为催化领域开辟了新天地。

虽然介孔材料孔尺寸大,但酸性比微孔沸石弱得多,为了增加其酸性可以引入酸性基团。Debasish等研究了介孔硅基分子筛MCM-41和MCM-48的制备及催化行为,着重比较了它们对双酚A合成反应的催化性能。他们首先制备了MCM-41、 MCM-48介孔分子筛,由于介孔分子筛表面具有大量的硅醇基团,硅烷化试剂与其反应能够形成牢固的Si-O-Si键,将带有巯基的硅烷化试剂与其作用,巯基就被大量地引入到MCM硅基分子筛中,进而调变为磺酸型固体酸催化剂(MCM-SO3H),用于催化双酚A合成反应。结果表明,转化率和选择性大大高于β型、Y型、ZSM-5型沸石,且选择性高于商用的离子交换树脂Amberlite-120。

3 杂多酸

近年来,杂多酸及其盐类作为一种新型催化材料,以其独特的酸性、氧化还原性和“假液相”行为等优势引起了人们的重视。

杂多酸法合成双酚A,综合了硫酸法和氯化氢法的优点。具有反应时间短(只有硫酸法的1/3),杂多酸可反复使用等特点。

金昌范以磷钨酸H3PW12O40•nH2O为主催化剂,以巯基乙酸为助催化剂,甲苯为溶剂,在40~80℃的条件下,苯酚和丙酮缩合得到含量为25%左右的双酚A。在新工艺中采用“循环套用合成”方法和“含酚无离子水闭路循环”,实现了无排放含酚废水的双酚A生产工艺,制得聚碳酸酯级双酚A。

由于杂多酸自身比表面积较小(低于10 m2/g),不利于充分发挥其催化活性且回收比较困难。人们发现将杂多酸进行固载化,可以大大提高其比表面积,并激发杂多酸更高的催化活性和选择性,同时利于催化剂回收。Krystyna等研究介孔分子筛MCM-41负载的酸铯/铵盐杂多酸催化剂合成双酚A反应,并与ZSM-5、H-Y、H-DY型沸石比较。结果表明50%(质量分数)负载量的 Cs2:5H0:5PW12O40/MCM-41具有最高的反应选择性,且明显高于沸石催化剂。研究发现,当有极性溶剂存在时,HPA就会从MCM-41孔道中脱落下来,为了避免这一现象,Krystyna等通过Soleds方法将杂多酸原子固定在分子筛的内部。

Yadav等利用黏土K-10负载的DTP(十二磷钨酸)催化剂DTP/K-10进行了对双酚A反应的研究。对催化剂表征结果发现,极性溶剂存在时, DTP无丢失,说明DTP是通过化学吸附到载体表面,催化剂稳定性好;并考察了搅拌速率、催化剂负载量、温度、原料比、助催化剂对反应的影响,与酸性离子交换树脂Amberlyst-15、Amberlyst-31、 Amberlyst-XE-717P对比,其活性和选择性均高于 Amberlyst-15树脂;同时热稳定性明显高于上述几种树脂。研究还发现,通过适当减少催化剂活性中心控制其酸性,可以降低副产物,提高选择性。

赵景联等制备了NaY、USY-1、USY-2和ZSM-5分子筛担载H3PW12O40的固载杂多酸催化剂,并用其催化缩合双酚A。研究结果表明:4种负载催化剂中,PW12/USY-1效果最佳,双酚A收率可达62.6%,但该催化剂稳定性较差,重复使用仅两次后,其活性则降低到50%以下。这主要是由于固载杂多酸的流失,以及反应生成的水对分子筛上吸附的杂多酸有迁移作用,而在孔口处形成聚簇现象,堵塞分子筛的孔口,从而降低催化剂的活性。

杂多酸存在易脱附、失活等缺点。由于纳米材料具有独特的量子尺寸效应、表面效应和宏观隧道效应,具有大的比表面积和高的反应活性等优点,将两者结合可以很好地克服杂多酸易脱附、失活的缺点。李明轩等用溶胶凝胶法制备新型纳米复合杂多酸催化剂H3PW12O40/SiO2,并将其应用于双酚A的合成,具有较高的催化活性,催化剂重复使用3次,稳定性较好。

4 新型固体酸

Hou等由硼酸、磷酸、硫酸几种常见的无机酸通过简单的方法合成了一种新型的固体酸催化剂,惊奇地发现,这种固体酸催化剂可以高效地催化双酚A反应。催化剂表征结果证实:这种新型的催化剂可以看作由氧化硼和氧化磷的共聚物负载 SO42-的固体酸,具有超强酸的性质。SO42-对固体酸的酸性起决定性作用,硼酸对其无影响,但它可以缩短催化剂的固化时间。

当n(P):n(B):n(S)=1:2:3时,产物双酚A的收率和选择性可达到91.8%和88.9%,这是迄今为止报道的固体酸催化双酚A反应的最高的收率和选择性。但这种催化剂存在致命的缺点——非常容易失活,归因于反应中SO42-的丢失和磷酸与羟基的结合。

阅读全文

与B48N固体树脂相关的资料

热点内容
怎么让污水堵楼上 浏览:428
3d打印机耗材光敏树脂有毒吗 浏览:459
中水回用多介质过滤器 浏览:177
反渗透膜杀菌剂为什么是黄色 浏览:938
蒸馏水可以进眼睛吗 浏览:834
饮水机的桶怎么改装成小便池 浏览:270
法兰尼饮水机怎么安装 浏览:739
氢化树脂有机率高是什么原因 浏览:650
酒的三大类分类蒸馏酒 浏览:924
为什么产后回奶用雌激素 浏览:323
广东回南天可以用复合地板 浏览:595
污水处理厂冒烟怎么回事 浏览:576
回奶第五天可以用吸奶器吸空吗 浏览:358
d001阳离子交换树脂的使用 浏览:597
废水垃圾用英语怎么说 浏览:693
污水处理中强排怎么安装 浏览:156
康佳净水器水桶怎么安装 浏览:242
回收水处理技术比对表 浏览:558
电镀厂废水含金 浏览:360
有没有过滤开水 浏览:442