1. 建一个小型铸造厂,铝件做压铸,铁件做树脂砂,需要什么设备,大约要多少投资
一、压铸投入挺来大的,自详细计算如下:
1、压铸机,力劲160t,15万;
2、工厂建造 (行车建造),50万;
3、空气压缩机和气管系统,2万;
4、项目开发和模具预备费用,10万;
5、铝合金库存1T,14万;
6、熔化炉和保温炉,2万;
7、电保温炉,使用1天电费0.1万,一个月3万(熔化炉使用焦炭炉);
8、客户会拖欠账款二个月;
9、检测设备投资,1万(无三坐标);
10、一名工人工资一年3.5万;
大概的费用最少90万:
铸件费用比较低,场地解决,工人不聘用,只用3万就可以了!
2. 树脂砂造型浇注球铁件,如何防止渗硫导致的球化衰退
壁厚会使球化衰退,给个论文给你:
厚大断面铸件专用球化剂、孕育剂的开发与应用
王万超
(宏德铸造材料有限公司 广州 510000)
随着我国进入WTO和工业飞速的发展,厚大断面球墨铸铁件如风力发电铸件、大功率柴油机曲轴、冶金轧辊铸件等的需求量不断增加,厚大断面球铁件在生产时,由于断面过厚,冷却速度缓慢,因而凝固时间过长,在铸件厚壁中心或热节处容易造成石墨畸变、球数减少、组织粗大、石墨飘浮、化学成分偏析和晶间碳化物等问题。因而导致铸件的机械性能下降,尤其是韧性更为明显,给大断面铸件的生产带来困难。因此我司依据中国特有的实际状况开发了厚大断面铸件专用球化剂、孕育剂。
1 球化剂
Mg使球墨圆整,对大断面球铁能减缓球化衰退,Mg阻碍石墨析出,残Mg量高,增加收缩和脆性,Mg易氧化,在铁水表面形成氧化膜,进入砂型易使铸件产生夹渣和皮下气孔。残Mg量应控制在保证球化的前提下越低越好,但我们考虑大件凝固时间长,应提高抗衰退能力,Mg量应高些,使最终铁液控制在0.05-0.06%。
RE是通过抵消干扰元素的有害作用,而间接地起球化作用,但在厚大铸件中,RE留量高容易造成碎块状石墨增多,我们一般控制在0.03%以下。为了提高抗衰退能力,我司特别设计专用球化剂,既可以保证起球化作用的Mg的含量,同时也可以保持较高的抗衰退能力,高碳孕育良好时,亦不会出现渗碳体。另外,这专用球化剂可使磷共晶减少并弥散,从而进一步提高球铁的延伸率。在球化处理时,为了提高镁的吸收率,控制反应速度及提高球化效果,采用特有的球化工艺。对球化处理的控制,主要是在反应速度上进行控制,控制球化反应时间在2-3分钟左右,综合范围1.5-2.5%,原则是低稀土,依据炉料的组成及纯净度调整其含量。
厚大断面铸件的特点是低温处理、低温浇注, Ca元素可以比常规产品较低,在冲天炉和电弧炉熔炼的条件下,可控制在2.0%以下,以适当地脱氧、脱硫,而在感应电炉条件下,Ca元素可以更低,因为我司的专用球化剂反应时比较平稳,同时Ca的溶解性差,很容易形成夹渣等铸造缺陷;因此,必须有针对性的成份考虑,一方面延缓球化衰退,另一方面促进异质形核。
厚大断面铸件专用球化剂的特色是:高镁、低稀土、低钙、低硅、适度的钡。
2 孕育剂
孕育剂要求具有强烈的促进石墨化作用,并能维持时间较长,吸收率高而稳定,所以孕育分为炉前孕育和瞬时孕育,两者缺一不可。炉前使用含Ba的防衰退,长效孕育剂,浇注随流使用特殊成分的孕育剂,主要是表面活性元素的应用,其中应用于风力发电铸件时配入适量Bi元素,即改善断面中心部位的球化状况,使得球径小,球数多,并能提高铁素体含量,提高铸态性能。当应用于大功率柴油机曲轴、冶金轧辊等珠光体型铸件时,配入适量Sb元素,即改善断面中心部位的球化状况,使得球径小,球数多,提高铸态性能。粒度根据铁水量而定,炉前使用一般有3-8mm和5-12mm的两种粒度,而随流使用一般有0.5-1.2mm和1-3mm的两种粒度。
3 专用球化剂、孕育剂在实际生产中的应用
3.1 在风力发电球铁件生产中的实际应用
风力发电球铁件的材质为欧洲标准EN-GJS-400-18LT,抗拉强度≥400Mpa,屈服强度≥240Mpa,延伸率≥18%,低温冲击值-20℃,三个试样平均值12 J/cm2,个别值允许9 J/cm2,铸件重量一般在10吨以上,壁厚大约在100-180mm渐变, 金相基体组织要求: 球化率应在90%以上;球状石墨数应大于100个/mm2;100%的铁素体,生产中选择高纯的原材料是非常必要的,原材料中的Si、Mn、S、P含量要少(Si<1.0%, Mn<0.2% S<0.02%, P<0.025%),对Cu、Cr、Mo、Ti、Sn、V、W等一些合金元素要严格控制含量。钛对球化影响很大应加以控制在0.01%以下,钛高是我国生铁的特点,解决的方法是在炉料中配入一定比例的QIT生铁,来稀释铁水的钛含量,同时也稀释所有促进碳化物的正偏析元素,为增加铁素体的含量,添加适量的镍元素,同时消除低硅的副作用。化学成分方面,必须是低CE量,大致成分为:C3.2-3.4%,Si1.6-2.3%,Mn≤0.2%,S≤0.02%,P≤0.03%, Mg0.04-0.06%,RE≤0.03%,,以及适量Bi。
①炉料组成:国内生铁、20-30%的QIT生铁、废钢;
②原铁水成分:C3.2-3.4%、Si0.6-1.5%、Mn≤0.2%、S≤0.02%、P≤0.03%、Ni0.7%;
③球化剂与孕育剂的成分:
成分 Mg RE Ca Ba Si Bi
球化剂 6.0/7.0 2.0/3.0 1.0/2.0 适量 40/42
炉前孕育剂 适量 65/70
瞬时孕育剂 微量 适量 65/70 微量
备注:瞬时孕育剂中的微量RE是与Bi元素复合,起增加形核,细化石墨的作用;
④熔炼铁液共计12.5吨,15吨的铁水处理包;
⑤球化孕育处理过程:
球化处理前,用清渣剂进行扒渣处理,并进行原铁水成分化验。将15-35mm粒度的球化剂放入用15吨的处理包底的一侧的凹槽内,加入量1.1%,略加紧实,上面覆盖铁屑覆盖剂。铁水冲入另一侧,处理温度在1400℃-1450℃,冲入约2/3的铁水,进行球化处理,反应时间应在3分钟以上,待反应结束后将再冲入剩余1/3的铁水,同时将粒度为5-12mm炉前孕育剂随铁水流入冲入铁水包,加入量0.4%,进行铁水孕育,然后扒渣2-3次,用保温覆盖剂覆盖。
在铸件设置设置浇口杯,开设了2个浇口进行浇注,浇注温度:1320℃-1360℃,一边浇注,一边将粒度为1-3mm瞬时孕育剂通过特制的漏斗随流加入,加入量0.2%,依据浇注时间控制瞬时孕育剂的加入速度,浇注结束后在48小时,即铸件温度约500℃以下开箱。
⑥铸件成分结果:
C3.4%,Si2.2%,Mn0.15%,S0.012%,P0.03%,残余Mg0.051%,残余RE0.025%;
⑦金相检测结果:球化等级2级,石墨大小6-7级,铁素体99%;
⑧机械性能检测结果:
抗拉强度432 Mpa、423 Mpa、428Mpa,平均427.7 Mpa;屈服强度248 Mpa、245.7 Mpa、253Mpa,平均248.9 Mpa;延伸率19.2%、20.6%、19.6%,平均19.8%;低温冲击值-20℃,三个试样12.8、13.7、14.1 J/cm2,平均值13.5J/cm2;
3.2 在冶金轧辊铸件中应用
冶金轧辊铸件一般QT600-3,抗拉强度≥600Mpa,屈服强度≥370Mpa,延伸率≥3%,铸件壁厚大约在100mm以上, 金相基体组织要求: 球化级别应在2-3,石墨大小6-7级,75%以上的珠光体,20%左右的铁素体,允许极少数的碳化物,但应呈弥散状、棒状,颗粒状分布,生产的重点是强化孕育,多次孕育。
①国内生铁、回炉料以及废钢;
②熔炼铁液共计4.4吨,6吨的铁水处理包,铸件最大直径300mm,重量4吨;
③原铁水成分:
C3.2-3.4%、Si0.6-1.5%、Mn0.4-0.6%、S≤0.03%、P≤0.03%、Cu0.4%、Mo0.3%
④球化剂与孕育剂的成分:
成分 Mg RE Ca Ba Si Sb
球化剂 6.0/7.0 2.0/3.0 1.0/2.0 适量 40/42
炉前孕育剂 适量 65/70
瞬时孕育剂 微量 ≤2.0 适量 65/70 微量
瞬时孕育剂中的微量RE是与Sb元素复合,起增加形核,细化石墨的作用;
⑤球化孕育处理过程:
球化处理前,用清渣剂进行扒渣处理,并进行原铁水成分化验。将15-35mm粒度的球化剂放入用15吨的处理包底的一侧的凹槽内,加入量1.4%,略加紧实,上面覆盖铁屑覆盖剂,铁水冲入另一侧,处理温度在1400℃-1450℃,冲入7.5吨的铁水,进行球化处理,反应时间应在3分钟以上,待反应结束后将铁水包吊至5吨的电炉前,冲入5吨的铁水,同时将粒度为5-12mm炉前孕育剂随铁水流入冲入铁水包,加入量0.5%,进行铁水孕育,然后扒渣2-3次,用保温覆盖剂覆盖。
浇注温度:1350℃-1400℃,一边浇注,一边将粒度为1-3mm瞬时孕育剂通过特制的漏斗随流加入,加入量0.2%,依据浇注时间控制瞬时孕育剂的加入速度,浇注结束后在600℃左右开箱风冷。
⑥铸件成分结果:
C3.4%,Si1.6%,Mn0.46%,S0.012%,P≤0.03%,残余Mg0.051%,残余RE0.026%;Cu0.4%、Mo0.3%
⑦金相检测结果:
球化等级2-3级、石墨大小6级、珠光体76%、铁素体22%、碳化物约2%,而且呈细条状、棒状,极少数呈颗粒状;
⑧机械性能检测结果:
抗拉强度653 Mpa、707 Mpa、698Mpa,平均686 Mpa;屈服强度443 Mpa、395 Mpa、403Mpa,平均413.7 Mpa;延伸率3.2%、3.6%、3.7%,平均3.5%;
4 应用过程中的分析与总结
(1) 应选用纯净度高的炉料,铁液中杂质越少越好;
(2) 铁水成分方面:生产风力发电铸件时,控制要点是低CE、低Mn、S、P以及尽可能低的Cu、Cr、Mo、Ti、Sn、V等,残余Mg要高、残余RE要低;生产厚大断面珠光体铸件时,控制要点是低CE、低S、P、Cr、Ti、Sn、V等,残余Mg要高、残余RE比风力发电铸件略高,适量的的Mn 、Cu、Mo等元素;
(3) 球化处理方面:低温处理、低温浇注、多次孕育、瞬时孕育是关键;
(4) 厚大断面铸件专用球化剂、孕育剂比使用单一的轻稀土球化剂以及常规孕育如硅铁,球化率、石墨数量提高,尤其是中心部位的石墨畸变几率大大减少,组织相对致密,铸件综合机械性能相应提高;
(5) 厚大断面铸件专用球化剂、孕育剂是技术组合型配套使用,不得单一使用,否则将严重影响使用效果。
3. 自硬砂的脱模时间是什么意思
就是测定水泥强度,GB/T17671-1999 水泥胶砂强度检验方法(ISO法)
3d和28d表示水泥的3天强度和28天强度,分抗折强度和抗压强度。
4. 铸造用呋喃树脂发气量的控制范围是多少
呋喃树脂砂一般不直接去控制芯砂的发气量,而是控制回用砂的灼烧减量和砂芯强度,一般灼烧减量控制在1.5%,以免回用砂有太多的残余树脂发气和增加芯砂混制时的树脂加入量;强度只要保证砂芯搬运和下芯不断裂,强度越低要求的树脂加入量也越少,对铸件质量也越好。
5. 变速箱 制造过程
是铸造的工艺,有模具的,做好了沙箱把铁水到进去,等成型了拿出来在打磨。很麻烦的。
6. 用什么方法检测树脂砂型强度
力学性能测试仪器,通常有压力测试设备和拉力测试设备,通过对砂芯施加作用力,测定砂芯被破坏时受到的作用力的大小,从而判断其强度。应该可以查得到类似产品的检测标准,其中有详细的介绍。
7. 铸造呋喃树脂初终强度的关系
呋喃自硬树脂砂工艺自20世纪80年代在我国开始应用,由于其良好的溃散性自硬特性和生产的铸件、尺寸精度高等优点,大幅度减轻了工人的劳动强度明显改善了铸造车间的工作环境,并且显著提高了我国铸造企业的生产工艺水平和铸件质量,因而获得了大规模的推广,逐步淘汰了传统的湿型烘模砂,成为中大型铸铁件的唯一的造型工艺和中大型铸钢件铸、铝件的重要的造型工艺经过近20年的发展,无论是树脂砂生产设备还是树脂砂原辅材料,国内的相关产品都达到了国外同类产品的水平近。
最近几年,我国铸造业的发展速度比以往的任何时候都快。特别是树脂粘结剂技术的应用,使铸件生产在保证产品尺寸精度,提高产品的表面质量,减少废品,节省工时,提高劳动生产率,减轻工人的劳动强度以及型砂的再生回用等方面有了很大的进步。我公司技术人员通过十多年的铸造行业走访与观察,从以下几个方面来分析树脂砂造型强度。
1、砂形及颗粒大小
树脂造型的原砂一般选用天然石英砂。对于部分高合金钢铸件或特殊要求的铸件,也可选用铬铁矿砂或锆砂等特种砂。这里主要讨论树脂砂对硅砂的要求。
(1)矿物成分与化学成分:硅砂的主要矿物成分是石英、长石和云母,还有一些铁的氧化物和碳化物。石英密度2.55g/cm3,莫氏硬度7级,熔点1737℃,具有耐高温、耐磨损等优点。若原砂中的石英含量高,则原砂的耐火度和复用性好。由于长石和云母是硅酸盐,其熔点和硬度低,会降低树脂砂的复用性和耐火度。所以在选择硅砂时,SiO2含量要尽量高一些,杂质要少,当然还与金属熔点和浇注温度、铸件厚壁等因素有关。一般来说,铸件用硅砂SiO2含量应大于96%,铸铁应大于90%,有色金属要少一些。
(2)粒形:一般用粒形系数表示沙粒圆整度。人造石英砂虽然SiO2含量高,但粒形位多角形甚至尖角形,粒度系数太大,一般不采用。为了改善粒形,对原砂最好进行擦磨处理,因为在砂粒质量相等的条件下,圆形砂的比表面积最小,砂粒形状偏离圆形的程度越高,其比表面积越大,树脂黏结膜越薄,强度也越小。比表面积增大的顺序是:圆形砂——多角形砂——尖角形砂。
由于圆形砂粒的比表面积最小,在相同的树脂和固化剂加入量下,其抗拉强度要比其他两种砂形高出很多。因此,从提高树脂砂抗拉强度、减少树脂加入量的角度看,圆形砂粒食最好的选择。因树脂的黏度很低,砂粒表面上涂覆的树脂膜有很薄,粒形对型砂流动性的影响就比较明显。圆形砂的尖角和棱边都已磨钝,砂粒之间较易于滑动,故很容易舂紧,多角形有尖角和棱边,有镶嵌作用,砂粒的滑动受阻,故难舂紧。
(3)粒度:对树脂砂这种黏结剂量很小的型砂来讲,原砂的粒度对黏结的强度的影响是不可忽视的。这种影响有两个不同的方面:原砂愈粗,则单位质量的砂粒的表面积愈小,树脂加入量一定时,砂粒表面涂覆的树脂膜较厚,砂粒之间的黏结桥的截面积也较大,这将导致树脂砂强度提高;另一方面,原砂愈粗,则单位质量的原砂的颗粒数量愈少,因而一定重量的型砂中砂粒的接触点(黏结桥)愈少,这将导致树脂砂的强度下降。就本厂所用原砂为40~70目,粒度在这个范围时,黏结桥和表面积两方面的影响作用相当,对于砂粒尺寸的改变,树脂砂的强度没有明显的变化。
(4)原砂的粒度分布:型砂的强度主要决定于砂粒表面黏结膜的厚度和砂粒之间的黏结的数量。在黏结剂加入量一定的条件下,如原砂中配有一定量的细砂,细砂又能填入紧密排列的粗砂空隙,则黏结桥的数量将大为增加。虽然细砂的比表面积较大,会使型砂的黏结膜的厚度减小,但综合效果还是会导致型砂的强度提高。
对于树脂砂来讲,黏结剂的量很少,增加黏结桥数量的作用就非常突出。由于树脂成本较高,希望用最少量的树脂是型砂具有一定的强度,因此,应该用一定粒度大小的原砂(四筛砂或五筛砂),粒度分布为40~70目,使其能够较好的排列,不会有较大的缝隙,从而使型砂具有较高的强度。
2、原砂含泥量、含水量、需酸量
(1)含泥量是指原砂中颗粒尺寸比砂粒小得多,并赋予砂粒表面或掺杂于砂粒之间的各种微量颗粒(≤20um)。含泥量直接影响再生砂的成本和铸件质量,在铸造生产中,泥含量过高不但影响工作环境、污染空气,更重要的是影响再生砂的微粉含量,其结果是导致混砂时树脂加人量增加和因透气性差造成铸件废品率增多。可见在树脂、固化剂加入一定的情况下,含泥量愈高,其强度值就愈小。
(2)原砂中的含水量严重影响树脂的固化强度和固透性,很明显含水量高的话,会稀释树脂和固化剂,使其浓度下降,从而延长固化时间及降低型砂强度。为了减少含水量,在用原砂时,应对其进行干燥处理,
(3)采用酸硬化的树脂砂时,树脂是在酸的催化作用下脱水缩合而固化的。如原砂中含有碱性物质时,需消耗额外的酸固化剂,将显著影响树脂砂的硬度,甚至会使其不能硬化。原砂中含有酸性物质时,则其影响与前面的相反,对工艺控制也是不利的。因此对于树脂砂所用的原砂,检测并控制其需酸量是必要的。需酸量是原砂含有的可与酸反应的碱性物质的数量表征,它也表明用酸性硬化剂时原砂本身所需酸的多少,与原砂的PH值不是同一概念。原砂中含有不溶于水的碱性氧化物或能酸作用的碳酸盐时,它们不影响原砂的PH值,但却能与树脂砂中的酸性硬化剂反应,从而影响树脂砂的硬化过程和性能。很显然当较多的酸性硬化剂与碱性物质作用后,树脂砂的强度会明显下降。所以检测原砂的需酸量是必须的,从而通过计算应加入多少酸性固化剂。
3、树脂、固化剂
国内生产树脂、固化剂的厂家很多, 但具有自主研发能力、具备完善的检测设备和严密可靠的质量保证体系的厂家屈指可数。我厂用的树脂固化剂基本上是苏州兴宜和山西兴安。
对于树脂和固化剂的加入量的控制,树脂加入量一般为原砂的0.9%~1%。固化剂的加入量与固化剂的总酸含量、环境温度和型砂温度有直接关系, 其加入量一般为树脂加入量的30%~65%。在外界温度以及本身放砂砂温都较高的情况下,应把固化剂加入量调到最小量。
当固化剂加入量为0.25%左右时,由于砂中的酸度值过低,硬化过程进行极为缓慢,严重影响砂型脱模强度的形成,终强度也较低;当固化剂加入量为0.75%左右时,酸度过强,硬化反应速度过快,树脂交联结构不完整,树脂膜和粘结剂桥变脆,终强度大幅降低;当硬化剂加入量为0.48%时,酸性比较适中,硬化反应按客观存在的规律进行,在不增加树脂量的条件下,得到了较理想的硬化效果。
4、再生砂
(1)灼减量:灼烧减量过高会增加型砂的发气量,同时影响树脂砂的强度及性能,一般应将再生砂的灼烧减量控制在3%以下。可通过补加新砂、向铸型中填充废砂块、降低砂铁比等手段降低灼烧减量。在正常情况下, 再生砂的灼烧减量每两周检测一次,为保证检测的准确性, 要求在砂温调节器上的筛网上、在不同的时间段分三次取样, 以平均值作为判断依据。
(2)微粉量:微粉含量是指再生砂中140目以下物资的含量。微粉含量越高, 型砂的透气性越差, 强度越低。要控制微粉含量, 必须保证除尘器处于良好的工作状态, 并每天定期反吹布袋, 清理灰尘。再生砂的微粉含量每两周检测2~3次, 微粉含量应≤0.8%。
3)砂温:理想的砂温应控制在15~30 ℃, 如砂温超过35 ℃,将使型砂的固化速度急剧加快, 影响造型操作, 导致型砂强度偏低, 无法满足生产要求。在夏季, 环境温度最高会达到40 ℃, 在此情况下将砂温降到30 ℃以下是十分困难的, 因此必须采用水冷系统对再生砂进行降温。如果循环水的入水温度≤25 ℃, 就能将砂温降到32 ℃以下, 但当循环水的入水温度≥22 ℃时, 降温效率将急剧下降, 如配备冷冻机组, 在炎热的夏季, 就可将循环水的入水温度控制在7~12 ℃, 砂温控制在25~30 ℃。在冬季的正常生产情况下, 砂温不会低于5 ℃,不会出现因砂温偏低而影响生产的情况。
通过以上分析,树脂砂强度受多方面因素的影响。要得到合理的砂型强度,就必须严格控制各项影响因素。本厂砂型强度的影响,主要是在树脂和固化剂加入量方面,特别是固化剂的加入量,就某台混砂机,它的波动范围相当大,总是与设定值相差很多,致使其加入量过多或过少,很难控制在较小的范围内。