导航:首页 > 耗材问题 > 碱法酚醛树脂的制备

碱法酚醛树脂的制备

发布时间:2025-05-05 01:19:20

① 影响化学发展的十大历史事件

一、化学的前奏

1.人类文明的起点——火的利用

在几百万年以前,人类过着极其简单的原始生活,靠狩猎为生,吃的是生肉和野果。根据考古学家的考证,至少在距今50万年以前,可以找到人类用火的证据,即北京周口店北京猿人生活过的地方发现了经火烧过的动物骨骼化石。有了火,原始人从此告别了茹毛饮血的生活。吃了熟食后人类增进了健康,智力也有所发展,提高了生存能力。后来,人们又学会了摩擦生火和钻木取火,这样,火就可以随身携带了。于是,人们不再是火种的看管者,而成了能够驾驭火的造火者。火是人类用来发明工具和创造财富的武器,利用火能够产生各种各样化学反应这个特,类开始了制陶、冶金、酿造等工艺,进入了广阔的生产、生活天地。

2.历史悠久的工艺——制陶

陶器是什么时候产生的,已很难考证。对陶器的由来,说法不一,有人推测:人类最原始的生活用容器是用树枝编成的,为了使它耐火和致密无缝,往往在容器的内外抹上一层粘土。这些容器在使用过程中,偶尔会被火烧着,其中的树枝都被烧掉了,但粘土不会着火,不但仍旧保留下来,而且变得更坚硬,比火烧前更好用。这一偶然事件却给人们很大启发。后来,人们干脆不再用树枝做骨架,开始有意识地将粘土捣碎,用水调和,揉捏到很软的程度,再塑造成各种形状,放在太阳光底下晒干,最后架在篝火上烧制成最初的陶器。大约距今1万年以前,中国开始出现烧制陶器的窑,成为最早生产陶器的国家。陶器的发明,制造技木上是一个重大的突破。制陶过程改变了粘土的性质,使粘土的成分二氧化硅、三氧化二铝、碳酸钙(gài)、氧化镁(měi)等在烧制过程中发生了一系列的化学变化,使陶器具备了防水耐用的优良性质。因此陶器不但有新的技术意义,而且有新的经济意又。它使人们处理食物时增添了蒸煮的办法,陶制的纺轮、陶刀、陶挫等工具也在生产中发挥了重要的作用,同时陶制储存器可以使谷物和水便于存放。因此,陶器很快成为人类生活和生产的必需品,特别是定居下来从事农业生产的人们更是离不开陶器。

3.冶金化学的兴起

在新石器时代后期,人类开始使用金属代替石器制造工具。使用得最多的是红铜。但这种天然资源毕竟有限,于是,产生了从矿石冶炼金属的冶金学。最先冶炼的是铜矿,约公元前3800年,伊朗就开始将铜矿石(孔雀石)和木炭混合在一起加热,得到了金属铜。纯铜的质地比较软,用它制造的工具和兵器的质量都不够好。在此基础上改进后,便出现了青铜器。到了公元前3000~前2500年,除了冶炼铜以外,又炼出了锡(xī) 和铅(qiān)两种金属。往纯铜中掺入锡,可使铜的熔点降低到800℃左右,这样一来,铸造起来就比较容易了。铜和锡的合金称为青铜(有时也含有铅),它的硬度高,适合制造生产工具。青铜做的兵器,硬而锋利,青铜做的生产工具也远比红铜好,还出现了青铜铸造的铜币。中国在铸造青铜器上有过很大的成就,如殷朝前期的“司母戊”鼎。它是一种礼器,是世界上最大的出土青铜器。又如战国时的编钟,称得上古代在音乐上的伟大创造。因此,青铜器的出现,推动了当时农业、兵器、金融、艺术等方面的发展,把社会文明向前推进了一步。世界上最早炼铁和使用铁的国家是中国、埃及和印度,中国在春秋时代晚期(公元前6 世纪)已炼出可供浇铸的生铁。最早的时候用木炭炼铁,木炭不完全燃烧产生的一氧化碳把铁矿石中的氧化铁还原为金属铁。铁被广泛用于制造犁铧、铁■(一种锄草工具)、铁锛等农具以及铁鼎等器物,当然也用于制造兵器。到了公元前8~前7世纪,欧洲等才相继进入了铁器时代。由于铁比青铜更坚硬,炼铁的原料也远比铜矿丰富,在绝大部分地方,铁器代替了青铜器。

4.中国的重大贡献——火药和造纸

黑火药是中国古代四大发明之一。为什么要把它叫做“黑火药”呢?这还要从它所用的原料谈起。火药的三种原料是硫磺、硝(xiāo)石和木炭。木炭是黑色的,因此,制成的火药也是黑色的,叫黑火药。火药的性质是容易着火,因此可以和火联系起来,但是这个“药”字又怎样理解呢?原来,硫磺和硝石在古代都是治病用的药,因此,黑火药便可理解为黑色的会着火的药。火药的发明与中国西汉时期的炼丹术有关,炼丹的目的是寻求长生不老的药,在炼丹的原料中,就有硫磺和硝石。炼丹的方法是把硫磺和硝石放在炼丹炉中,长时间地用火炼制。在许多次炼丹过程中,曾出现过一次又一次地着火和爆炸现象,经过这样多次试验终于找到了配制火药的方法。黑火药发明以后就与炼丹脱离了关系,一直被用在军事上。古代人打仗,近距离时用刀枪,远距离时用弓箭。有了黑火药以后,从宋朝开始,便出现了各种新式武器,例如用弓发射的火药包。火药包有火球和火蒺藜两种,用火将药线点着,把火药包抛出去,利用燃烧和爆炸杀伤对方。大约在公元8世纪,中国的炼丹术传到了阿拉伯,火药的配制方法也传了过去,后来又传到了欧洲。这样,中国的火药成了现代炸药的“老祖宗”。这是中国的伟大发明之一。纸是人类保存知识和传播文化的工具,是中华民族对人类文明的重大贡献。在使用植物纤维制造的纸以前,中国古代传播文字的方法主要有:在甲骨(乌龟的腹甲和牛骨)上刻字,即所谓的甲骨文;甲骨数量有限,后来改在竹简或木简上刻字。可是,孔子写的《论语》所用的竹简之多,份量之重是可想而知的;另外,用丝织成帛(bó),也可以用来写字,但大量生产帛却是难以做到的。最后才有了用植物纤维制造的纸,一直流传到今天。1957年5月,中国考古工作者在陕西省西安市灞(bà)桥的一座古代墓葬中发现一些米黄色的古纸。经鉴定这种纸主要由大麻纤维制造,其年代不会晚于汉武帝(公元前156~公元前87年),这是现存的世界上最早的植物纤维纸。提起纸的发明,人们都会想起蔡伦。他是汉和帝时的中常侍。他看到当时写字用的竹简太笨重,便总结了前人造纸的经验,带领工匠用树皮、麻头、破布、破鱼网等做原料,先把它们剪碎或切断,放在水里长时间浸泡,再捣烂成为浆状物,然后在席子上摊成薄片,放在太阳底下晒干,便制成了纸。它质薄体轻,适合写字,很受欢迎。造纸是一个极其复杂的化学工艺,它是广大劳动人民智慧的产物。实际上,蔡伦之前已经有纸了,因此,蔡伦只能算是造纸工艺的改良者。

5.炼丹术与炼金术

当封建社会发展到一定的阶段,生产力有了较大提高的时候,统治阶级对物质享受的要求也越来越高,皇帝和贵族自然而然地产生了两种奢望:第一是希望掌握更多的财富,供他们享乐;第二,当他们有了巨大的财富以后,总希望永远享用下去。于是,便有了长生不老的愿望。例如,秦始皇统一中国以后,便迫不及待地寻求长生不老药,不但让徐福等人出海寻找,还召集了一大帮方士(炼丹家)日日夜夜为他炼制丹砂——长生不老药。炼金家想要点石成金(即用人工方法制造金银)。他们认为,可以通过某种手段把铜、铅、锡、铁等贱金属转变为金、银等贵金属。像希腊的炼金家就把铜、铅、锡、铁熔化成一种合金,然后把它放入多硫化钙溶液中浸泡。于是,在合金表面便形成了一层硫化锡,它的颜色酷似黄金(现在,金黄色的硫化锡被称为金粉,可用作古建筑等的金色涂料)。这,炼金家主观地认为“黄金”已经炼成了。实际上,这种仅从表面颜色而不从本质来判断物质变化的方法,是自欺欺人。他们从未达到过“点石成金”的目的。虔诚的炼丹家和炼金家的目的虽然没有达到,但是他们辛勤的劳动并没有完全白费。他们长年累月置身在被毒气、烟尘笼罩的简陋的“化学实验室”中,应该说是第一批专心致志地探索化学科学奥秘的“化学家”。他们为化学学科的建立积累了相当丰富的经验和失败的教训,甚至总结出一些化学反应的规律。例如中国炼丹家葛洪从炼丹实践中提出:“丹砂(硫化汞)烧之成水银,积变(把硫和水银二者放在一起)又还成(交成)丹砂。”这是一种化学变化规律的总结,即“物质之间可以用人工的方法互相转变”。炼丹家和炼金家夜以继日地在做这些最原始的化学实验,必定需要大批实验器具,于是,他们发明了蒸馏器、熔化炉、加热锅、烧杯及过滤装置等。他们还根据当时的需要,制造出很多化学药剂、有用的合金或治病的药,其中很多都是今天常用的酸、碱和盐。为了把试验的方法和经过记录下来,他们还创造了许多技术名词,写下了许多著作。正是这些理论、化学实验方法、化学仪器以及炼丹、炼金著作,开挖了化学这门科学的先河。从这些史实可见,炼丹家和炼金家对化学的兴起和发展是有功绩的,后世之人决不能因为他们“追求长生不老和点石成金”而嘲弄他们,应该把他们敬为开拓化学科学的先驱。因此,在英语中化学家(chemist)与炼金家(alchemist)两个名词极为相近,其真正的含义是“化学源于炼金术”。

二、创建近代化学理论——探索物质结构
世界是由物质构成的,但是,物质又是由什么组成的呢?最早尝试解答这个问题的是我国商朝末年的西伯昌(约公元前1140年),他认为:“易有太极,易生两仪,两仪生四象,四象生八卦。”以阴阳八卦来解释物质的组成。约公元前1400 年,西方的自然哲学提出了物质结构的思想。希腊的泰立斯认为水是万物之母;黑拉克里特斯认为,万物是由火生成的;亚里士多德在《发生和消灭》一书中论证物质构造时,以四种“原性”作为自然界最原始的性质,它们是热、冷、干、湿,把它们成对地组合起来,便形成了四种“元素”,即火、气、水、土,然后构成了各种物质。上面这些论证都未能触及物质结构的本质。在化学发展的历史上,是英国的波义耳第一次给元素下了一个明确的定义。他指出:“元素是构成物质的基本,它可以与其他元素相结合,形成化合物。但是,如果把元素从化合物中分离出来以后,它便不能再被分解为任何比它更简单的东西了。”波义耳还主张,不应该单纯把化学看作是一种制造金属、药物等从事工艺的经验性技艺,而应把它看成一门科学。因此,波义耳被认为是将化学确立为科学的人。人类对物质结构的认识是永无止境的,物质是由元素构成的,那么,元素又是由什么构成的呢?1803 年,英国化学家道尔顿创立的原子学说进一步解答了这个问题。原子学说的主要内容有三点:1.一切元素都是由不能再分割和不能毁灭的微粒所组成,这种微粒称为原子;2.同一种元素的原子的性质和质量都相同,不同元素的原子的性质和质量不同;3.一定数目的两种不同元素化合以后,便形成化合物。原子学说成功地解释了不少化学现象。随后意大利化学家阿佛加德罗又于1811年提出了分子学说,进一步补充和发展了道尔顿的原子学说。他认为,许多物质往往不是以原子的形式存在,而是以分子的形式存在,例如氧气是以两个氧原子组成的氧分子,而化合物实际上都是分子。从此以后,化学由宏观进入到微观的层次,使化学研究建立在原子和分子水平的基础上。

三、现代化学的兴起

19 世纪末,物理学上出现了三大发现,即X射线、放射性和电子。这些新发现猛烈地冲击了道尔顿关于原子不可分割的观念,从而打开了原子和原子核内部结构的大门,揭露了微观世界中更深层次的奥秘。热力学等物理学理论引入化学以后,利用化学平衡和反应速度的概念,可以判断化学反应中物质转化的方向和条件,从而开始建立了物理化学,把化学从理论上提高到了一个新的水平。在量子力学建立的基础上发展起来的化学键(分子中原子之间的结合力)理论,使人类进一步了解了分子结构与性能的关系,大大地促进了化学与材料科学的联系,为发展材料科学提供了理论依据。化学与社会的关系也日益密切。化学家们运用化学的观点来观察和思考社会问题,用化学的知识来分析和解决社会问题,例如能源危机、粮食问题、环境污染等。化学与其他学科的相互交叉与渗透,产生了很多边缘学科,如生物化学、地球化学、宇宙化学、海洋化学、大气化学等等,使得生物、电子、航天、激光、地质、海洋等科学技术迅猛发展。化学也为人类的衣、食、住、行提供了数不清的物质保证,在改善人民生活,提高人类的健康水平方面作出了应有的贡献。现代化学的兴起使化学从无机化学和有机化学的基础上,发展成为多分支学科的科学,开始建立了以无机化学、有机化学、分析化学、物理化学和高分子化学为分支学科的化学学科。化学家这位“分子建筑师”将运用善变之手,为全人类创造今日之大厦、明日之环宇。

6、安全炸药造福人类——诺贝尔发明安全炸药

“轰隆隆..”一声巨响,山崩地裂,土石飞迸。这是我们经常能从荧屏和银幕上看到的场景。今天,威力巨大的炸药是从事开矿、筑路等大型工程建设必不可少的开路先锋;可当初,人类是怎样找到并驯服这位力大无穷却又脾气暴烈的“朋友”的呢?说来就话长了。大家都知道,黑色火箭是中国古代四大发明之一。大约在公元13~14世纪,通过中亚阿拉伯国家传到了欧洲各国,欧洲人学合使用火药后加以推广,不仅造出了用火药发射的枪支、大炮,还用来发展生产。到了17世纪,随着工业革命的深入,许多国家迫切要求发展采矿业,加快采掘速度,需要更强有力的炸药,而传统的黑色火药燃烧不充分,爆炸力不强,因此寻找威力巨大的新炸药成为迫在眉睫的一个大问题。1847年,意大利人索伯莱罗发明了一种名叫硝化甘油的烈性炸药它的威力比黑色火药大得多。但非常容易爆炸,制造、存放和运输都很危。人们没办法控制它,因此很难将它应用于实际。为了驯服这头暴烈的“野马”,许多人煞费苦心,可是都没有成功;而最终降服并驾驭这匹“野马”,制造出高效安全炸药的是瑞典的一位勇士——化字家阿尔弗雷德·诺贝尔。

诺贝尔的父亲是一个机械师,没受过高等教育,但非常喜欢化学实验,一有空就研制炸药。在父亲的影响下,小诺贝尔也热衷于改进炸药的研究。可是他的父母并不赞成,因为搞炸药太危险了。他的父亲希望他老老实实地当一名机械师。但是诺贝尔却坚信改进炸药将会给人类创造极大的财富。父母被地执著追求的坚强意志所感动,只好默认了。从此,父子俩站在同一条战壕里,为攻克科学难关而并肩奋斗。1862年初,诺贝尔开始研究利用硝化甘油来制造可控制的烈性炸药。他想:硝化甘油是液体,不好控制,如果把它与固休的黑色火药混合起来,不就便于贮存、控制了吗?他拭着用10%的硝化甘油加入黑色火药之内,制成的混合炸药爆炸力确实大大增强,但他不久就发现这种炸药不能长期贮存,放置几小时以后,硝化甘油就全被火药的孔隙所吸收,燃烧速度随之减慢,爆炸力大大减弱,因此没有实用价值。

为了研制成一种可控制的高效能炸药,诺贝尔日以继夜地进行着大胆的试验和细心的观察。过去,人们通过点燃导火索来引爆黑色火药,但这种方法却不能引爆硝化甘油。硝化甘油不容易按照人的要求爆炸,却又容易自行爆炸。真是个桀骜(jiéà o)不驯的家伙!

1862年初夏,诺贝尔设计了一个引爆硝化甘油的重要突验:把一个小玻璃管硝化甘油放入一个装满黑色火药的金属管内,安上导火索后将金属管口塞紧;点燃导火索,把金属管丢入深沟。霎那间,轰隆一声,发生了剧烈的爆炸,这表明里面的硝化甘油已完全爆炸。从中诺贝尔认识到:密封容器内少量黑色火药的爆炸,可以引起分隔开的硝化甘油完全爆炸。

第二年秋天,诺贝尔在斯德哥尔摩的海伦坡建立了他的第一个实验室,专门从事硝化甘油的研究和制造。开始,他用黑色火药作引爆药,效果还不十分理想,以后他又改用雷酸汞制成引爆管(现称雷管),成功地引爆了硝化甘油。1864年他取得了这项发明的专利权。他终于发明了可供实用的硝化甘油炸药。

初步成功的喜悦尚未过去,接踵而来的却是一次沉重的打击。1864年9月3 日,为进一步改进雷管的性能,制造更高效的炸药,他们进行一次新的试验。只听得轰的一声巨响,实验室被送上了天,地下也炸出了一个大坑。当人们跑来把诺贝尔从废墟中救出来时,满脸血迹的诺贝尔嘴里还在不停地说:“试验成功了,我的试验成功了!”是的,新炸药的威力是巨大的,然而,损失是惨重的:他的实验室完全被摧毁,诺贝尔的弟弟埃米被炸死,父亲重伤致残,哥哥和他自己也都受了伤。事故发生以后,周围的邻居十分恐慌,当局也禁止他们在城内从事炸药生产或实验。结果,诺贝尔只能把设备搬到3 公里以外马拉湖内的一只平底船上。但这丝毫也没有动摇诺贝尔制造新炸药的决心。几经周折,终于获得政府批准,于1865年3月在温特维根建造了世界上第一座硝化甘油工厂。

诺贝尔生产的炸药,很受采矿业的欢迎。除了瑞典以外,在英、法、德、美各国也都取得了专利权。然而,新炸药的性能仍不够稳定,在运输中经常发生事故:美国的一列火车,在途中因颠簸而引起炸药爆炸,变成了一堆废铁;“欧罗巴”号海轮,在大西洋上遇到狂风,船体倾斜,导致硝化甘油爆炸,船沉人亡。一连串的事故,使人们对硝化甘油又产生了疑惧,有些国家甚至下令禁运。面对这种艰难的局面,不少人劝诺贝尔不要再搞危险的炸药试验了,但诺贝尔不达目的誓不罢休,他考虑的是在不减弱爆炸力的同时一定使硝化甘油炸药变得很安全。

诺贝尔接连做了一系列试验,希望用一些多孔的物质,如木炭粉、锯木屑、水泥等吸附硝化甘油,以减少爆炸的危险,但结果都不令人满意。有一次一辆运输车上的一个硝化甘油罐不慎打破了,硝化甘油流出来和旁边作为防震填充料的硅藻土混在一起,却没发生事故。这给诺贝尔很大的启示,经过反复试验,终于制成了用一份硅藻土吸收三份硝化甘油的固体炸药。这种炸药无论运输或使用都十分安全,这就是诺贝尔安全炸药。为了消除人们对安全炸药的怀疑,1867年7 月14 日,诺贝尔做了一次公开的对比实验。他把一箱安全炸药放在一堆点燃的木柴是,结果炸药并未炸开;再把一箱安全炸药从20 米高的山崖上扔下去,结果仍未炸;最后在石洞、铁桶中装入安全炸药,用雷管引爆,全都成功地爆炸了!“野马”终于套上了笼头,炸药不再令人生畏。

诺贝尔再接再励,继续改进他的炸药。他把一份火棉(低氮量硝酸纤维素)溶于九份硝化甘油中,得到一种爆炸力更强的胶状物——炸胶,1887年,他又把少量樟脑加到硝化甘油和火棉炸胶中,发明了爆炸力强而烟雾少的无烟火药。直到今夭,军工生产中普遍使用的火药,仍属这一类型。在隆隆的爆炸声中,诺贝尔的事业迅速发展起来。他的工厂遍布欧美各国,新型炸药的销售量直线上升。他的发明大大促进了公路、铁的修建,帮助了隧道的开凿和矿藏的开采;然而,他的炸药也加深了战争的灾难和痛苦,这使他很痛心。为了造福于人类,1895 年11月29 日他在巴黎写下了一份著名的遗嘱,将其毕生积累的巨额财产中的一部分创办科学研究所,而把大部分巨额财产作为基金,分设物理、化学、生理(或医学)、文学与和平事业五项奖金,以鼓励对人类作出最多贡献的人。

7、开创制碱工业的新纪元——侯德榜发明联合制碱法

在化学工业中,纯碱是一种重要的化工原料,它的化学名称又叫“碳酸钠”,是一种白色的粉末。别小看它,它的用途可大呢!制造肥皂、玻璃、纸张时要用它;纺纱织布时要用它;炼铁、炼钢过程中也少不了它。用它还可以制造出好多好多的化工产品哩!它诞生在化工厂里,是用联合制碱法生产出来的。这个方法由中国化学工业的先驱侯德榜首创,所以也叫“侯氏制碱法”。那末侯德榜是在怎样情况下研究制碱法,又是怎样创立侯氏制碱法的呢?事情得从17 世纪说起,当时人们在生产玻璃、纸张、肥皂等时已经知道要用纯碱,但那时的碱是从草木灰和盐湖水中提取的,人们还不知道可以从工厂中生产出来。后来法国一位医师路布兰用了4 年时间,在1791年首创了一种纯碱制造法,从此纯碱能源源不断地人工厂中生产出来,满足了当时工业生产的需要。可惜这一方法并不完善,还存在着许多缺点,如生产过程中温度很高、工人劳动强度很大、煤用得很多、产品质量也不高等,因此很多人都想改进它。1862年,比利时有一位化学家叫苏尔维,他提出了一种以食盐、石灰石、氨为主要原料的制碱方法,这方法叫“氨碱法”或“苏尔维制碱法”。由于这个方法产量高、质量优、成本低、能连续生产,所以很快就替代了路布兰的方法。但这个方法都被制造商严格控制住,一点也不让它泄露出来,被他人知道。20 世纪初,当时的中国工业生产也需要纯碱,但自己不会生产,只能依靠进口。第一次世界大战时,纯碱产量大大减少,加上交通受阻,英国一家制造纯碱的公司乘机抬高碱价,甚至不供货给中国,致使中国以碱为原料的工厂只得倒闭、关门。当时有一位在美国留学的中国学生侯德榜,他学飞很刻苦,成绩优异,在美国学习化学工程已有8 年,1921 年取得了博士学位,发他听说外车资本家如此卡中国人的脖子时,连肺都要气炸了,他发誓学成回国,以自己已学到的知识报效祖国,振兴中国的民族工业。1921 年10月侯德榜回国了,他任永利碱业公司总工程师,任务是要创建中国第一家制碱工厂。当时要生产出碱,只能按苏尔维制碱法生产。

原理说说很简单,可真正要制造出来可就难了。由于技术封锁,侯德榜只能靠自己不断研究、试验、摸索。经过好长时间的努力,终于设计好了流程,安装好了设备,接著就开始试生不。谁知一开始就碰到困难。一天,刚试车不久,高高的蒸氨塔突然晃功得很厉害,并且发出巨响大家害怕极了,侯德榜见了马上喊停车。一检查,原来所有的管道都被白色的沉淀物堵住了。怎么办?开始他拿大铁钎捅,累得满头大汗,但也无济于事。后来,他想出加干碱的办法,才使沉淀物慢慢掉了下来,终于转危为安。类似这样的故障还有很多很多,每次都被他一一排除掉了。经过几年的努力,1924年8 月13 日,中国第一家制碱厂正式投产了。那天工人们早早地来到车间,都想亲眼目睹中国第一批纯碱的诞生。几小时后,不知谁喊了一声:“出来了!”大家眼睛一齐朝出碱口望去。咦?怎么出来的是红白相间的碱?按理应该是雪白的呀!大家的心头一凉。这时侯德榜仔细地检查了设备,原来纯碱出来时遇到了铁锈,才使产品变红了。原因查出来了,大家都松了一口气,以后改进了设备,终于制得了纯白色的产品。望著白花花的纯碱,侯德榜笑了,他笑得那么舒心,几年的辛苦没有白费,他终于摸索出苏尔维制碱法的奥秘,实现了自己报效祖国的誓言。

1937 年日本帝国主义发动了侵华战争,他们看中了南京的硫酸铵厂,为此想收买侯德榜,但是遭到侯德榜的严正拒绝。为了不使工厂遭受破坏,他决定把工厂迁到四川,新建一个永利川西化工厂。制碱的主要原料是食盆,也就是氯化钠,而四川的盐都是井盐,要用竹筒从很深很深的井底一桶桶吊出来。由于浓度稀,还要经过浓缩才能成为原料,这样食盐成本就高了。另外,苏尔维制碱法的致命缺点是食盐利用率不高,也就是说有30%的食盐要白白地浪费掉,这样成本就更高了,所以侯德榜决定不用苏尔维制碱法,而另辟新路。他首先分析了苏尔维制碱法的缺点,发现主要在于原料中各有一半的比分没有利用上,只用了食盐中的钠和石灰中碳酸根,二者结合才生成了纯碱。食盐中另一半的氯和石灰中的钙结合生成了氯化钙,这个产物都没有利用上。那么怎祥才能使另一半成分变废为宝呢?他想呀想,设计了好多方案,但是—一都被推翻了。后来他终于想到,能否把苏尔维制碱法和合成氨法结合起来,也就是说,制碱用的氨和二氧化碳直接由氨厂提供,滤液中的氯化铵加入食盐水,让它沉淀出来。这氯化铵既可作为化工原料,又可以作为化肥,这样可以大大地提高食盐的利用率,还可以省去许多设备,例如石灰窑、化灰桶、蒸氨塔等。设想有了,能否成功还要靠实践。于是地又带领技术人员,做起了实验。l次、2次、10次、100次..一直进行了500多次试验,还分析了2000多个样品,才把试验搞成功,使设想成为了现实。

这个制碱新方法被命名为“联合制碱法”,它使盐的利用率从原来的70%一下子提高到96%。此外,污染坏境的废物氯化钙成为对农作物有用的化肥——氯化铵,还可以减少1/3设备,所以它的优越性在大超过了苏尔维制碱法,从而开创了世界制碱工业的新纪元。

② 化学对经济发展的作用

化学工业的发展史

化学加工在形成工业前的历史,可以 从18世纪中叶追溯到远古时期,从那时起人类就能运用化学加工方法制作一些生活必须品,如制陶,酿造等。当时生产规模较小,技术落后,只能算是手工工艺。在这一阶段无机化工已初具规模,有机化工正在形成,高分子化工处于萌芽时期。

18实际中叶,英国发生工业革命,机器的出现促进了纺织工业,纺织物的漂白与染色技术的改进,需要纯碱,氯等无机产品,农业上需要化学肥料,采矿业需要大量炸药,因而使化学工业开始形成,并有一个较大发展。

18世纪40年代,英国一个用铅室法从硫磺和硝石中制造硫酸,此法几乎沿用了100多年。20世纪初,矾催化剂用于接触制硫酸工业化以来,接触法成为硫酸生产的主要方法。1783年,法国N·吕布兰提出了以食盐,煤、石灰石、硫酸等为原料的制碱法,此法综合利用原料,除了生产碱,同时还生产芒硝、硫代硫酸钠、苛性钠、盐酸、漂白粉等,形成了综合生产过程。所用的气体洗涤、固体煅烧、结晶、过滤、干燥等化工单元操作的设计原理沿用至今,成为化工单元操作基础。1861年,比利时索尔维实现了氨碱法制碱的工业化,使制碱生产连续化。由于氨碱法产品纯度高,价格便宜,而且取代了吕布兰法并成为纯碱的主要生产方法。中国著名换学家侯德榜与1938年开始致力于联合制碱法的研究,创造了侯氏制碱法。19世纪末叶出现电解食盐的氯碱工业。这样,整个化学工业的基础——酸、碱的生产已初具规模。

为了适应农业的发展,1841年开始了磷肥生产。1870年后星期了制钾工业。氨是在1754年由普里斯特利加热氯化铵和石灰石时发现,气候通过分析确定了氨的组成,在基础理论研究的基础上,经过100多年的努力,于1913年实现了氨的合成的工业化。1916年实现了氨氧化制取硝酸的过程。合成氨工业的出现,标志着化学工业进入了一个新的阶段,它不仅生产了廉价的氨和硝酸,而且为有机合成工业提供了良好的技术条件。

19世纪中叶,随着炼铁工业的发展和城市对煤气及工业燃料的要求,促进了炼焦工业道贺煤气工业的发展。其后又从炼焦副产品煤焦油中分离出苯、甲苯、二甲苯、萘、蒽、苯酚等化合物。这些物质是有机合成特别是燃料合成的重要原料。19世纪下半叶形成了以煤焦油为主题的有机合成工业,交谈、煤焦油的利用逐步形成了煤化学工业体系。

纺织工业发展起来以后,天然染料便不能满足需要;随着钢铁工业、炼焦工业的发展,副产的煤焦油需要利用。化学家们以有机化学的成就把煤焦油分离为、、、、蒽、菲等。1856年,英国人由合成苯胺紫染料,后经过剖析确定天然茜素的结构为二羟基蒽醌,便以煤焦油中的蒽为原料,经过氧化、取代、水解、重排等反应,仿制了与天然茜素完全相同的产物。同样,制药工业、香料工业也相继合成与天然产物相同的化学品,品种日益增多。1867年,瑞典人发明代那迈特炸药(见),大量用于采掘和军工。

农药使用很早,20世纪40年代,瑞士P·H·米勒发明第一个有机氯农药滴滴涕之后,又开发了一系列有机氯、有机磷杀虫剂,植物性荷尔蒙等,20世纪50年代又制成了氨基甲酸酯类农药如西维因等。这些农药毒性较大,对环境污染严重,因此,又研究开发了高效、低毒、不污染环境的有机杀虫剂,如拟除虫菌酯类、杀菌剂、除草剂及抗生素农药。

1854年,西利曼建立了原油分馏装置,随着汽油及柴油发动机的发明,促进了石油的开采和加工,1923年出现了减压蒸馏,使石油炼制发展成现代的加工工艺路线。

20世纪20年代开始兴起石油化学工业,在20世纪60年代得到了大发展,由此形成了第二次工业革命。许多石油化学品却带了人类日常生活的传统材料,提供了廉价物美的各种物品。在20世纪40年代,催化剂裂化生产 汽油及乳液聚合技术制取丁苯橡胶技术研制成功,推动了石油化工的发展。20世纪50年代,许多由煤化工制取的产品,包括烯烃、芳香烃、氨等都相继转为利用石油、天然气生产。目前已有90%以上的有机化工产品来源于石油、天然气,石油化学工业已成为非常重要的基础工业部门。

当时有机化学品生产还有另一支柱,即乙炔化工。于1895年建立以煤与石灰石为原料,用电热法生产电石(即)的第一个工厂,电石再经水解发生乙炔,以此为起点生产乙醛、醋酸等一系列基本有机原料。20世纪中叶发展后,电石耗能太高,大部分原有乙炔系列产品,改由为原料进行生产。

20世纪30年代,建立了高分子化学体系,高分子材料的化学工业得到迅速发展。1872年,制得了酚醛树脂,1938年,尼龙66实现了工业化生产,其后又相继发明了尼龙6,聚酯纤维。至今,涤纶和晴纶是合成纤维中发展最快,生产量最大的品种。20世纪30年代在美国实现了氯丁橡胶的生产,不久又生产出丁苯橡胶、丁腈橡胶。与此同时,聚氯乙烯、聚苯乙烯、高压聚乙烯、聚四氟乙烯又相继实现了工业化生产,塑料工业得到了迅速发展。至此形成了三大合成材料为主的高分子化学工业体系。专用化学品得到进一步发展,它以很少的用量增进或赋予另一产品以特定功能,获得很高的使用价值。例如食品和饲料添加剂,塑料和橡胶助剂,皮革、造纸、油田等专用化学品,以及胶粘剂、防氧化剂、表面活性剂、水处理剂、催化剂等。以催化剂而言,由于电子显微镜、电子能谱仪等现代化仪器的发展,有助于了解催化机理,因而制备成各种专用催化剂,标志催化剂进入了新阶段。

现代化学工业 20世纪60~70年代以来,化学工业各企业间竞争激烈,一方面由于对反应过程的深入了解,可以使一些传统的基本化工产品的生产装置,日趋大型化,以降低成本。与此同时,由于新技术革命的兴起,对化学工业提出了新的要求,推动了化学工业的技术进步,发展了精细化工、超纯物质、新型结构材料和功能材料从20世纪初至战后的60~70年代,这是化学工业真正成为大规模生产的主要阶段,一些主要领域都是在这一时期形成的。合成氨和石油化工得到了发展,高分子化工进行了开发,精细化工逐渐兴起。这个时期之初,英国G.E.戴维斯和美国的A.D.利特尔等人提出单元操作的概念,奠定了化学工程的基础。它推动了生产技术的发展,无论是装置规模,或产品产量都增长很快。。

近年来,高新技术和新材料发展迅速,如复合材料、信息材料、纳米材料以及高温超导体等的应用,给化学工业提供了更宽广的发展前景。化学工业的产品已深入到我们生活的各个方面,占有极为重要的地位。化学工业是国民经济的支柱产业之一,近年来中国的化学工业发展迅速,1997年增长大10.71%,今后还将优先发展石油化工、精细化工、农用化学品,并会成为人们提供更多的新产品。

③ 请问环氧树脂的的配方及比例

化学名称:四溴双酚A(TBBA)
分 子 式:C15H12Br4O2
技术质量指标: 项目 单位 典型值
外观 白色粉末
熔点 ℃ ≥180
溴含量 % ≥58.0
水分 % ≤0.1
在20%甲醇中的色度 APHA ≤15

用 途:本产品作为溴素阻燃剂中的一种,广泛用于合成材料的阻燃,以其毒性较低,与基材相溶性好而得到广泛的应用。作为添加剂主要应用于ABS、HIPS、环氧树脂、酚醛树脂及不饱和聚氧脂等材料的阻燃;作为反应型阻燃剂,四溴双酚A大量用于生产溴代环氧脂中间体、溴代聚碳酸脂。另外,四溴双酚A还可用来合成更高档次的阻燃剂。

包 装:三合一牛皮纸袋,每袋净重25公斤或500公斤、1000公斤,可按用户要求包装。

四溴双酚A在溴化环氧树脂的应用
溴化环氧树脂制备方法多种多样,有一步法、二步法、催化法、一次加碱法、二次加碱法、溶剂法等等,因而品种或牌号也很多。

固态溴化环氧树脂
固态溴化环氧树脂典型生产过程如下:
1. 将计算量的TBPA和环氧树脂加入反应釜,加热到110℃维持1小时,使TBPA溶解。
2. 加催化剂
3. 升温到121-131℃开始放热反应,30分钟后反应物加热到177度,仃止。
4. 加丙酮冷却反应物。
5. 产品为80%树脂,20%丙酮液。

EEW应用以下方程式计算:

用于印刷线路板的配方如下
方案A

828环氧树脂 64.57 份
TBPA 35.43
三苯基磷 0.20
丙酮 25.0

方案 B

方案A产品 125.20
双氰胺 2.90
苄基二甲胺 0.20
丙酮 75.00

方案B可以使用作为60%玻璃纤维40%树脂的印刷线路板
溴含量是20.8% EEW 是 465.

液态高溴环氧树脂
液态溴化环氧树脂典型生产过程如下:
1、 在反应釜中依次加入四溴双酚A、环氧氯丙烷、甲苯开搅拌;
2、 缓慢加热到一定温度,让其自升温至70-75℃维持30分钟;
3、 维持完毕,将液碱慢慢滴加进反应釜;
4、 加碱毕维持数小时使反应完全;
5、 维持毕,加溶剂搅拌15分钟,静止30分钟,放脚、水洗至PH=7、然后分水、脱苯,先常压至130℃再减压至150℃至合格放料包装。

低溴环氧树脂
低溴环氧树脂典型过程如下:
1、将四溴双酚A、双酚A、环氧氯丙烷、甲苯投入反应釜开搅拌;
2、加热至一定温度,使其自升温到70-75℃维持30分钟。
3、然后在70-75℃滴加碱。
4、滴加完毕在70-75℃维持。
5、维持完毕加溶剂搅拌15分钟,温度不超过70℃。
6、水洗、分水、脱溶剂,至合格放料。

溴化环氧树脂丙酮溶液
将脱溶剂后测试合格的树脂冷却到70度,加入计量好的丙酮,保持回流,使之充分溶解。测树脂固体含量合格放料。

溴化环氧树脂的应用
溴化环氧树脂及其制备的层压板
该溴化环氧树脂可与一般树脂一样调配加固化剂、有机溶剂、必需的促进剂。作为固化剂可以是聚酰胺、双氰胺、二氨基二苯基甲烷等,促进剂可以是苄基二甲胺、α-甲基苄基二甲胺、乙-(二甲胺甲基)苯酚等芳香环叔胺,脂环族叔胺、BF3-胺络合物。作为溶剂视固化剂不同而不同,可用丙酮、甲基溶纤素、甲乙酮、二甲基甲酰胺、甲醇等,可单独或混合使用。例二氨基二苯基甲烷作固化剂时用丙酮,双氰胺作固化剂时用二甲基甲酰胺,甲基溶纤素为好。
半固化片制备可将树脂配成15-75%含量的浸渍料,与玻纤、纸的比例最好为50%左右,在120-180℃干燥室内进行2-20分钟干燥以除去有机溶剂(达B阶段),将该B阶半固化片切成一定形状,若干片重合或与铜箔一块,在140-180℃,10-100Kg/cm2的压力下,20-100分钟挤压成型制成层压板或敷铜板。
接着在敷铜板上印制线路,涂光致抗蚀剂,进行光照使光致抗蚀剂固化,用弱碱溶液使未固化的光致抗蚀剂洗去,接着用酸腐蚀没有覆盖光致抗蚀剂的铜的部份,溶解,水洗后,用氯甲烷除去固化的光致抗蚀剂的模。这样制得线路板,广泛用于电器、电子领域。

阻燃浇注料
溴化环氧树脂,硅微粉、氢氧化铝,碳酸钙,三氧化二锑,甲基四氢苯酐等调配而成。固化产品阻燃效果达V0级。

④ 酚醛树脂液的PH值是多少

要看是酸法酚醛树脂,还是碱法酚醛树脂。
酸法制备的PH<7,碱法制备的PH>7

⑤ 怎样碱化玉米淀粉

变性淀粉生产技术
1、β-环糊精超分子配合物电流变液及其制备方法
2、β-环糊精淀粉类树脂电流变液及其制备方法
3、β环状糊精高收率增产的新工艺
4、β-环状糊精生产工艺
5、氨基醋酸酯淀粉
6、板纸层间结合喷淋淀粉
7、半干法制备季铵型阳离子淀粉的工艺
8、变性淀粉及其生产方法
9、变性淀粉浆料的生产方法
10、变性淀粉生产多点喷射系统新工艺
11、变性玉米淀粉制造方法
12、变性玉米淀粉制造方法
13、丙交酯改性淀粉衍生物及其制备方法
14、超高粘度羧甲基淀粉钠及其制备方法
15、从湿淀粉得到的淀粉接枝共聚物
16、低黏度改性淀粉的生产方法
17、低盐中分子羟乙基淀粉液
18、电化学法制造氧化淀粉的方法
19、淀粉II干法阳离子化工艺
20、淀粉的改性方法、淀粉及其应用
21、淀粉的交联
22、淀粉的氧化
23、淀粉的氧化
24、淀粉的氧化
25、淀粉的氧化
26、淀粉多元接枝共聚物,它的制备方法和用途
27、“淀粉改性增塑助剂”对植物淀粉的深开发应用
28、淀粉共聚物产物和方法
29、淀粉糊化度测量系统
30、淀粉降解/接枝聚合组合物、制备方法及其用途
31、淀粉烯基琥珀酸酯及其制备方法和用途
32、淀粉衍生物及其生产方法
33、生物降解塑料制品用的淀粉衍生物及其生产方法
34、淀粉与聚合物复合物的制备方法
35、多聚赖氨酸淀粉纳米颗粒与制备方法及作为基因载体的应用
36、改良的淀粉磷酸酯组合物、工艺和用于食品的方法
37、改性的淀粉组合物的制备方法
38、改性淀粉产品在生产纸张时作为留着剂的用途
39、改性淀粉及其制作方法
40、改性淀粉溶液及其在个人护理中的应用
41、高级阳离子淀粉的生产方法
42、高抗酶解淀粉制品的生产方法
43、高强度抗菌性双醛淀粉交联壳聚糖膜及其制法和用途
44、高取代度羟丙基淀粉的制备方法
45、固化工艺生产麦芽糊精的方法
46、含酶淀粉乳喷射液化器
47、含一定量电解质的变性淀粉及其制造方法
48、含有精选阳离子淀粉物质的淀粉组合物在造纸或非造纸方面的应用
49、环糊精增产的方法
50、回收环糊精的方法
51、季铵盐型阳离子羟乙基淀粉的制备方法
52、降低了SSII活性的大麦和降低了支链淀粉含量的淀粉和淀粉制品
53、降解的疏水粒状淀粉及其在纸张施胶中的应用
54、降解法制备季铵型阳离子淀粉的工艺
55、具有高直链淀粉含量的乙酰化预凝胶化淀粉的用途
56、具有热稳定性的高支链成分淀粉
57、具有乳化性质的改性淀粉及其制备方法
58、具有稳定和特制粘度的阳离子交联淀粉
59、具有盐稳定性的改性淀粉
60、抗霉变淀粉组合物
61、抗消化淀粉及其制备方法和应用
62、壳聚糖-β-环糊精树脂的制备方法
63、可逆交联淀粉树脂组合物及其制备方法
64、可完全降解聚甲基乙撑碳酸酯/淀粉复合材料及其制备方法
65、来自稻米的核酸分子及其用于生产改性淀粉的用途
66、离子型淀粉微球及其制造方法
67、连续生产部分水解淀粉的方法用此方法生产的产品及其应用
68、酶法制取糊精工艺
69、耐加工的低直链淀粉木薯己二酸双淀粉
70、难消化糊精的制备方法
71、喷射液化酶法制备低DE值麦芽糊精
72、羟烷基淀粉干法生产方法
73、羟烷基淀粉-活性物质-偶联物
74、全淀粉型生物降解塑料
75、热塑性淀粉的生产方法
76、生产去结构淀粉的方法
77、适合用作明胶替代物的基于交联淀粉和解聚淀粉的组合物
78、疏水性淀粉衍生物
79、树脂变性淀粉制备方法
80、水解缩聚淀粉、其制造方法与水解缩聚淀粉制的成型品
81、水溶性两性淀粉的生产方法
82、水体净化吸附剂聚环糊精的制备方法
83、酸变性淀粉纯干法生产工艺
84、羧甲基淀粉钠的合成新工艺
85、羧甲基淀粉钠的制造新方法
86、羧甲基淀粉钠制剂、制造方法及其应用
87、通过异淀粉酶脱支低直链淀粉的淀粉制成的耐性淀粉
88、微波干法制备阳离子淀粉
89、无碱法生产羧甲基淀粉钠的方法
90、物理改性的淀粉产品、制法和干混合料组合物
91、吸附胆红素的环糊精交联聚合物微球及其制备和应用
92、酰胺变性淀粉浆料
93、阳离子交换膜在间接电合成法制取双醛淀粉中的应用
94、氧化淀粉的方法
95、氧化淀粉的方法
96、电化学法制造氧化淀粉的方法
97、液化淀粉的方法
98、液化淀粉的方法
99、液化淀粉的方法
100、液化淀粉的方法
101、一步法两性淀粉接枝共聚物及其制备方法
102、一种测定淀粉糊化温度的方法
103、一种淀粉空心胶襄及其生产工艺
104、一种对淀粉进行改性方法
105、一种非熟化淀粉成型产品
106、一种复配淀粉及其制造方法和用途
107、一种改性淀粉及其制备方法和用途
108、一种改性淀粉及其制造方法
109、一种高粘度、高取代度羧甲基淀粉醚的制备方法
110、一种控制植物贮存淀粉发生改变的方法
111、一种醚化-交联-预糊化三元复合变性淀粉及其制备方法和应用
112、一种十二烯丁二酸酐修饰淀粉的制备方法
113、一种四元复合变性的淀粉浆料及其制备方法和应用
114、一种羧甲基淀粉钠的生产方法
115、一种特殊糊精的制造方法及其装置
116、一种同时进行酸解与酯化改性复合变性淀粉及其制备方法和应用
117、一种氧化-酯化-接枝三元复合变性淀粉及其制备方法和应用
118、一种制备改性淀粉的方法
119、一种制备直接可压缩的β-环糊精的方法和由此得到的直接可压缩的β-环糊精
120、一种制取双醛淀粉的设备
121、易溶高亲脂、亲水性微囊淀粉的生产工艺
122、用淀粉制取酚醛树脂及其模塑料
123、用于改善小吃产品的预糊化淀粉
124、用于控释药物制剂的交联高直链淀粉的淀粉及其制备方法
125、用于制备脱水淀粉组分的改进的乳化剂体系
126、用作膨化助剂的淀粉磷酸酯
127、由淀粉,叔烷基偶氮氰基羧酸酯制成的接枝共聚物的制备方法以及该接枝共聚物及其应用
128、由酶合成的直链淀粉得到的生物可降解制品
129、由预加工淀粉制造的成形制品
130、预糊化法制造冷溶性颗粒状阳离子淀粉的方法
131、预糊化喷雾干燥淀粉附聚粒的制造方法
132、预糊化羟丙基二淀粉磷酸酯的制备方法
133、预糊化修饰淀粉制备方法及由其制得的产品
134、蒸煮/干燥富含直链淀粉的淀粉的方法
135、制备淀粉降解产物的方法
136、制备淀粉粘合剂的冷制热糊方法
137、制备抗性淀粉的方法
138、制备稳定的窄范围高取代度的羧甲基钠淀粉醚的方法
139、制药用糊精的生产技术
140、作为片剂的粘合剂/崩解剂的交联直链淀粉
141、作为造纸添加剂的溶胀淀粉
本光盘详细地阐述了每个项目的技术领域、现有市场产品技术分析、新产品发明的市场背景、新产品制作的主要技术原理、实现该产品的生产工艺过程、原料配方、具体实施例、以及该项目的研制单位名称、通信地址、研制时间等。是不可多得的技术开发,企业生产的技术汇编资料。 全文资料光盘是计算机专用数据光盘,在Windows操作系统运行环境下,可以直接打开、阅读、打印。为您的企业参与市场产品开发提供第一手宝贵资料。

⑥ 高中化学必修2中有机物知识点的总结

★★化学常见考点归纳★★
1.常见20种气体:H2、N2、O2、Cl2、O3、HCl、HF、CO、NO、CO2、SO2、NO2、N2O4、H2S、NH3、CH4、C2H4、C2H2、CH3Cl、HCHO、
记住常见气体的制备反应:H2、O2、Cl2、NO、CO2、SO2、NO2、NH3、C2H4、C2H2
2.容易写错的20个字:酯化、氨基、羰基、醛基、羧基、苯酚、铵离子、三角锥、萃取、过滤、蘸取、砷、锑、硒、碲、坩埚、研钵
3.常见的20个非极性分子
气体:H2、N2、O2、Cl2、F2、CO2、CH4、C2H4、C2H2、BF3
液体:Br2、CCl4、C6H6、CS2、B3N3H6
固体:I2、BeCl2、PCl5、P4、C60
4.20个重要的数据
(1)合成氨的适宜温度:500℃左右
(2)指示剂的变色范围
甲基橙:3.1~4.4(红 橙 黄) 酚酞:8.2~10(无 粉红 红)
(3)浓硫酸浓度:通常为98.3% 发烟硝酸浓度:98%以上
(4)胶体粒子直径:10-9~10-7m
(5)王水:浓盐酸与浓硝酸体积比3:1
(6)制乙烯:酒精与浓硫酸体积比1:3,温度170℃
(7)重金属:密度大于4.5g•cm-3
(8)生铁含碳2~4.3%,钢含碳0.03~2%
(9)同一周期ⅡA与ⅢA元素原子序数之差为1、11、25
(10)每一周期元素种类
第一周期:2 第二周期:8 第三周期:8 第四周期:18
第五周期:18 第六周期:32 第七周期(未排满)(最后一种元素质子数118)
(11)非金属元素种类:共23种(已发现22种,未发现元素在第七周期0族)
每一周期(m)非金属:8-m(m≠1)
每一主族(n)非金属:n-2(n≠1)
(12)共价键数:C-4 N-3 O-2 H或X-1
(13)正四面体键角109°28′ P4键角60°
(14)离子或原子个数比
Na2O2中阴阳离子个数比为1:2 CaC2中阴阳离子个数比为1:1
NaCl中Na+周围的Cl-为6,Cl-周围的Na+也为6;CsCl中相应离子则为8
(15)通式:
烷烃CnH2n+2 烯烃CnH2n 炔烃CnH2n-2 苯的同系物CnH2n-6
饱和一元醇CnH2n+2O 饱和一元醛CnH2nO 饱和一元酸CnH2nO2
有机物CaHbOcNdCle(其他的卤原子折算为Cl)的不饱和度Ω=(2a+d+2-b-e)/2
(16)各种烃基种类
甲基—1 乙基-1 丙基-2 丁基-4 戊基-8
(17)单烯烃中碳的质量分数为85.7%,有机化合物中H的质量分数最大为25%
(18)C60结构:分子中含12个五边形,25个六边形
(19)重要公公式c=(1000×w%×ρ)/M
M=m总/n总 M=22.4×ρ标
(20)重要的相对分子质量
100 Mg3N2 CaCO3 KHCO3 C7H16
98 H2SO4 H3PO4
78 Na2O2 Al(OH)3 C6H6
16 O~CH4
5.20种有色物质
黑色:C、CuO、MnO2、FeO、Fe3O4
黄色:Na2O2、S、AgI、AgBr(浅黄)
红色:红磷、Cu2O、Cu、NO2、Br2(g)、Fe(SCN)3
蓝色:Cu(OH)2、CuSO4•5H2O
绿色:Cu2(OH)2CO3、CuCl2溶液、Fe2+
6.常见的20种电子式
H2 N2 O2 Cl2 H2O
H2O2 CO2 HCl HClO

NH3 PCl3 CH4 CCl4

NaOH Na+ - Na2O2 Na+ 2-Na+ MgCl2 -Mg2+ -

NH4Cl + - CaC2 Ca2+ 2-

-CH3 —OH

7.20种重要物质的用途
(1)O3:①漂白剂 ②消毒剂
(2)Cl2:①杀菌消毒 ②制盐酸、漂白剂 ③制氯仿等有机溶剂和多种农药
(3)N2:①焊接金属的保护气 ②填充灯泡 ③保存粮食作物 ④冷冻剂
(4)白磷:①制高纯度磷酸 ②制烟幕弹和燃烧弹
(5)Na:①制Na2O2等 ②冶炼Ti等金属 ③电光源 ④NaK合金作原子反应堆导热剂
(6)Al:①制导线电缆 ②食品饮料的包装 ③制多种合金 ④做机械零件、门窗等
(7)NaCl:①化工原料 ②调味品 ③腌渍食品
(8)CO2:①灭火剂 ②人工降雨 ③温室肥料
(9)NaHCO3:①治疗胃酸过多 ②发酵粉
(10)AgI:①感光材料 ②人工降雨
(11)SO2:①漂白剂 ②杀菌消毒
(12)H2O2:①漂白剂、消毒剂、脱氯剂 ②火箭燃料
(13)CaSO4:①制作各种模型 ②石膏绷带 ③调节水泥硬化速度
(14)SiO2:①制石英玻璃、石英钟表 ②光导纤维
(15)NH3:①制硝酸铵盐纯碱的主要原料 ②用于有机合成 ③制冷剂
(16)Al2O3:①冶炼铝 ②制作耐火材料
(17)乙烯:①制塑料、合成纤维、有机溶剂等 ②植物生长调节剂(果实催熟)
(18)甘油:①重要化工原料 ②护肤
(19)苯酚:①制酚醛树脂②制合成纤维、医药、合成香料、染料、农药③防腐消毒
(20)乙酸乙酯:①有机溶剂 ②制备饮料和糖果的香料
8.20种常见物质的俗名
重晶石-BaSO4 明矾-KAl(SO4) 2•12H2O 蓝矾、胆矾-CuSO4•5H20
熟石膏-2CaSO4•H2O 石膏-CaSO4•2H2O 小苏打-NaHCO3
纯碱-Na2CO3 碳铵—NH4HCO3 干冰-CO2 水玻璃(泡花碱) -Na2SiO3
氯仿-CHCl3 甘油-CH2OH-CHOH- CH2OH 石炭酸-C6H5OH
福马林林(蚁醛)-HCHO 冰醋酸、醋酸-CH3COOH 草酸-HOOC—COOH
硬脂酸-C17H35COOH 软脂酸-C15H31COOH 油酸-C17H33COOH
甘氨酸-H2N—CH2COOH

9.20个重要的化学方程式
(1)MnO2+4HCl(浓) MnCl2+Cl2↑+2H2O (2)C+2H2SO4(浓) CO2↑+2SO2↑+2H2O
(3)Cu+4HNO3(浓)=Cu(NO3)2+2NO2↑+2H2O
(4)3Cu+8HNO3(稀)=3Cu(NO3)2+2NO↑+4H2O
(5)C+H2O(g) CO+H2 (6)3Fe+4H2O(g) Fe3O4 +4H2
(7)8Al+3Fe3O4 9Fe+4Al2O3 (8)2Mg+CO2 2MgO+C
(9)C+SiO2 Si+2CO↑ (10)2H2O2 2H2O+O2↑
(11)2NaCl+2H2O 2NaOH+H2↑+Cl2↑ (12)4NH3+5O2 4NO+6H2O
(13)2Na2O2+2CO2=2Na2CO3+O2 (14)4Fe(OH)2+O2+2H2O=4Fe(OH)3
(15)N2+3H2 2NH3 (16)2SO2+O2 2SO3
(17)2C2H5OH CH2=CH2↑+H2O (18)CH3COOH+C2H5OH CH3COOC2H5+H2O
(19)CH3CHO+2Cu(OH)2 CH3COOH+Cu2O+2H2O
(20)C2H5Br+H2O C2H5OH+HBr

10.实验5题
I. 化学实验中的先与后20例
(1)称量时,先两盘放大小质量相等的纸(腐蚀药品放在烧杯等),再放药品。加热后的药品,先冷却,后称量。
(2)加热试管时,应先均匀加热后局部加热。
(3)在试管中加药品时先加固体后加液体。
(4)做固体药品之间的反应实验时,先单独研碎后再混合。
(5)用排水法收集气体时,先拿出导管后撤酒精灯。
(6)制取气体时,先检验气密性后装药品。
(7)做可燃性气体燃烧实验时先检验气体纯度后点燃。
(8)收集气体时,先排净装置中的空气后再收集。
(9)除去气体中杂质时必须先净化后干燥,而物质分解产物验证时往往先检验水后检验其他气体。
(10)焰色反应实验时,每做一次,铂丝应先沾上稀盐酸放在火焰上灼烧到无色时,后做下一次实验。
(11)用H2还原CuO时,先通H2,后加热CuO,反应完毕后先撤酒精灯,冷却后再停止通H2。
(12)稀释浓硫酸时,烧杯中先装一定量蒸馏水后再沿器壁缓慢注入浓硫酸。
(13)做氯气的制备等实验时,先滴加液体后点燃酒精灯。
(14)检验SO42-时先用盐酸酸化,后加BaCl2。
(15)检验NH3(用红色石蕊试纸)、Cl2(用淀粉KI试纸)等气体时,先用蒸馏水润湿试纸后再与气体接触。
(16)中和滴定实验时,用蒸馏水洗过的滴定管先用标准液润洗后再装标准液;先用待测液润洗后再移取液体;滴定管读数时先等1~2分钟后读数;观察锥形瓶中溶液颜色的改变时,先等半分钟颜色不变后即为滴定终点。
(17)做气体的体积测定实验时先冷却至室温后测量体积,测量时先保证左右装置液面高度一致后测定。
(18)配制Fe2+,Sn2+等易水解、易被氧化的盐溶液,先把蒸馏水煮沸,再溶解,并加少量相应金属粉末和相应酸。
(19)检验卤代烃中的卤元素时,在水解后的溶液中先加稀HNO3再加AgNO3溶液。
(20)检验蔗糖、淀粉等是否水解时,先在水解后溶液中加NaOH溶液中和,后加银氨溶液或Cu(OH)2悬浊液。
Ⅱ几处使用温度计的实验:
(1)实验室制乙烯:温度170℃,温度计在反应液面下,测反应液温度。
(2)实验室蒸馏石油:温度计水银球插在蒸馏瓶支管口略下部位测蒸气的温度。
(3)苯的硝化实验:水银球插在水溶液中,控制温度50~60℃。
(4)KNO3溶解度的实验:水银球插在KNO3溶液内部之外水浴中,使测得温度更加精确
Ⅲ化学仪器上的“0”刻度
(1)滴定管:“0”刻度在上。(2)量筒:无“0”刻度。 (3)托盘天平:“0”刻度在刻度尺最左边;标尺中央是一道竖线非零刻度。
Ⅳ棉花团在化学实验中的用途
(1)作反应物
① 纤维素硝化反应时所用脱脂棉是反应物。
② 用棉花团包裹Na2O2粉末,然后通过长玻璃管用嘴向Na2O2粉末中吹气,棉花团能燃烧。
(2)作载体
①用浸用NaOH溶液的棉花吸收HCl、HBr、HI、H2S、Cl2、Br2、SO2、NO2等气体。
②焰色反应时可用脱脂棉作盐或盐溶液的载体,沾取盐的固体粉末或溶液放在无色火焰上灼烧,观察焰色。
(3)作阻挡物
①阻挡气体:制NH3或HCl时,由于NH3或HCl极易与空气中的水蒸气结合,气压减小,会导致外部空气冲入,里面气体排出,形成对流,难收集纯净气体,在试管口堵一团棉花,管内气体形成一定气压后排出,能防止对流。
② 阻挡液体:制C2H2时,若用大试管作反应器,应在管口放一团棉花,以防止泡沫和液体从导管口喷出。
③ 阻挡固体:A.用KMnO4制取O2时,为防止生成的K2MnO4细小颗粒随O2进入导管或集所瓶,堵塞导管。B.碱石灰等块状固体干燥剂吸水后变为粉末。在干燥管出口内放一团棉花,以保证粉末不进入后续导管或仪器
Ⅴ检查气密性
①微热法:
如图甲。A.把导管b的下端浸入水中,用手紧握捂热试管a,B.导管口会有气泡冒出;C.松开手后,水又会回升到导管b中 ,这样说明整个装置气密性好。
②液差法
A.启普发生器:如图乙。向球形漏斗中加水,使漏斗中的液面高于容器的液面,静置片刻,液面不变,证明装置气密性好
B.简易发生器:如图丙。连接好仪器,向乙管中注入适量水,使乙管液面高于甲管液面。静置片刻,若液面保持不变,证明装置不漏气。
③液封法:如图丁。关闭活塞K从长颈漏斗加水至浸没下端管口,若漏斗颈出现稳定的高度水柱,证明装置不漏气。

11.常见的10e-粒子和18e-粒子
10e-粒子:O2-、F-、Ne、Na+、Mg2+、Al3+、OH-、HF、H2O、NH2-、NH3、H3O+、CH4、NH4+
18e-粒子:S2-、Cl-、Ar、K+、Ca2+、HCl、HS-、O22-、F2、H2S、PH3、H2O2、CH3F、N2H4、CH3OH、CH3NH2、C2H6

12.常见物质密度对比
密度比水轻的:苯、甲苯、乙醇、氨水、乙酸乙酯、油脂、Na、K
密度比水重的:CCl4、硝基苯、溴苯、苯酚、浓硫酸、浓硝酸

13.极易溶于水的物质
气体:NH3、HF、HCl、SO2、HCHO
液体:CH3OH、CH3CH2OH、CH3COOH、H2SO4、HNO3、乙二醇、丙三醇

14.重要的电极反应式
阳极:4OH--4e-=2H2O+O2↑ 2Cl--2e-=Cl2↑ M-xe-=Mx+
阴极:Cu2++2e-=Cu 2H++2e-=H2↑
负极:M-xe-=Mx+ H2-2e-=2H+ H2-2e-+2OH-=2H2O
正极:2H++2e-=H2↑ O2+4e-+2H2O=4OH- O2+4e-+4H+=4H2O

15.20个重要的离子方程式
(1)Na2O2投入水中:2Na2O2+2H2O=4Na++4OH-+O2↑
(2)Na投入水中:2Na+2H2O=2Na++2OH-+H2↑
(3)澄清石灰水中通入CO2:
①少量:Ca2++2OH-+CO2=CaCO3↓+H2O;②过量:CO2+OH-=HCO3-
(4)稀NH4Cl溶液中滴入NaOH溶液:
①混合:NH4++OH-=NH3•H2O;②共热:NH4++OH-=NH3↑+H2O
(5)NaAlO2溶液中通入CO2:
①少量:2AlO2-+CO2+3H2O=2Al(OH)3↓+CO32-;②过量:AlO2-+CO2+2H2O=Al(OH)3↓+HCO3-
(6)H2S气体通入FeCl3溶液中:2Fe3++H2S=2Fe2++S↓+2H+
(7)FeCl3溶液滴入沸水中:Fe3++3H2O Fe(OH)3(胶体)+3H+
(8)AlCl3溶液中加入(NaAlO2、Na2CO3、NaHCO3):
①Al3++3AlO2-+6H2O=4Al(OH)3↓; ②2Al3++3CO32-+3H2O=2Al(OH)3↓+3CO2↑
③Al3++3HCO3-=Al(OH)3↓+3CO2↑
(9)乙醛跟银氨溶液反应:
CH3CHO+2[Ag(NH3)2]++2OH- CH3COO-+NH4++2Ag↓+3NH3+H2O
(10)FeBr2溶液中通入Cl2:
①少量:2Fe2++Cl2=2Fe3++2Cl-;②过量:2Fe2++4Br-+3Cl2=2Fe3++2Br2+6Cl-
(11)稀硝酸与Fe反应:
①少量:Fe+4H++NO3-=Fe3++NO↑+2H2O;②过量:3Fe+8H++2NO3-=3Fe2++2NO↑+4H2O
(12)NaAlO2溶液与NaHCO3溶液混合:AlO2-+HCO3-+H2O=Al(OH)3↓+CO32-
(13)NaOH溶液中滴入AlCl3溶液:
①少量:4OH-+Al3+=AlO2-+2H2O;②后续:3AlO2-+Al3++6H2O=4Al(OH)3↓
(14)Ca(ClO)2溶液中通入(CO2、SO2)
①少量:Ca2++2ClO-+CO2=CaCO3↓+2HClO;过量:ClO-+CO2+H2O=HClO+HCO3-
②Ca2++ClO-+SO2+H2O=CaSO4↓+Cl-+2H+
(15)NaHSO4溶液中滴入Ba(OH)2溶液:
①至中性:2H++SO42-+Ba2++2OH-=2H2O+BaSO4↓
②至SO42-完全沉淀: H++SO42-+Ba2++OH-=H2O+BaSO4↓
(16)NaOH与Ca(HCO3)2溶液反应:
少量:Ca2++2HCO3-+2OH-=CaCO3↓+CO32-+2H2O
过量:OH-+HCO3-+Ca2+=CaCO3↓+H2O
(17)CO2通入苯酚钠溶液 C6H5O-+CO2+H2O→C6H5OH+HCO3-
(18)Al投入NaOH溶液中 2Al+2OH-+2H2O=2AlO2-+3H2↑
(19)饱和Na2CO3溶液中通入CO2 2Na++CO32-+CO2+H2O=2NaHCO3↓
(20)Mg(HCO3)2溶液中滴加Ca(OH)2
Mg2++2HCO3-+2Ca2++4OH-=Mg(OH)2↓+2CaCO3↓+2H2O

16.常见的化学工业
(1)硫酸工业:4FeS2+11O2 2Fe2O3+8SO2 2SO2+O2 2SO3 SO3+H2O=H2SO4
(氧化还原反应)设备沸腾炉、接触室、吸收塔
(2)合成氨工业:N2+3H2 2NH3 (氧化还原反应) 设备合成塔
(3)硝酸工业:4NH3+5O2 4NO+6H2O 2NO+O2=2NO2 3NO2+H2O=2HNO3+NO
(氧化还原反应) 设备氧化炉吸收塔
(4)氯碱工业 2NaCl+2H2O 2NaOH+H2↑(阴极)+Cl2↑(阴极) 设备离子交换膜
(5)侯氏制碱法:NH3+H2O+CO2+NaCl=NH4Cl+NaHCO3↓
2NaHCO3 Na2CO3+H2O+CO2↑(非氧化还原反应)
(6)硅酸盐工业:①水泥
原料-粘土和石灰石。主要成分-硅酸三钙、硅酸二钙、铝酸三钙。设备-回转窑
②玻璃
原料-纯碱、石灰石和石英(1:1:6)。设备-玻璃熔炉
③陶瓷
(复杂的物理化学变化。非氧化还原反应)

17. 互为官能团异构
(1)烯烃与环烷烃 (2)炔烃与二烯烃、环烯烃 (3)醇与醚、酚与芳香醇、芳香醚
(4)醛与酮 (5)酸与酯 (6)氨基酸与硝基化合物
(羧基可以拆分为醛基与羟基)

18.A+酸→水+B
A可能为
(1)碱(反应略)
(2)碱性氧化物(反应略)
(3)单质S+2H2SO4(浓) 3SO2↑+2H2O
(4)酸性氧化物 SO2+2H2S=3S↓+2H2O
(5)不成盐氧化物NO+2HNO3(浓)=3NO2+H2O
(6)酸 HCl+HClO=Cl2↑+H2O H2S+3H2SO4(浓) 4SO2↑+4H2O
H2O2+H2SO3=H2SO4+H2O
(7)醇 (反应略)

19.A+B→C+D+H2O
(1)非氧化还原反应:①NaHSO4+Ba(OH)2→ ②Mg(HCO3)2+Ca(OH)2→(两种沉淀)
③AlCl3+NaOH→ ④NaAlO2+HCl→ ⑤碳酸盐+HCl等
(2)氧化还原反应:①单质+H2SO4(浓)→②单质+HNO3 →③SO2(或H2S)+HNO3→
④Cl2(或S)+NaOH→ ⑤HCl(浓)+MnO2(或KClO3、Ca(ClO)2 等)→
(3)有机反应
①CH3CHO+Cu(OH)2→ ②C2H5Br+NaOH CH2=CH2↑+NaBr+H2O

20.物质A+H2O→气体
(1)A为气体:①F2→O2 ②NO2→NO ③CO→CO2+H2
(2)A为固体单质:①Na(K、Ca)+H2O→H2 ②Fe(或C)+H2O→H2
(特殊:Al(或Si)+NaOH+H2O→H2 )
(3)A为固体化合物:①Na2O2+H2O→O2 ②CaC2+H2O→C2H2
*③Al2S3+H2O→H2S+Al(OH)3 *④Mg3N2 +H2O →NH3 +Mg(OH)2
(4)特殊条件下产生气体
①NaCl+H2O(电解)→H2+Cl2 CuSO4+H2O(电解)→O2

21.A B C
(1)非氧化还原反应:
①AlCl3+NaOH→Al(OH)3 Al(OH)3+NaOH→NaAlO2 (X为NaOH)
或NaAlO2 +HCl→Al(OH)3 Al(OH)3+HCl→AlCl3 (X为HCl)
②NaOH+CO2→Na2CO3 Na2CO3+CO2→NaHCO3 (X为CO2 ) (B为其他碳酸盐亦可)
或CO2+NaOH→NaHCO3 NaHCO3+NaOH→Na2CO3 (X为NaOH)
③AgNO3+NH3•H2O→AgOH AgOH+NH3•H2O →Ag(NH3)2+ (A为锌铜等盐亦可)
(相反过程同①)
(2)氧化还原反应
①Na+O2 →Na2O Na2O+O2 →Na2O2 ②S(或H2S)+O2→SO2 SO2 +O2 →SO3
③N2(或NH3)+O2→NO NO+O2→NO2 ④C+O2→CO CO+O2→CO2 (以上X为O2)
④P+Cl2→PCl3 PCl3+Cl2→PCl5 (X为Cl2)
⑥C+H2O→CO CO+H2O→CO2 (X为H2O )
⑦Cl2+Fe→FeCl3 FeCl3+Fe→FeCl2 (X为Fe)
⑧FeCl3+Zn→FeCl2 FeCl2+Zn→Fe(X为Zn)
⑨C2H5OH(或CH2=CH2)+O2→CH3CHO CH3CHO+O2→CH3COOH (X为O2,B为其他醛亦可)
⑩Fe2O3(或Fe3O4)+CO→FeO FeO+CO→Fe (X为CO)或CuO+H2→Cu2O Cu2O+H2→Cu

⑦ 化工中的“设备选型”和“过程放大”

你可以在网上搜一下关于化工工艺设计方面的资料。如果有时间就看看化工工艺设计手册吧。实验室小试的作用是是很关键的,可以为下一步大生产取得一些最基本的数据:比如从原材料到产品的物理化学性质、反应过程中传质传热数据以反应本身对周围设施的基本要求以及一些想不到的异常情况,比如大生产中的设备对热量传递速率的影响是小试不用考虑的因素,搅拌情况对反应均匀性的影响也是小试不用考虑的情况。然而正是小试中不用考虑的这些事情却对大生产的正常运行起着不可忽视甚至决定性的作用。换句话说:对于一个化学反应来说,放大的核心问题就是解决如何保证完全满足反应条件的问题。这里的条件不是指小试仪器本身的形状,而是指参与物料的传质传热状态。
总之,不是几句话就能说得清的。我觉得你与工程设计很有缘,多看看设计方面的书籍吧。

不知道我理解的对不对,希望我的回答能对你有帮助。

⑧ 初中化学常见不溶性沉淀物

白色沉淀:Fe(OH)2,CaCO3,BaSO4,Mg(OH)2,Al(OH)3,PbSO4,AgCl
红褐色沉淀:Fe(OH)3
蓝色沉淀:Cu(OH)2
黑色沉淀:CuS,PbS
1.碳酸钙 CaCO3 白色沉淀 溶于酸
2.氯化银 AgCl 白色沉淀 不溶于强酸强碱
3.碳酸银 AgCO3 白色沉淀 溶于酸
4.碳酸钡 BaCO3 白色沉淀 溶于酸
5.硫酸钡 BaSO4 白色沉淀 不溶于强酸强碱
6.氢氧化铜 Cu(OH)2 蓝色沉淀 溶于酸
7.氢氧化铝 Al(OH)3 白色沉淀 溶于酸
8.氢氧化镁 Mg(OH)2 白色沉淀 溶于酸
9.氢氧化铁 Fe(OH)3 红褐色沉淀 溶于酸
10.氢氧化亚铁 Fe(OH)2 白色沉淀 溶于酸
CuSO4+2NaOH=Cu(OH)2↓+Na2SO4 蓝色沉淀生成、上部为澄清溶液 质量守恒定律实验
Ca(OH)2+CO2= CaCO3↓+ H2O 澄清石灰水变浑浊 应用CO2检验和石灰浆粉刷墙壁
Ca(HCO3)2Δ CaCO3↓+H2O+CO2↑ 白色沉淀、产生使澄清石灰水变浑浊的气体 水垢形成.钟乳石的形成
HCl+AgNO3= AgCl↓+HNO3 生成白色沉淀、不溶解于稀硝酸 检验Cl—的原理
Ba(OH)2+ H2SO4=BaSO4↓+2H2O 生成白色沉淀、不溶解于稀硝酸 检验SO42—的原理
BaCl2+ H2SO4=BaSO4↓+2HCl 生成白色沉淀、不溶解于稀硝酸 检验SO42—的原理
Ba(NO3)2+H2SO4=BaSO4↓+2HNO3 生成白色沉淀、不溶解于稀硝酸 检验SO42—的原理
FeCl3+3NaOH=Fe(OH)3↓+3NaCl 溶液黄色褪去、有红褐色沉淀生成
AlCl3+3NaOH=Al(OH)3↓+3NaCl 有白色沉淀生成
MgCl2+2NaOH = Mg(OH)2↓+2NaCl
CuCl2+2NaOH = Cu(OH)2↓+2NaCl 溶液蓝色褪去、有蓝色沉淀生成
CaO+ H2O = Ca(OH)2 白色块状固体变为粉末、 生石灰制备石灰浆
Ca(OH)2+SO2=CaSO3↓+ H2O 有白色沉淀生成 初中一般不用
Ca(OH)2+Na2CO3=CaCO3↓+2NaOH 有白色沉淀生成 工业制烧碱、实验室制少量烧碱
Ba(OH)2+Na2CO3=BaCO3↓+2NaOH 有白色沉淀生成
Ca(OH)2+K2CO3=CaCO3↓ +2KOH 有白色沉淀生成
AgNO3+NaCl = AgCl↓+Na NO3 白色不溶解于稀硝酸的沉淀(其他氯化物类似反应) 应用于检验溶液中的氯离子
BaCl2 + Na2SO4 = BaSO4↓+2NaCl 白色不溶解于稀硝酸的沉淀(其他硫酸盐类似反应) 应用于检验硫酸根离子
CaCl2+Na2CO3= CaCO3↓+2NaCl 有白色沉淀生成
MgCl2+Ba(OH)2=BaCl2+Mg(OH)2↓ 有白色沉淀生成

阅读全文

与碱法酚醛树脂的制备相关的资料

热点内容
城市污水的净化用什么用 浏览:8
饮水机的水桶为什么瘪了 浏览:21
深圳污水处理设备多少钱 浏览:751
除垢剂除了柠檬酸还有什么 浏览:249
望塘污水处理厂效果图 浏览:622
净水3分软管哪个品牌好 浏览:996
怎么提升ie浏览器版本 浏览:585
孩儿净水器怎么换滤芯 浏览:762
乌龟有过滤器换水 浏览:501
蒸馏水洗眼睛会流泪吗 浏览:101
紫水晶洞里有水垢怎么去除 浏览:464
蒸馏水的溶解度极强对的 浏览:634
暖壶内胆除垢 浏览:222
我们如何对抗污水 浏览:752
冷却塔电过滤器 浏览:986
超滤膜使用转速 浏览:7
废水热氧化焚烧 浏览:240
污水管接雨水管多少钱一单元 浏览:171
反渗透纯水机不停渗水什么原因 浏览:297
鱼缸内壁置过滤器 浏览:706