导航:首页 > 耗材问题 > 聚苯胺固化环氧树脂

聚苯胺固化环氧树脂

发布时间:2023-05-16 06:06:51

㈠ 环氧树脂的固化原理

原理:环氧树脂固化剂是与环氧树脂发生化学反应,形成网状立体聚合物,把复合材料骨材包络在网状体之中。 使线型树脂变成坚韧的体型固体的添加剂。

一般认为它通过四种途径的反应而成为热固性产物。

(1)环氧基之间开环连接;

(2)环氧基与带有活性氢官能团的硬化剂反应而交联;

(3)环氧基与硬化剂中芳香的或脂肪的羟基的反应而交联;

(4)环氧基或羟基与硬化剂所带基团发生反应而交联。

(1)聚苯胺固化环氧树脂扩展阅读:

对环氧树脂胶黏剂的分类在行业中还有以下几种分法:

1、按其主要组成 分为纯环氧树脂胶黏剂和改性环氧树脂胶黏剂;

2、按其专业用途 分为机械用环氧树脂胶黏剂、建筑用环氧树脂胶黏剂、电子环氧树脂胶黏剂、修补用环氧树脂胶黏剂以及交通用胶、船舶用胶等;

3、按其施工条件 分为常温固化型胶、低温固化型胶和其他固化型胶;

4、按其包装形态 可分为单组分型胶、双组分胶和多组分型胶等;

还有其他的分法,如无溶剂型胶、有溶剂型胶及水基型胶等。但以组分分类应用较多。

其它类型

(1)缩水甘油酯类环氧树脂 缩水甘油酯类环氧树脂和二酚基丙烷环氧化树脂比较,它具有粘度低,使用工艺性好;反应活性高;粘合力比通用环氧树脂高,固化物力学性能好;电绝缘性好;耐气候性好,并且具有良好的耐超低温性。

在超低温条件下,仍具有比其它类型环氧树脂高的粘结强度。有较好的表面光泽度,透光性、耐气候性好。

(2)缩水甘油胺类环氧树脂 国内外已利用缩水甘油胺环氧树脂优越的粘接性和耐热性,来制造碳纤维增强的复合材料(CFRP)用于飞机二次结构材料。

(3)脂环族环氧树脂 这类环氧树脂是由脂环族烯烃的双键经环氧化而制得的,前者环氧基都直接连接在脂环上,而后者的环氧基都是以环氧丙基醚连接在苯核或脂肪烃上。脂环族环氧树脂的固化物具有以下特点:

①较高的压缩与拉伸强度;

②长期暴置在高温条件下仍能保持良好的力学性能;

③耐电弧性、耐紫外光老化性能及耐气候性较好。

(4)脂肪族环氧树脂

㈡ 水性环氧地坪涂料可以做到防静电抗菌除味的

选择的I型环来氧树脂E51其环氧值适源中,既然是环氧地坪当然少不了树脂。其固化物交联密度高、致密性好、耐腐性强。E51环氧树脂的官能度低(n=0~1所形成的固化物羟基含量低、耐水性好。稀释剂的选择:对稀释剂的要求是①黏度低;②环氧值比较高;③与环氧树脂相容性好;④亲水性好。固化剂的选择:选用了水溶性聚酰胺加成物为固化剂。颜填料的选择:吸油值低、吸水率小、硬度高、粒径细、内应力较强、耐酸碱性好、耐候性优的品种。功能添加剂:1抗静电剂选用掺杂聚苯胺导电聚合物为抗静电填料。2负离子-抗菌添加剂,分解祛除空气中的甲醛、苯、氨等有害气体,同时还有按捺霉菌生存、清除异味,清新空气等功能。助剂的选择:调整涂料的黏度或表面张力。

水性环氧地坪涂料是如何防电抗菌除味的这个当然要究其配方了水性环氧地坪用于各种各样的特殊功能(比如防滑、防静电等)都是因为其配方的不同。配方的不同除了用量不同外最重要的原材料上也会有差别哦。

㈢ 请问谁知道,“环氧树脂”这种粘合剂使用在什么行业

应用的领域很宽,轻工业、电子、电器工业、建筑工业,以及日常生活方面都会用到“环氧树脂”胶黏剂

㈣ 环氧树脂固化剂成分

晚上好,环氧树脂固化剂分为热固化酸酐和冷固化胺类两种形式,第一种固化剂使用甲基六氢苯酐做基础组分再加入一些催化助剂在高温条件下硬化,第二种是市面最常见的双组份液体环氧树脂比如E-44和E-51,固化剂有三种分别是脂肪胺的乙二胺和三乙烯四胺、芳香胺的N-二甲基苯胺以及低分子量聚合物的650651聚酰胺,此外还有不常见但也能固化环氧的双氰胺和三乙醇胺等等。T31和T33都是用乙二胺和三乙胺催化为主。

㈤ 请问防静电涂料和导静电涂料有什么区别具体都是在哪些方面应用的

导静电涂料的名称,有抗静电涂料和防静电涂料,以国家制订的一系列标准,采用导静电涂料,从工业建筑及设备设计采用导静电涂料,从涂料的功能分析,涂料能在10-2秒的短时间内,导泄静电压积蓄,避免产生放电引起火警或破坏电子元器件的事故,而静电的产生与积蓄是自然界客观存在,没有抵抗的的技能,用于织物的没有测定过导泄的理论的防静电剂产品,能防止服装在穿着过程中静电的积累,在此仅叙歼谈说贮油罐导静电涂料及涂装防护,
结构(本征)型导静电树脂在我国尚处在试验开发阶段,到生产实践中应用还有一段路要走。现在导静电涂料是在合成树脂中添加一定量的导电载体,成膜后达到一定范围内的电阻率而满足导静电要求。
导静电与导电技术对涂层的电阻率要求不同,在多种工业生产过程中或计算机房操作,由於静电的存在,会构成事故或对产品或控制设备的破坏。如计算机房、电子元器件生产,人的活动对地面产生的静电必须及时疏导。
本文重点叙述贮罐内壁导静电涂料,其功能为及时消除易燃易爆油品、溶剂贮运过程中非极性物料间或输送过程中对管道管壁磨擦产生的静电。由於静电引发的灾害有过多次报导,蚌埠市消防支队在《消防科学与技术》〔2001⑼:65〕报导因油罐车卸汽油太快,油罐未设接地装置,卸油管未插到罐底部,汽油冲刷飞溅产搏改隐生静电荷火花引燃汽油蒸气,引起这起火灾。
1983年胜利炼油厂3000m3汽油罐在静止基厅状态突然爆炸;上海炼油厂在油罐取样时突然爆炸。为减少或杜绝石油火灾爆炸事故,国家安全技术监督局在1992年1月颁布了GB1334-92《液体石油产品导电安全规程》,标准规定贮罐内壁应使用导静电防腐蚀涂料。

㈥ 什么是水性环氧地坪涂料它有哪些特点

水性环氧地坪涂料不但符合环保要求,而且使用安全、无毒、不燃,施工工具易用清水清洗,能在干、湿混凝土基面上施工,且湿附着冲明力好、层间粘附力优、柔韧性好、抗冲击性强、耐腐蚀性佳、透气性良好,无形成鼓泡和白斑之忧。同时,还可以通过添加功能性外加剂的方法,赋予环氧固化物多种特殊功能。

本研究在液态环氧树脂E51与水溶性聚酰胺固化物体系中,除添加了山判携颜填料和常用助剂外,还添加了掺杂聚苯胺导电聚合物、负离子-抗菌添加剂逗伏。从而赋予涂膜防静电性、抗菌防霉性、释放负离子、祛除空气中有害物质等性能,成为一种新型全效水性环氧地坪涂料。特别适用于医药、电子、仪表、轻纺、日化、食品等需要清洁、无菌、防静电等车间地面的涂装,同时也适用于用做公共场馆、医院、办公及家居地坪。

㈦ 聚苯胺的应用

聚苯胺涂层也指涂料,是采用机械涂膜的方法在金属,如冷轧钢、低碳钢、铝、铜等表面形成均匀完整的聚苯胺防腐膜,其防腐的机理是使金属钝化,在金属表面形成起保护作用的氧化层,且涂覆适合的涂层可以导致腐蚀电势迁移,从而降低金属的腐蚀速率。而且因其具有原料易得、合成简单、无污染、质量轻等诸多优点,而被认为是新一代环境可接受的高效防腐涂料;但PAn不易加工成型,不溶于常规有机溶剂,且纯聚苯胺对金属的粘结性很差,且价格昂贵锋滚态,利用率低,在实用化中存在一定的障碍。人们通常把聚苯胺作为防腐涂料的添加剂,使之形成聚苯胺系防腐涂料。聚苯胺涂料按物质的不同分为单一聚苯胺涂料、聚苯胺为底漆的涂料、聚苯胺与传统涂料的共混涂料三类。
1985年,Deberry发现在不锈钢上电沉积的聚苯胺膜能显著降低不锈钢在硫酸溶液中的腐蚀速率,其实就是单一聚苯胺涂料,即苯胺在酸溶液通过电化学聚合反应直接在金属电极表面沉积得到聚苯胺涂层。但这种方法难以用于较大的金属部件。
聚苯胺为底漆的涂料是指在聚苯胺涂层上涂敷传统聚合物为面漆,与聚苯胺形成复合涂层。它的优点是不需要考虑涂料中聚苯胺的分散性,每一种涂料各自发挥作用。防腐性能则是这些作用的加和,面漆层一般起物理屏蔽作用。美国Los Alamos和NASA的联合研究小组首次发现聚苯胺可作为中碳钢的防腐涂料。
聚苯胺与传统涂料共混涂料是指将聚苯胺粉末与常规涂料成膜物质(如环氧树脂、醇酸树脂等)混合后进行涂敷,可获得聚苯胺共混防腐涂层,此方法是用于研究聚苯胺防腐性能和机理的最多的方法。它不同于聚苯胺为底漆的涂料,涂料的防腐性能是各组分有机相互作用的结果。
聚苯胺除了防腐涂料,还可以用来制备电磁干扰(EMI)屏蔽涂料和抗静电涂料。高分子的导电性使得涂层对裸露的金属区域都能起备侍到钝化作用,而EMI屏蔽的原理是:采用低阻值的导体材料,并利用电磁波在屏蔽导体表面的反射和在导体内部的吸收以及传输过程的损耗而产生阻碍其传播的作用,当导电PAn作为导体材料时,可以在一定程度上解决金属导电填料存在的价格昂贵、密度高、容易被氧化或腐蚀等弊端。有人以导电PAn包裹碳基材料为主要导电成分,以热塑性树脂为主要成膜物质制备了EMI屏蔽涂料。
聚苯胺防腐机理尚不明确,科研人员提出了很多理论,包括屏蔽机理、电场机理、双极性涂层机理、吸附机理、阳极保护机理、掺杂剂离子缓蚀机理以及阴极保护机理等。可以肯定的是在氧化态的转变中,聚苯胺的氧化还原电位远高于金属,这是聚苯胺具有金属防腐能力的原因之一。 聚苯胺在环境pH值≥7时具有完全氧化态(LEB)和半氧化态(EB)结构,这两种结构的聚苯胺在金属的防护过程中,只起到一种机械隔离作用,它类似于金属表面的非金属涂装保护这种形式。当金属表面的聚苯胺有缺损时,对该部位不起到保护作用;而当聚苯胺在环境pH值<7时,聚苯胺结构发生变化,形成聚苯胺盐(ES)形态,此时聚苯胺具有良好的导电性和电化学活性。这种形态的聚苯胺在金属的防护中不但具有机械隔离作用而且具有一定的催化钝化作用。当金属表面的聚苯胺有缺损时,它对该部位起一种催化钝化作用,使缺损聚苯胺涂层的金属裸露部分在酸性条件下,发生阳极氧化反应,快速恢复表面钝化层。
有人将聚苯胺/聚甲基丙烯酸甲酯的复合涂层材料用于低浓度氨气的探测,根据复合材料的不同电导率可探测氨气的极限浓度在(10~4000)×10-6范围内。而当氮气充入后,复合涂层的电导率和透光率可以迅速恢复到初始状态,从而实现循环使用。 聚苯胺具有储存电荷的能力高、对氧和水稳定性好、电化学性能良好、密度小和有可逆的氧化/还原特性等特点,在复合物电极中既可作为导电基质又可作为活性物质,已被用于高分子锂电池及太阳能电池等的电极材料。用聚苯胺做成的塑料电池不仅重量轻,且库伦效率超过95%,它的理论能量密度可达500W/kg以上,是铅酸电池(184Wh/kg)的数倍。高分子锂电池,即以PAn及PAn复合物作电极材料的锂离子电池,主要银源是利用PAn复合物在电极反应过程中掺杂/脱掺杂的可逆性来实现氧化还原反应,完成电池的充放电过程,该电池具有很高的能量密度,并突破了传统锂离子电池正极材料的选择面太小的难题。有人通过反胶束法制备了PAn/V2O5纳米纤维,并将其作为锂离子二次电池的阴极材料,对其电化学性能进行了研究。结果表明复合纳米纤维比V2O5纳米纤维具有更佳的循环性能,而用碳材料替代金属锂作为电池负极可取代金属锂在电极上的沉积和溶解反应,避免了在负极表面锂的枝晶化问题,保持了锂电池的高电压、高比能量等优点,还大大提高了电池的循环寿命和安全性能。
高分子太阳能电池的基本机理主要是基于半导体p-n结的光生伏打效应,即在光的照射下,半导体内部产生的电子-空穴对,在静电场的作用下发生分离产生电动势。高分子太阳能电池因为高分子半导体材料易于制备与纯化、容易加工、价格低廉,并可根据需要进行化学修饰、具有高的开路电压、能制作大面积柔性器件等优点。 吸波材料的吸波原理是吸收或衰减入射电磁波,并将电磁能转变成热能或其它形式的能量而耗散掉。聚苯胺是一类电损耗型吸波材料,其吸波性能与其介电常数、电导率等密切相关。其中PAn具有二电子共轭体系,其导电性可以在绝缘体、半导体和金属之间变化,且具有可分子设计和合成、结构多样化、密度小、吸收频带宽、电磁参数可调、易复合加工等特点,避免了磁性金属吸波材料抗老化、耐酸碱能力、频谱特性等性能差的缺点。但PAn链间刚性强,脆性大,将它复合后可加以改善,有人制备了DBSA掺杂PAn/MMTNCs,在2~18GHz范围内具有微波吸收性能,在13~14GHz范围内反射损耗小于-10dB,在13GHz处的最大反射损耗为-10.3dB。美国等已经将其用作远距离加热材料,用于航天飞机中的塑料焊接技术。还把聚苯胺复合制成具有光学透明性雷达吸波材料,喷涂在飞机座舱盖、精确制导武器的光学透明窗口上,以减弱目标的雷达回波。
但PAn很难同时满足阻抗匹配和强吸收的特点,而将PAn与具有磁损耗吸波性能的磁性粒子复合后却得以实现,比如当纳米NiFe2O4晶体加入到PAn和石蜡的混合体系时,PAn/NiFe2O4和石蜡的复相粉体混合体系在测试频率范围内同时具有一定的介电损耗和磁损耗,并且其混合体系的微波吸收性能高于单独加入PAn时的微波吸收性能。 PAn因具有良好的导电性能,可作为“分子导线”使电子在生物活性物质与电极间直接传递,显著提高生物传感器的响应特性,从而制成无介体的第三代生物传感器,而且通过在合成过程中掺杂不同的阴离子,可以用于检测不同的分析对象。有人通过滴涂法组装了具有选择性多巴胺生物传感器,该生物传感器在中性下可检测出浓度为维生素C浓度1/5000的多巴胺。
还有人把聚苯胺的变色特性用于C辐射的探测,并通过对接受不同剂量辐射的聚苯胺薄膜的紫外-可见吸收光谱测定,确定了辐射剂量与吸收光谱之间的函数关系。 用聚苯胺制备导电纤维,不仅导电性优良持久,而且通过改变掺杂酸的浓度,很容易调节纤维的电导率,这是其它纤维所不具备的优良性质。在普通纤维中混用极少量的导电纤维,就能赋予纤维制品充分的抗静电性能,而且抗静电性能不会受到环境湿度的影响。有人对纤维进行氧化掺杂,制得的导电纤维的比电阻为1.05×10-2Ωcm。
制备方法主要有熔体纺丝法和原位聚合法。熔体纺丝法主要是采用聚苯胺本体纺丝或将聚苯胺与基体聚合物混合纺丝,其优点是制得的导电聚苯胺纤维有较高的电导率,但聚苯胺在普通溶剂中溶解性很差,可供选择的溶剂极少,因此在实际生产中有很大的限制。
原位聚合法又称现场吸附聚合法,用该法制备聚苯胺导电纤维时,聚苯胺的合成反应是在纤维的表面进行。基本流程是将基质纤维浸渍于苯胺溶液中,然后将带有一定量苯胺单体的纤维放入氧化剂及掺杂酸的反应浴中使苯胺氧化聚合,生成的导电聚苯胺附着在纤维表面。工艺流程分别为:1)漂洗→烘干→表面预处理或不处理→苯胺单体浸泡→聚合吸附→清洗→烘干;2)漂洗→烘干→表面预处理或不处理→氧化剂溶液浸泡→聚合吸附→清洗→烘干。电学稳定性受环境温湿度的影响。一般来说,需在织物的表面涂一层保护膜。其电导率随时间的延长具有衰减性,并且聚苯胺沉积在织物上粗细分布不匀,引起织物电导率不匀。
该法的麻烦之处是必须保证纤维对导电聚苯胺的有效吸附,对于结构疏松或吸水性较好的纤维比较容易,而对于涤纶等结构紧密吸水性差的纤维就很棘手。研究表明,无机酸掺杂聚苯胺导电织物的效果优于大多数有机酸,聚苯胺复合导电涤纶织物的导电性能受洗涤液酸碱度的影响,其中碱性洗涤液使导电性能降低 2 个数量级,酸性洗涤液使导电性能下降 1 个数量级,而且聚苯胺在涤纶织物表面具有良好的附着性,且空气稳定性好,但是盐酸由于分子质量小易发生脱掺杂行为,空气稳定性较差;因此盐酸掺杂聚苯胺的脱掺杂行为是聚苯胺复合导电织物电导率随时间衰减的主要原因。
有意思的是,原位聚合法中有研究表明,不一定是强氧化剂的氧化效果好,因为当采用过硫酸铵等强氧化剂时,氧化非常迅速,低聚物来不及向纤维渗透就进一步聚合并从溶液中沉淀出来。而弱氧化剂有效地控制了苯胺氧化聚合速度,使低聚物有充分的时间向纤维表面及内部迁移。控制氧化速度是保证纤维对聚苯胺有效吸附的关键。同时氧化剂浓度过高也不利于提高纤维的导电性能。 PAn与磁性粒子复合,可实现电、磁性能的复合,又可通过调节各组元的组成和结构实现对复合材料电、磁性能的调节,还可弥补无机磁性材料成型加工困难的缺点,还可以作为定向集热治疗肿瘤的医用材料使用。
PAn具有活性中心,可作为化学修饰膜材料,用贵金属微粒,比如Pd,修饰PAn,可做催化剂使用。这种高催化活性可能来源于PAn与Pd微粒的协同效应。
由于掺杂离子在聚苯胺分子链之间往往形成柱状阵列,随着掺杂浓度的提高,后继嵌入的掺杂离子可能进入此前形成的阵列或形成新的阵列,并导致大分子链相互分离。因此聚苯胺在不同氧化态下体积有显著不同,对外加电压有体积响应,可以用于制造人工肌肉。

㈧ 环氧树脂怎么固化

问题一:环氧树脂的固化原理 环氧树脂硬化反应的原理,目前尚不完善,根据所用硬化剂的不同,一般认为它通过四种途径的反应而成为热固性产物。
(1)环氧基之间开环连接;
(2)环氧基与带有活性氢官能团的硬化剂反应而交联;
(3)环氧基与硬化剂中芳香的或脂肪的羟基的反应而交联;
(4)环氧基或羟基与硬化剂所带基团发生反应而交联。
不同种类的硬化剂,在硬化过程中其作用也不同。有的硬化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物。具有单反应基团的胺、醇、酚等,这种硬化剂,叫催化剂。多数硬化剂,在硬化过程中参与大分子之间的反应,构成硬化树脂的一部分,如含多反应基团的多元胺、多元醇、多元酸酐等化合物。
1、胺类硬化剂
胺类硬化剂―般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且硬化剂本身的毒性较大,易升华。胺类硬化剂包括;脂肪族胺类、芳香族胺类和胺的衍生物等。胺本身可以看作是氮的烷基取代物,氨分子(NH3)中三个氢可逐步地被烷基取代,生成三种不同的胺。即:伯胺(RNH2)、仲胺(R2NH))和叔胺(R3N)。
由于胺的种类不同,其硬化作用也不同:
(1)伯胺和仲胺的作用
含有活泼氢原子的伯胺及仲胺与环氧树脂中的环氧基作用。使环氧基开环生成羟基,生成的羟基再与环氧基起醚化反应,最后生成网状或体型聚合物。
(2)叔胺的作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂的环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新的环氧基环,继续反应下去,最后生成网状或体型结构的大分子。
2、酸酐类硬化剂
酸酐是由羧酸(分子结构中含有羧基―COOH)与脱水剂一起加热时,两个羧基除去一个水分子而生成的化合物。
酸酐类硬化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂的性能(如力学强度、耐磨性、耐热性及电性能等)均较好。但由于硬化后含有酯键,容易受碱的侵蚀并且有吸水性,另外除少数在室温下是液体外。绝大多数是易升华的固体,而且一般要加热固化。
酸酐和环氧树脂的硬化机理,至今尚未完全阐明,比较公认的说法如下:
酸酐先与环氧树脂中的羟基起反应而生成单酯,第二步由单酯中的羟基和环氧树脂的环氧基起开环反应而生成双酯,第三步再由其中的差悔羟基对环氧基起开环作用,生成醚基,所以可得到既含醚差庆腔键,又含有酯基的不溶不熔的体型结构。
除了上述反应之外,第一步生成的单酸中的羧基也可能与环氧树脂分子上的羟基起酯化反应,生成双酯。但这不是主要的反应。
3、树脂类硬化剂
含有硬化基团的一NH一,一CH2OH,一SH,一COOH,一OH等的线型合成树脂低聚物,也可作为环氧树脂的硬化剂。如低分子聚酰胺.酚醛树脂,苯胺甲醛树脂,三聚氰胺甲醛树脂,糠醛树脂,硫树脂,聚酯等。它们分别能对环氧树虚衫脂硬化物的耐热性,耐化学性,抗冲击性,介电性,耐水性起到改善作用。常用的是低分子聚酰胺和酚醛树脂。
(1)低分子聚酰胺不同于尼龙型的聚酰胺。它是亚油酸二聚体或是桐油酸二聚体与脂肪族多元胺,如乙二胺、二乙烯三胺反应生成的一种琥珀色粘稠状树脂。由于原材料的性质,反应组分的配比和反应条件不同,低分子聚酰胺的性质差别很大。它们的分子量在500~9000之间,有熔点很高,胺值很低的固态树脂,亥有胺值为300的液态树脂。其中胺值是低分子聚酰胺活性的描述,胺值高的活性大......>>

问题二:环氧树脂为什么不固化?怎么急救? 1601环氧树脂是一种无定形黏稠液体,加热呈塑性,没有明显的熔点,受热变软,逐渐熔化而发黏,不溶于水,本身不会硬化,因此它几乎没有单独的使用价值,只有和固化剂反应生成三维网状结构的不溶不熔聚合物才有应用价值。当加入一定量固化剂后,就逐渐固化,形成性能各异的化学物质,因此,必须加入固化剂,组成配方树脂,并且在一定条件下进行固化反应,生成立体网状结构的产物,才会显现出各种优良的性能,成为具有真正使用价值的环氧材料。工程中常用胺类固化剂:乙二胺、二乙烯多胺、多乙烯多胺等。
环氧固化剂650
一、性能:
本品为环氧树脂的优良固化剂和坛韧剂。它毒性低,挥发性小,和环氧树脂配用比例宽,操作简便,可常温固化,粘接力强,韧性好,明显地优越于一般的单体胺类固化剂。
二、 用途:
本品与环氧树脂配合,广泛地应用于粘接各种金属和非金属材料(如钢铁、铝材、陶瓷、玻璃、塑料等),配制环氧聚酰胺防腐涂料,糊制玻璃钢,浇铸电器,密封电子元件等)
三、使用方法:
本品用量为环氧树脂重量的40%-100%,均有良好的固化效果,将聚酰胺树脂与环氧树脂混合均匀即可使用,根据不同用途的要求,可在混合树脂中添加适量的填充剂(如瓷粉、铁粉、铝粉等)、颜料和稀释剂(如醇类、酮类、芳烃类等)。浇铸时可用硅油、凡士林、石蜡等作脱模剂。用于粘接材料时,常温固化三至五天可达最佳性能,升温固化则可缩短固化时间。
你厂补池用的1601树脂和650固化剂原则上应该会固化,不固化可能是
1:天气温度过低,温度低固化速度要成倍加长,一般指的常温都是20度左右.
2:水分或湿度过高,池中水分过重(醋池未干燥,水分会存在在水泥池内部,会严重降低固化速度.其次天气湿度过大,也会引入水分对固化不利.
3:稀释剂乙醇选择不当,乙醇是一种和水任意比稀释的溶剂,乙醇做稀释剂(无水乙醇吸水)会造成整个体系不干燥.
4:固化剂加入量和固化速度有一曲线关系,但50%不固化,你可以考虑多加少许.
我的建议
整个体系必须干燥,否则永远不会有好的效果,加热烘干是最有效的办法,如果能够办到就要从着方面下手,650加入的量不是不固化的绝对因素,其次稀释剂考虑改芳烃溶剂(苯,甲苯),芳烃是不容水的,如果很多条件不允许,又想不浪费前面的原料,你只能小试一下其他固化剂,固化剂的种类你上中国树脂网的club.resin/showbbs_p1_61_937_1看下,也许对你有帮助.希望你能解决好问题.

问题三:环氧树脂固化问题,懂的人来。 环氧和固化剂的用量是有比例的,这个量可以在一定范围内调整,但不能过大,调整过大了会带来问题。如果固化剂过多,环氧树脂固化后会发脆,如果试样体积大,甚至会固化后直接开裂。如果固化剂过少,固化会不完全,有可能出现你说的不干的情况。
其实你的问题,只要减少催化剂的量就可以了。不要改变固化剂的量。催化剂少了,反应速度就慢了。
根据你的描述,没有判定你的用量是否正确。根据我的一般经验,催化剂用量是很少的。

问题四:环氧树脂怎样干的快 1,提高温度,理论上温度每升高10℃,固化速度快1倍。
2,提高促进剂用量,促进剂越多,固化越快。
3,改变促进剂类型,使用活性更高的促进剂。不过活性更高,通常潜伏性就差,如果是单组份的产品,要找一个平衡,双组份的不用考虑这点。
4,固化剂加量,但改变固化剂量就会改变固化物结构,进而改变漆膜或者涂层或者制品的性能,此法要慎重。
5,改变固化剂类型,使用更高活性的固化剂,此法风险如上3,4条,有风险,需谨慎,要提前试验。
6,树脂中加入高活性成分,比如用邻甲酚醛型环氧替换双酚A型环氧,但风险如上3,4.
7,使用高固分环氧或者粉末环氧,减少溶剂挥发时间。

问题五:如何去除固化的环氧树脂 10分 我弄得也是环氧树脂,你若是在不会,买本孙曼灵- 环氧树脂应用原理与技术[M]. 机械工业出版社,里面对工艺及不同固化剂配比介绍了。
你就没说你用的什么固化剂,另外建议增加固化时间,否则换固化剂,稀释剂也可以换下
对于气泡,是环氧树脂中没有解决的问题,你可以试加消泡剂,另外抽真空是目前取气泡最好的方法。还有,气泡出不来,是由于粘度太大,你可以加稀释剂,另外在浇铸前把模具预热下再浇铸,这样效果能好点。
你体系的黏度太大,可以加稀释剂,气泡不可能完全消除,只能减少。
你的环氧树脂固化不完全,可以加促进剂(一般为叔胺类),另外你里面加填料没?若有,进行下表面改性试下。
求采纳为满意回答。

问题六:环氧树脂与胺如何固化 首先你要说出作什么之用,环氧树脂与胺的固化方式应该几种方式。我想应该有人知道…。

问题七:固化的环氧树脂如何软化 环氧树脂是热固性树脂,完全固化后不溶不熔,

问题八:如何将环氧树脂固化成型脱模 如何将环氧树脂固化成型脱模
树脂从模具流出,是因为模具合模面不平整所致,需要重新打磨合模表面,做到严丝合缝,或者四周加密封圈。
浇注前,需要在模具表面涂脱模剂,试试浚通达脱模剂,效果不错。

问题九:环氧树脂固化有哪些常见的固化体系 最常用的的环氧树脂是双酚A型环氧树脂,最常用的是E44/E51两种牌号。另外环氧树脂有双酚A型环氧树脂、双酚F型环氧树脂、双酚S型环氧树脂、双酚H型环氧树脂、酚醛环氧树脂、多官能缩水甘油醚环氧树脂、多官能缩水甘油胺环氧树脂、卤化环氧树脂等等。
常用的固化剂也有很多种:脂肪胺/改性脂肪胺固化剂,脂环胺/改性脂环胺固化剂,低分子聚酰胺固化剂、芳香胺/改性芳香胺固化剂,酚醛胺固化剂,酸酐类固化剂,咪唑类固化剂,硫醇类固化剂等等。

问题十:环氧树脂的固化原理 环氧树脂硬化反应的原理,目前尚不完善,根据所用硬化剂的不同,一般认为它通过四种途径的反应而成为热固性产物。
(1)环氧基之间开环连接;
(2)环氧基与带有活性氢官能团的硬化剂反应而交联;
(3)环氧基与硬化剂中芳香的或脂肪的羟基的反应而交联;
(4)环氧基或羟基与硬化剂所带基团发生反应而交联。
不同种类的硬化剂,在硬化过程中其作用也不同。有的硬化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物。具有单反应基团的胺、醇、酚等,这种硬化剂,叫催化剂。多数硬化剂,在硬化过程中参与大分子之间的反应,构成硬化树脂的一部分,如含多反应基团的多元胺、多元醇、多元酸酐等化合物。
1、胺类硬化剂
胺类硬化剂―般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且硬化剂本身的毒性较大,易升华。胺类硬化剂包括;脂肪族胺类、芳香族胺类和胺的衍生物等。胺本身可以看作是氮的烷基取代物,氨分子(NH3)中三个氢可逐步地被烷基取代,生成三种不同的胺。即:伯胺(RNH2)、仲胺(R2NH))和叔胺(R3N)。
由于胺的种类不同,其硬化作用也不同:
(1)伯胺和仲胺的作用
含有活泼氢原子的伯胺及仲胺与环氧树脂中的环氧基作用。使环氧基开环生成羟基,生成的羟基再与环氧基起醚化反应,最后生成网状或体型聚合物。
(2)叔胺的作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂的环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新的环氧基环,继续反应下去,最后生成网状或体型结构的大分子。
2、酸酐类硬化剂
酸酐是由羧酸(分子结构中含有羧基―COOH)与脱水剂一起加热时,两个羧基除去一个水分子而生成的化合物。
酸酐类硬化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂的性能(如力学强度、耐磨性、耐热性及电性能等)均较好。但由于硬化后含有酯键,容易受碱的侵蚀并且有吸水性,另外除少数在室温下是液体外。绝大多数是易升华的固体,而且一般要加热固化。
酸酐和环氧树脂的硬化机理,至今尚未完全阐明,比较公认的说法如下:
酸酐先与环氧树脂中的羟基起反应而生成单酯,第二步由单酯中的羟基和环氧树脂的环氧基起开环反应而生成双酯,第三步再由其中的羟基对环氧基起开环作用,生成醚基,所以可得到既含醚键,又含有酯基的不溶不熔的体型结构。
除了上述反应之外,第一步生成的单酸中的羧基也可能与环氧树脂分子上的羟基起酯化反应,生成双酯。但这不是主要的反应。
3、树脂类硬化剂
含有硬化基团的一NH一,一CH2OH,一SH,一COOH,一OH等的线型合成树脂低聚物,也可作为环氧树脂的硬化剂。如低分子聚酰胺.酚醛树脂,苯胺甲醛树脂,三聚氰胺甲醛树脂,糠醛树脂,硫树脂,聚酯等。它们分别能对环氧树脂硬化物的耐热性,耐化学性,抗冲击性,介电性,耐水性起到改善作用。常用的是低分子聚酰胺和酚醛树脂。
(1)低分子聚酰胺不同于尼龙型的聚酰胺。它是亚油酸二聚体或是桐油酸二聚体与脂肪族多元胺,如乙二胺、二乙烯三胺反应生成的一种琥珀色粘稠状树脂。由于原材料的性质,反应组分的配比和反应条件不同,低分子聚酰胺的性质差别很大。它们的分子量在500~9000之间,有熔点很高,胺值很低的固态树脂,亥有胺值为300的液态树脂。其中胺值是低分子聚酰胺活性的描述,胺值高的活性大......>>

㈨ 聚苯胺的性质

聚苯胺(Polyaniline)一种重要的导电聚合物。
聚苯胺的主链上含有交替的苯环和氮原子,是一种特殊的导电聚合物。可溶于N-甲基吡咯烷酮中。
聚苯胺随氧化程度的不同呈现出不同的颜色。完全还原的聚苯胺(Leucoemeraldine碱)不导电,为白色,主链中个重复单元间不共轭;经氧化掺杂,得到Emeraldine碱,蓝色,不导电;再经酸掺杂,得到Emeraldine盐,绿色,导电;如果Emeraldine碱完全氧化,则得到Pernigraniline碱,不能导电。
聚苯胺具有优良的环境稳定性。可用于制备传感器、电池、电容器等。
聚苯胺由苯胺单体在酸性水溶液中中经化学氧化或电化学氧化得到,常用的氧化剂为过硫酸铵(APS)。中性条件下聚合的聚苯胺常常含有枝化结构。
聚苯胺是一种具有金属光泽的粉末,因分子内具有大的线型共轭 π电子体系,其自由电子可随意迁移和传递,而成为最具代表性的有机半导体材料。与其他导电聚合物相比,聚苯胺具有结构多样化、耐氧化和耐热性好等特点,同时还具有特殊的掺杂机制。聚苯胺及其衍生物不仅可通过质子酸的掺杂获得良好的导电性,而且可通过加入氧化剂或还原剂来使其骨架中的电子迁移发生改变,即“氧化还原掺杂”。掺杂后,聚苯胺及其衍生物的导电率可提高10个数量级以上,并可改善其在溶剂中的溶解性和加工性能。
自从科学家首次发现用AsF5或I2对聚乙炔进行P型掺杂可获得极高导电率的材料以来,导电高分子已在近年来逐渐发展成一门新型的多学科交叉的研究领域。而经过10多年的研究和试验,聚苯胺树脂的可溶性和加工性方面的研究也已取得了一定的突知哗破。目前,解决导电聚苯胺树脂可溶性主要采取的方法有:功能质子酸掺杂、结构修饰、制备可溶性复合物、制备胶体颗料等。以上方法在不谨昌同程度上均可提高聚苯胺在有机溶剂中的溶解度,并进一步提高其成型加工能力。但是大多数有机溶剂都会造成不同程度的环境污染,如果能用水来代替,制成水溶性聚苯胺复合物,不仅有利于环保,也会带来更大的经济效益。因此,近年来水溶性导电聚苯胺已成为人们研究的热点。另外,制备聚苯胺复合物是改善聚苯胺加工性能的主要方法,目前主要采用电化学法和化学氧化法两种工艺。UNIAX公司通过溶液共混的方法制备了一种性能优异的透明导电涂层,透光率达80%,而表面电阻仅为 192Ω,可作为导电玻璃使用。聚苯胺还可以同PET、PVC、PS、PVA、 PA和PMMA等聚合物制成复合膜。如采用原位复合的方法可使PANI在很低的含量下就可具有较高的导电率,这是制备导电聚合物复合材料的一种很有发展前景的方法。

电磁波屏蔽一般是指电磁波的能量被物体表面吸收或反射后而使其传导受阻,电磁波能量衰减程度越大,其屏蔽效果就越好。研究聚苯胺的电磁屏蔽及吸收性能,其导电与介电特性是两个必不可少的参数。随着聚苯胺加工问题的解决,近来以聚苯胺为基础的各种搭晌行抗静电和电磁屏蔽材料相继问世。如美国UNIAX公司利用有机磺酸掺杂的聚苯胺和商用高聚物进行共混,可制备各种颜色的抗静电地板。另外,研究人员还制备了一种透明的聚苯胺基可热固化的涂料。该涂料与聚合物基体具有良好的粘接性能,它不但耐化学腐蚀,而且耐磨损。另外,科学家最近经反复试验制成了一种水溶性聚苯胺水乳液,它可用作防腐和防静电涂料。美国已将导电聚苯胺用于火箭发射平台的防腐蚀涂层,效果很好。日本还制造了一种透明的PANI防静电涂层,并用于 4MB的软盘上,效果非常好。目前美、日、德聚苯胺电磁屏蔽材料的研究均获得了突破性的进展。

本征导电聚合物(ICPS)是一类新型的微波吸收材料,而高导电及高介电常数的聚苯胺在微波频段能有效地吸收电磁辐射。科学家们经反复试验后得出结论,当掺杂态的聚苯胺处于无定形态时,其吸收比率最大。利用聚苯胺吸收微波这一特性,目前国外已将它用作军事上的伪装隐身,法国正在研制一种隐形潜艇,美国则将其用作远距离加热材料,用于航天飞机中的塑料焊接技术。

随着信息技术的蓬勃发展以及计算机、无线通讯技术的广泛使用,各种频率的电磁波对交通、航空航天、军事等领域的工作产生了不同程度的干扰。为此,一些发达国家和组织相继制定了排除电磁波干扰的国际标准和法规。以聚苯胺为首的包括聚吡咯、聚噻吩等本征导电聚合物在排除电磁波干扰中,发挥了巨大作用。与复合型导电聚合物不同,本征导电聚合物具有相对较高的电导率和介电系数,易于通过化学加工来控制或消除电磁波干扰。而与金属相比,这类材料质轻、有韧性、不易被腐蚀,从而越来越受到人们的青睐。

另外,随着全球经济的迅速发展,环境问题特别是大气污染日益加剧,大气中的各种有害气体不断增多,各国科学工作者已开发出一些相应的气敏材料来检测这些有害气体。聚苯胺薄膜就是利用它能和某些气体发生氧化还原作用,引起掺杂度的改变,进而导致电导率发生明显的变化。利用这一特性,人们可以及时地检测空气中氮氧化物的含量。与NOx不同,H2S是具有还原性的气体。它能使聚苯胺化学传感器的电导率下降。 一般来自工厂的含有SO2的废气对生物和人类的生存环境均有极大的危害,所以如何及时地检测和控制SO2的排放量对控制环境污染至关重要。实验表明,采用旋转和蒸发法制备的聚苯胺薄膜与SO2作用以后,其电导率明显增加,而且完全可逆,其检测极限可达到2ppm。而新制备的聚苯胺蒸发膜灵敏度更高,它甚至可以检测到0.5ppm的SO2含量。另外,在常温下聚苯胺对NH3也有很高的灵敏度,所以也可以用它来检测空气中NH3的浓度含量。关于聚苯胺树脂用于生物传感器近年来中外也有不少研究。自从酶固定的第一篇报告问世以来,人们已经研究了各种固定酶的方法,但到目前为止,无论是酶固定的稳定性、重现性还是固定方法本身均存在一定的问题。鉴于 PANI导电高聚物具有的电化学活性,在氧化还原过程中,阴离子能掺杂进去,为酶的固定提供了新的途径。

为了能制备一种更高电导率的聚苯胺高聚物,今后应加强分子设计和物理改性,研制出一种具有高电导率、介电常数和介电损耗的聚苯胺,以进一步提高聚苯胺树脂的屏蔽和吸收电磁波的性能;要通过各种仪器比和X射线衍射仪、红外光谱仪和扫描电镜等研究其结构与性能的关系。可以相信,通过科学工作者的不断努力和深入研究,今后一种性能更好的聚苯胺及其衍生物的导电聚合物将展现在世人面前,为清除空间电子雾,排除电磁波的干扰,为人类作出更大的贡献。

阅读全文

与聚苯胺固化环氧树脂相关的资料

热点内容
超滤膜净水器需要清洗一次 浏览:750
汽油滤芯螺丝滑丝了怎么办 浏览:274
临湘污水处理哪里有卖的 浏览:970
wl型立式污水泵多少钱一台 浏览:537
马铃薯淀粉废水厂处理工艺 浏览:861
雨污水井材质型号怎么看 浏览:617
鱼缸三层过滤都放什么材料 浏览:819
污水处理膜片什么材质 浏览:950
高脂性废水 浏览:578
码头生活污水处理 浏览:401
铺设污水管道一米约多少钱 浏览:799
洗浴废水污染物浓度 浏览:270
浆液泡放到蒸馏水中会破裂吗 浏览:44
中广核电子束辐照处理污水 浏览:121
空气净化器初效滤网怎么装 浏览:729
爱惠浦净水器超滤 浏览:644
新冠肺炎医疗废水处理方法 浏览:422
迈腾滤芯多少公里换 浏览:71
ebgp用环回口建邻居的意义 浏览:163
污水处理排口在线检测设备多少钱 浏览:452