『壹』 树脂基复合材料的组成和作用
1.单树脂类树脂中一般不含或很少含挥发油、树胶及游离芳香酸。通常又可以分为:
(1)酸树脂主成分为树脂酸,如松香。
(2)酯树脂主成分为树脂酯,如枫香脂、血竭等。
(3)混合树脂无明显的主成分,如洋乳香等。
2.胶树脂类主成分为树脂和树胶,如藤黄。
3.油胶树脂类主成分为树脂、挥发油和树胶,如乳香、没药、阿魏等。
4.油树脂类主成分为树脂与挥发油,如松油脂、加拿大油树脂等。
5.香树脂类主成分为树脂、游离芳香酸(香脂酸)、挥发油,如苏合香、安息香等。
『贰』 环氧树脂胶粘剂合成工艺及添加剂
随着科学技术的发展,高新技术产品的需求增大,环氧胶黏剂品种不断推陈出新,性能日益攀高。研发高强度、高韧性、高耐热高耐久、多功能、阻燃型、环保无毒的改性环氧胶黏剂将是今后的重点发展方向。
环氧树脂胶黏剂是由环氧树脂、固化剂、促进剂、改性剂等组成的液态或固态胶黏剂。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于环氧树脂含有多种极性基团和活性很大的环氧基,因而与金属、玻璃、水泥、木材、塑料等多种极性材料具有很强的黏结力,同时环氧固化物的内聚强度也很大,所以黏结强度很高。
分类及用途环氧胶黏剂的品种繁多,目前还没有统一标准的分类方法,行业类有L2T几种分类方法:(1)组分与形态分类;(2)包装形态分类;(3)固化方式与条件;(4)黏接强
生产原理及工艺流程:
当环氧树脂胶黏剂的配方确定后,便可配制不同的产品,既可配成双组分的,也可配成单组分的。所谓双组分环氧树脂胶黏剂就是环氧树脂和改性剂等作为一种组分,而固化剂和促进剂作为另一组分,两组分分别包装储存,使用时再按一定的比例混合。
双组分环氧树脂胶黏剂的生产工艺:原料及器具准备一按配方准确称量一混合搅拌均匀一检查与检验一包装
常用的环氧树脂一般黏度较大,在室温低于15°C时很黏稠,不便取出或与其他组分混合。可以用加热的方法来降低黏度,增加流动性,但加热温度不宜超过60°C。对于固体环氧树脂,可以加热熔化,或以溶剂溶解,或是研细过筛之后,再与其他组分混合对于填料,应在加入前于110°C-150°C烘干,以除去水分和所吸附的气体。有的填料须在600°C -900°C高温下进行活化。填料的干燥最好是现用现烘,也可预先干燥之后,放入密闭的容器内储存,但放置时间也不宜太久。
对于固体固化剂,最好将其变成液体,方法是加热熔化或以溶剂溶解,也可制成过冷液体,如间苯二胺。若是以固态形式加入环氧树脂内,需研细过筛(一般为200月以上) ,以使分散均匀。
配制环氧胶的反应釜或搅拌器可以是金属或搪瓷的,为减少环氧树脂与器壁的黏附,应镀铬抛光或涂以硅树脂漆。配胶用的容器、搅拌器或其他辅助工具,都要求洁净干燥无油污或脏物。取用甲、乙两组分的工具不可混用,否则会造成局部混合固化,影响胶黏剂的质量。将甲、乙两组分混合均匀后进行分别包装,包装要求方便、耐用,可采用牙膏管状、注射器状、塑料桶(盒)、金属桶(盒)等形式包装。包装要密封性好,取用方便。
环氧树脂胶粘剂中通常需要加入的添加剂有稀释剂、增韧剂、填料及偶联剂等。它们的主要作用是进一步地提高环氧树脂胶粘剂的各种性能,使其能够得到更加广泛的应用。
稀释剂
稀释剂的主要作用是降低环氧树脂胶粘剂体系的粘度,改善工艺性能。但稀释剂的加入对环氧树脂固化物的热变形温度(HDT)、机械性能等有很明显的影响。稀释剂又分为活性稀释剂和非活性稀释剂。
非活性稀释剂
在此物理混入过程中,不能参与固化反应,仅起到稀释粘度作用,其用量约为组份总含量的5~20%为宜。非活性稀释剂大部分是高沸点溶剂如邻苯二甲酸二丁酯、邻苯二甲酸二辛酯等。
活性稀释剂
主要是含有环氧基团的低分子环氧化合物,能与环氧树脂固化反应,它的加入对固化物性能的影响不大,可分为单环氧基和双环氧基活性稀释剂。
增韧剂
环氧树脂未经改性的固化物延伸率低、韧性差、脆性大。当承受到内应力或外应力时,迅速形成缺陷区并扩展成裂缝,导致固化物的开裂。改性环氧树脂固化物具有较大韧性和抗冲击性。增韧剂也可分为活性和非活性两种。
非活性增韧剂
不含有活性基团,仅与环氧树脂混溶而不发生化学反应。其大多为粘度小的液体,具有稀释作用,有利于胶液对胶接表面的扩散、吸附和浸润,并能增加流动性,使固化物柔性好。(需要注意的是:必须控制其用量,否则固化后将从胶层内溢出)。用量为树脂量的5~20%。
活性增韧剂
含有活性基团,能参加环氧树脂的固化反应也能与环氧树脂混溶,起到增韧作用。常用的增韧剂有液体聚硫橡胶、液体丁腈橡胶(液体端羧基丁腈橡胶)、液体端羧(羟)基聚丁二烯橡胶、聚乙烯醇缩醛、聚氨酯、尼龙、低分子聚酰胺和聚醚树脂等。
填料
填料的主要作用是降低胶层的收缩率,提高胶接的抗剪强度。其主要作用是:
|、填料使胶液增稠或使粘度增大。
2、填料降低收缩应力和热应力。
填料能够影响胶层的物化性能。例如:羧基铁粉添加到环氧树脂中能改进导磁性能。另外填料的加入会降低环氧胶的剥离强度,因此一般的结构胶除加入具有触变性的2#二氧化硅外,不再加填料。
偶联剂
偶联剂主要是改善胶接头的强度和耐湿热老化性能,用量约为1~5%,大多为有机硅偶联剂,在环氧胶配方中常用的是KH-550和KH-560。
硅烷偶联剂分子含有一部份基团(X )与无机物表面较好地亲和;另一部份基团(R)能与有机树脂结合,可用于处理织物,作涂层或被粘物表面处理剂,有效地提高胶接强度。
生产应用现状:
环氧胶黏剂具有粘接强度高收缩率小、毒性小、电性能优良、耐腐蚀性好、机械性好、施工工艺简便、使用性较强的优点,因而广泛应用于机械工业、铁路机车及车辆、建筑工业、宇航和飞机制造业电子工业、船舰工业、石油和化工方面各大领域中。
『叁』 聚酯丝网如何上胶粘接复合
材料
1.用甲醛胶桶,或者用环氧树脂胶和聚氨酯胶混合物混合,将胶液涂布在聚酯丝网上,让它充分润湿;
2.将聚酯丝网和复合材料紧密粘合在一起,使两个材料的接触面尽可能的平面,然后用扁平的物体压实;
3.将压实后的复合材料放入温控烘箱中,调节温度在140℃左右,行歼烘烤一到两小时;
4.取出复合材料,放入冷却箱冷却至室温;
5.检查复档毁冲合材料余念的粘接强度,确保复合材料可以使用。
『肆』 环氧树脂胶使用方法以及注意事项介绍
环氧树脂胶是一种粘胶剂,它能够很快的实现固化,一般有三种颜色,白色、黑色、灰色,它的主要原料是环氧树脂,当然,在使用环氧树脂胶的时候,还必须要有固化的过程,所以必须要用到固化剂。这种类型的粘接剂固化的速度非常快,粘结的效果也很好、并且粘结之后能够有很好的防水效果,还能够在高温的环境下使用,如果放在180到200度的高温下的话,至少可以放置20分钟,所以它的性能还是比较好的。下面就来介绍环氧树脂胶使用方法的有关内容。
环氧树脂胶的注意事项
使用环氧树脂胶的时候需要首先了解一下它的使用说明,第一个方面就是它的基本特性胶水是分两组的,所以在使用的时候需要混合使用,这样的话,比较大的空隙也可以被填充起来。第二个就是它的操作环境,一般情况下,在平常的室内温度中,胶水就会固化。在进行两种胶水的混合操作时,可以直接用手混合,也可以使用一些专业的设备,如胶枪等。
使用时还需要注意周围环境的温度,零下50摄氏度到150摄氏度之间为最佳。环氧树脂胶可以使用在一般的正常环境中,它可以防水,还可以防一些侵蚀性较强的物质,如强酸、强碱等。在保存环氧树脂胶的时候,还有一些必要的注意事项,它不能接受阳光的直射,所以阴凉处是保存的最佳环境,一般这种胶水的保存时间也是有一定的期限的,超过12个月之后就不能使用了。
使用环氧树脂胶的时候,比较遵循一定的步骤,而且其中还会有一些注意事项,这都是我们必须要了解的。在使用的时候,首先要做的就是把要粘结的物体表面清理干净,初步擦拭之后,再使用一些清洁剂进行第二遍的擦拭,以达到充分清洁的目的。
然后把胶水的打开,把a、b两种胶水以2:1的比例混合,胶水固化很快,所以一定要在胶水可以粘结的时候及时使用,完成粘结的24小时之后,就可以达到粘结的最好效果。涂好胶水之后,需要有一个固化的过程,如果是常温环境的话,固化2到6个小时就可以了,如果温度可以达到40到50度的话,固化的时间达到1到3个小时就可以了,完成粘结后的第十天,粘结的效果可以达到最好。
环氧树脂胶使用方法:
1、多元酸改性环氧丙烯酸酯分别取1份A剂和1份B剂混合并搅拌均匀。
2、将剂混合后的胶水涂布在粘接面上。
3、涂过胶的粘接物品要在至少40分钟内禁止移位或者挪动,双酚A环氧树脂否则会严重影响粘接效果。
4、脂肪族聚氨酯丙烯酸酯涂过胶的粘接物品要在至少20分钟后才能正常使用,聚酯丙烯酸酯否则其固化效果和粘接寿命会受到影响。
对环氧树脂胶黏剂的分类在行业中还有以下几种分法:
1、按其主要组成,分为纯环氧树脂胶黏剂和改型环氧树脂胶黏剂;
2、按其专业用途,分为机械用环氧树脂胶黏剂、建筑用环氧树脂胶黏剂、电子眼环氧树脂胶黏剂、修补用环氧树脂胶黏剂以及交通用胶、船舶用胶等;
3、按其施工条件,分为常温固化型胶、低温固化型胶和其他固化型胶;
4、按其包装形态,可分为单组分型胶、双组分胶和多组分型胶等;
还有其他的分法,如无溶剂型胶、有溶剂型胶及水基型胶等。但以组分分类应用较多。
环氧树脂胶的特性
1.基本特性:双组份胶水,需AB混合使用,通用性强,可填充较大的空隙
2.操作环境:室温固化,室内、室外均可,可手工混胶也可使用AB胶专用设备(如AB胶枪
3.适用温度一般都在-50至+150度
4.适用于一般环境,防水、耐油,耐强酸强碱
5.放置于避免阳光直接照射的阴凉地方,保质期限12个月
以上就是有关环氧树脂胶使用方法的相关内容,希望能对大家有所帮助!
『伍』 树脂基复合材料知识
纤维增强树脂基复合材料常用的树脂为环氧树脂和不饱和聚酯树脂。目前常用的有:热固性树脂、热塑性树脂,以及各种各样改性或共混基体。热塑性树脂可以溶解在溶剂中,也可以在加热时软化和熔融变成粘性液体,冷却后又变硬。热固性树脂只能一次加热和成型,在加工过程中发生固化,形成不熔和不溶解的网状交联型高分子化合物,因此不能再生。复合材料的树脂基体,以热固性树脂为主。早在40年代,在战斗机、轰炸机上就开始采用玻璃纤维增强塑料作雷达罩。60年代美国在F—4、F—111等军用飞机上采用了硼纤维增强环氧树脂作方向舵、水平安定面、机翼后缘、舵门等。在导弹制造方面,50年代后期美国中程潜地导弹“北极星A—2”第二级固体火箭发动机壳体上就采用了玻璃纤维增强环氧树脂的缠绕制件,较钢质壳体轻27%;后来采用高性能的玻璃纤维代替普通玻璃纤维造“北极星A—3”,使壳体重量较钢制壳体轻50%,从而使“北极星A—3”导弹的射程由2700千米增加到4500千米。70年代后采用芳香聚酰胺纤维代替玻璃纤维增强环氧树脂,强度又大幅度提高,而重量减轻。碳纤维增强环氧树脂复合材料在飞机、导弹、卫星等结构上得到越来越广泛的应用。
在化学工业上的应用
编辑
环氧乙烯基酯树脂在氯碱工业中,有着良好的应用。
氯碱工业是玻璃钢作耐腐材料最早应用领域之一,目玻璃钢已成为氯碱工业的主要材料。玻璃钢已用于各种管道系统、气体鼓风机、热交换器外壳、盐水箱以至于泵、池、地坪、墙板、格栅、把手、栏杆等建筑结构上。同时,玻璃钢也开始进入化工行业的各个领域。在造纸工业中的应用也在发展,造纸工业以木材为原料,造纸过程中需要酸、盐、漂白剂等,对金属有极强的腐蚀作用,唯有玻璃钢材料能抵抗这类恶劣环境,玻璃钢材料已、在一些国家的纸浆生产中显现其优异的耐蚀性。
在金属表面处理工业中的应用,则成为环氧乙烯基酯树脂重要应用,金属表面处理厂所使用的酸,大多为盐酸、基本上用玻璃钢是没有问题的。环氧树脂作为纤维增强复合材料进入化工防腐领域,是以环氧乙烯基酯树脂形态出现的。它是双酚A环氧树脂与甲基丙烯酸通过开环加成化学反应而制成,每吨需用环氧树脂比例达50%,这类树脂既保留了环氧树脂基本性能,又有不饱和聚酯树脂良好的工艺性能,所以大量运用在化工防腐领域。
其在化工领域的防腐主要包括:化工管道、贮罐内衬层;电解槽;地坪;电除雾器及废气脱硫装置;海上平台井架;防腐模塑格栅;阀门、三通连接件等。为了提高环氧乙烯基酯树脂优越的耐热性、防腐蚀性和结构强度,树脂还不断进行改性,如酚醛、溴化、增韧等环氧乙烯基酯树脂等品种,大量运用于大直径风叶、磁悬浮轨道增强网、赛车头盔、光缆纤维牵引杆等。
树脂基复合材料作为一种复合材料,是由两个或两个以上的独立物理相,包含基体材料(树脂)和增强材料所组成的一种固体产物。树脂基复合材料具有如下的特点:
(1)各向异性(短切纤维复合材料等显各向同性);
(2)不均质(或结构组织质地的不连续性);
(3)呈粘弹性行为;
(4)纤维(或树脂)体积含量不同,材料的物理性能差异;
(5)影响质量因素多,材料性能多呈分散性。
树脂基复合材料的整体性能并不是其组分材料性能的简单叠加或者平均,这其中涉及到一个复合效应问题。复合效应实质上是原相材料及其所形成的界面相互作用、相互依存、相互补充的结果。它表现为树脂基复合材料的性能在其组分材料基础上的线性和非线性的综合。复合效应有正有负,性能的提高总是人们所期望的,但有进材料在复合之后某些方面的性能出现抵消甚至降低的现象是不可避免的。
复合效应的表现形式多样,大致上可分为两种类型:混合效应和协同效应。
混合效应也称作平均效应,是组分材料性能取长补短共同作用的结果,它是组分材料性能比较稳定的总体反映,对局部的扰动反应并敏感。协同效应与混合效应相比,则是普遍存在的且形式多样,反映的是组分材料的各种原位特性。所谓原位特性意味着各相组分材料在复合材料中表现出来的性能并不只是其单独存在时的性能,单独存在时的性能不能表征其复合后材料的性能。
树脂基复合材料的力学性能
力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。
1、树脂基复合材料的刚度
树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。
由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。
对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。
2、树脂基复合材料的强度
材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。
树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。
单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。
单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表明,横向压缩强度是横向拉伸强度的4~7倍。横向拉伸的破坏模式是基体和界面破坏,也可能伴随有纤维横向拉裂;横向压缩的破坏是因基体破坏所致,大体沿45°斜面剪坏,有时伴随界面破坏和纤维压碎。单向树脂基复合材料的面内剪切破坏是由基体和界面剪切所致,这些强度数值的估算都需依靠实验。
杂乱短纤维增强树脂基复合材料尽管不具备单向树脂基复合材料轴向上的高强度,但在横向拉、压性能方面要比单向树脂基复合材料好得多,在破坏机理方面具有自己的特点:编织纤维增强树脂基复合材料在力学处理上可近似看作两层的层合材料,但在疲劳、损伤、破坏的微观机理上要更加复杂。
树脂基复合材料强度性质的协同效应还表现在层合材料的层合效应及混杂复合材料的混杂效应上。在层合结构中,单层表现出来的潜在强度与单独受力的强度不同,如0/90/0层合拉伸所得90°层的横向强度是其单层单独实验所得横向拉伸强度的2~3倍;面内剪切强度也是如此,这一现象称为层合效应。
树脂基复合材料强度问题的复杂性来自可能的各向异性和不规则的分布,诸如通常的环境效应,也来自上面提及的不同的破坏模式,而且同一材料在不同的条件和不同的环境下,断裂有可能按不同的方式进行。这些包括基体和纤维(粒子)的结构的变化,例如由于局部的薄弱点、空穴、应力集中引起的效应。除此之外,界面粘结的性质和强弱、堆积的密集性、纤维的搭接、纤维末端的应力集中、裂缝增长的干扰以及塑性与弹性响应的差别等都有一定的影响。
树脂基复合材料的物理性能
树脂基复合材料的物理性能主要有热学性质、电学性质、磁学性质、光学性质、摩擦性质等(见表)。对于一般的主要利用力学性质的非功能复合材料,要考虑在特定的使用条件下材料对环境的各种物理因素的响应,以及这种响应对复合材料的力学性能和综合使用性能的影响;而对于功能性复合材料,所注重的则是通过多种材料的复合而满足某些物理性能的要求。
树脂基复合材料的物理性能由组分材料的性能及其复合效应所决定。要改善树脂基复合材料的物理性能或对某些功能进行设计时,往往更倾向于应用一种或多种填料。相对而言,可作为填料的物质种类很多,可用来调节树脂基复合材料的各种物理性能。值得注意的是,为了某种理由而在复合体系中引入某一物质时,可能会对其它的性质产生劣化作用,需要针对实际情况对引入物质的性质、含量及其与基体的相互作用进行综合考虑。
树脂基复合材料的化学性能
大多数的树脂基复合材料处在大气环境中、浸在水或海水中或埋在地下使用,有的作为各种溶剂的贮槽,在空气、水及化学介质、光线、射线及微生物的作用下,其化学组成和结构及各种性能会发生各种变化。在许多情况下,温度、应力状态对这些化学反应有着重要的影响。特别是航空航天飞行器及其发动机构件在更为恶劣的环境下工作,要经受高温的作用和高热气流的冲刷,其化学稳定性是至关重要的。
作为树脂基复合材料的基体的聚合物,其化学分解可以按不同的方式进行,它既可通过与腐蚀性化学物质的作用而发生,又可间接通过产生应力作用而进行,这包括热降解、辐射降解、力学降解和生物降解。聚合物基体本身是有机物质,可能被有机溶剂侵蚀、溶胀、溶解或者引起体系的应力腐蚀。所谓的应力腐蚀,是掼材料与某些有机溶剂作用在承受应力时产生过早的破坏,这样的应力可能是在使用过程中施加上去的,也可能是鉴于制造技术的某些局限性带来的。根据基体种类的不同,材料对各种化学物质的敏感程度不同,常见的玻璃纤维增强塑料耐强酸、盐、酯,但不耐碱。一般情况下,人们更注重的是水对材料性能的影响。水一般可导致树脂基复合材料的介电强度下降,水的作用使得材料的化学键断裂时产生光散射和不透明性,对力学性能也有重要影响。不上胶的或仅只热处理过的玻璃纤维与环氧树脂或聚酯树脂组成的复合材料,其拉伸强度、剪切强度和弯曲强度都很明显地受沸水影响,使用偶联剂可明显地降低这种损失。水及各种化学物质的影响与温度、接触时间有关,也与应力的大小、基体的性质及增强材料的几何组织、性质和预处理有关,此外还与复合材料的表面的状态有关,纤维末端暴露的材料更易受到损害。
聚合物的热降解有多种模式和途径,其中可能几种模式同时进行。如可通过"拉链"式的解聚机理导致完全的聚合物链的断裂,同时产生挥发性的低分子物质。其它的方式包括聚合物链的不规则断裂产生较高分子量的产物或支链脱落,还有可能形成环状的分子链结构。填料的存在对聚合物的降解有影响,某些金属填料可通过催化作用加速降解,特别是在有氧存在的地方。树脂基复合材料的着火与降解产生的挥发性物质有关,通常加入阻燃剂减少着火的危险。某些聚合物在高温条件下可产生一层耐热焦炭,这些聚合物与尼龙、聚酯纤维等复合后,因这些增强物本身的分解导致挥发性物质产生可带走热量而冷却烧焦的聚合物,进一步提高耐热性,同时赋予复合材料以优良的力学性能,如良好的坑震性。
许多聚合物因受紫外线辐射或其它高能辐射的作用而受到破坏,其机理是当光和射线的能量大于原子间的共价键能时,分子链发生断裂。铅填充的聚合物可用来防止高能辐射。紫外线辐射则一般受到更多的关注,经常使用的添加剂包括炭黑、氧化锌和二氧化钛,它们的作用是吸收或者反射紫外线辐射,有些无面填料可以和可见光一样传输紫外线,产生荧光。
力学降解是另一种降解机理,当应力的增加频率超过一个键通过平移所产生的响应能力时,就发生键的断裂,由此形成的自由基还可能对下一阶段的降解模式产生影响。硬质和脆性聚合物基体应变小,可进行有或者没有链断裂的脆性断裂,而较软但粘性高的聚合物基体大多是力学降解的。
树脂基复合材料的工艺特点
树脂基复合材料的成型工艺灵活,其结构和性能具有很强的可设计性。树脂基复合材料可用模具一次成型法来制造各种构件,从而减少了零部件的数量及接头等紧固件,并可节省原材料和工时;更为突出的是树脂基复合材料可以通过纤维种类和不同排布的设计,把潜在的性能集中到必要的方向上,使增强材料更为有效地发挥作用。通过调节复合材料各组分的成分、结构及排列方式,既可使构件在不同方向承受不同的作用力,还可以制成兼有刚性、韧性和塑性等矛盾性能的树脂基复合材料和多功能制品,这些是传统材料所不具备的优点。树脂基复合材料在工艺方面也存在缺点,比如,相对而言,大部分树脂基复合材料制造工序较多,生产能力较低,有些工艺(如制造大中型制品的手糊工艺和喷射工艺)还存在劳动强度大、产品性能不稳定等缺点。
树脂基复合材料的工艺直接关系到材料的质量,是复合效应、"复合思想"能否体现出来的关键。原材料质量的控制、增强物质的表面处理和铺设的均匀性、成型的温度和压力、后处理及模具设计的合理性都影响最终产品的性能。在成型过程中,存在着一系列物理、化学和力学的问题,需要综合考虑。固化时在基体内部和界面上都可能产生空隙、裂纹、缺胶区和富胶区;热应力可使基体产生或多或少的微裂纹,在许多工艺环节中也都可造成纤维和纤维束的弯曲、扭曲和折断;有些体系若工艺条件选择不当可使基体与增强材料之间发生不良的化学反应;在固化后的加工过程中,还可进一步引起新的纤维断裂、界面脱粘和基体开裂等损伤。如何防止和减少缺陷和损伤,保证纤维、基体和界面发挥正常的功能是一个非常重要的问题。
树脂基复合材料的成型有许多不同工艺方法,连续纤维增强树脂基复合材料的材料成型一般与制品的成型同时完成,再辅以少量的切削加工和连接即成成品;随机分布短纤维和颗粒增强塑料可先制成各种形式的预混料,然后进行挤压、模塑成型。
组合复合效应
复合体系具有两种或两种以上的优越性能,称为组合复合效应贫下中农站这样的情况很多,许多的力学性能优异的树脂基复合材料同时具有其它的功能性,下面列举几个典型的例子。
1、光学性能与力学性能的组合复合
纤维增强塑料,如玻璃纤维增强聚酯复合材料,同时具有充分的透光性和足够的比强度,对于需要透光的建筑结构制品是很有用的。
2、电性能与力学性能的组合复合
玻璃纤维增强树脂基复合材料具有良好的力学性能,同时又是一种优良的电绝缘材料,用于制造各种仪表、电机与电器的绝缘零件,在高频作用下仍能保持良好的介电性能,又具有电磁波穿透性,适制作雷达天线罩。聚合物基体中引入炭黑、石墨、酞花菁络合物或金属粉等导电填料制成的复合材料具有导电性能,同时具有高分子材料的力学性能和其它特性。
3、热性能与力学性能的组合复合
①耐热性能
树脂基复合材料在某些场合的使用除力学性能外,往往需要同时具有好的耐热性能。
②耐烧蚀性能
航空航天飞行器的工作处于严酷的环境中,必须有防护材料进行保护;耐烧蚀材料靠材料本身的烧蚀带走热量而起到防护作用。玻璃纤维、石英纤维及碳纤维增强的酚醛树脂是成功的烧蚀材料。酚醛树脂遇到高温立即碳化形成耐热性高的碳原子骨架;玻璃纤维还可部分气化,在表面残留下几乎是纯的二氧化硅,它具有相当高的粘结性能。两方面的作用,使酚醛玻璃钢具有极高的耐烧蚀性能。
『陆』 2种110℃固化的环氧树脂胶混到一起会产生反应吗
早上好,有可能。110度固化的环氧体系应该是热固性酸酐为主的属于内酸性环境,它们和容常见双组份环氧树脂胶由烯胺、脂肪胺和芳香胺组成的碱性环境正好相反,所以如果是这两种体系接触其中固化剂组份就会相互反应从而使环氧单体失去交联能力一直保持不凝固的液态请酌情参考。就各自单独体系来说,酸性和酸性以及碱性和碱性互相混合后通常只要体系正确是不分品牌的(两者都对产生增强共聚,两者不对双重失效),建议你还是各自品牌分开使用以免造成不必要的损失。
『柒』 环氧树脂胶B胶快慢干可以混合用吗
使用环氧树脂胶的时候需要首先了解一下它的使用说明,第一个颂拆方面就是它的基本特性胶水是分两组的,所以在使用的时候需要混合使用,这样的话,比较大的空隙也可以被填充起来。第二个就是它的操作环境,一般情况下,在平常的室内温度中,胶水就会固化。在进行两种胶水的混合操作时,可以直接用手混合,也可以使用一些专业的设备,如胶枪等。
使用时还需要注意周围环境的温度,零下50摄氏度到150摄氏度之间为最佳。环氧树脂胶可以使用在一般的正常环境中,它可以防水,还可以防一些侵蚀性较强的物质,如强酸、强碱等。在保存环氧树脂胶的时候,还有一些必要的注意事项,它不能接受阳光的直射,所以阴凉处是保存的最佳环境,一般这种胶水的保存时间也是有一定的期限的,芹逗超过12个月之后就不能使用了。
使用环氧树脂胶的时候,比较遵循一定的步骤,而且其中还会有一些注意事项,这都是我们必须要了解的。在使用的时候,首先要做的就是把要粘结的物体表面清理干净,初步擦拭野首枣之后,再使用一些清洁剂进行第二遍的擦拭,以达到充分清洁的目的。
『捌』 有没有双酚A环氧树脂胶黏剂的资料,谢谢大家帮忙
环氧树脂及环氧树脂胶粘剂的基本知识
(一)、环氧树脂的概念:
环氧树脂是指高分子链结构中含有两个或两个以上环氧基团的高分子化合物的总称,属于热固性树脂,代表性树脂是双酚A型环氧树脂。
(二).环氧树脂的特点(通常指双酚A型环氧树脂)
1.单独的环氧树脂应用价值很低,它需要与固化剂配合使用才有实用价值。
2.高粘接强度:在合成胶粘剂中环氧树脂胶的胶接强度居前列。
3.固化收缩率小,在胶粘剂中环氧树脂胶的收缩率最小,这也是环氧树脂胶固化胶接高的原因之一。例如:
酚醛树脂胶:8—10% ; 有机硅树脂胶:6—8%
聚酯树脂胶:4—8% ; 环氧树脂胶:1—3%
若经过改性加工后的环氧树脂胶收缩率可降为0.1—0.3%,热膨胀系数为6.0×10-5/℃
4.耐化学性能工好:在固化体系中的醚基、苯环和脂肪羟基不易受酸碱侵蚀。在海水、石油、煤油、10%H2SO4、10%HCl、10%HAc、10%NH3、10%H3PO4和30%Na2CO3中可以用两年;而在50%H2SO4和10%HNO3常温浸泡半年;10%NaOH(100℃)浸泡一个月,性能保持不变。
5.电绝缘性优良:环氧树脂的击穿电压可大于35kv/mm
6.工艺性能良好、制品尺寸稳定、耐性良好和吸水率低。
双酚A型环氧树脂的优点固然好,但也有其缺点:
①.操作粘度大,这在施工方面显的有些不方便
②.固化物性脆,伸长率小。
③.剥离强度低。
④.耐机械冲击和热冲击差。
(三).环氧树脂的应用与发展
1.环氧树脂的发展史:
环氧树脂是1938年由P.Castam申请瑞士专利,由汽巴公司在1946年研制出最早的环氧粘接剂,1949年美国的S.O.Creentee研制了环氧涂料,我国于1958年开始环氧树脂的工业化生产。
2.环氧树脂的应用:
①涂料工业:环氧树脂在涂料工业中需用量最大,目前较广泛使用的有水性涂料、粉末涂料和高固分涂料。可广泛用于管道容器、汽车、船舶、航天、电子、玩具、工艺品等行业。
②电子电器工业:环氧树脂胶可用于电气绝缘材料,例如整流器、变压器的密封灌注;电子元器件的密封保护;机电产品的绝缘处理与粘接;蓄电池的密封粘接;电容器、电阻、电感器的表面披覆。
③五金饰品,工艺品、体育用品品行业:可用于标牌、饰品、商标、五金、球拍、钓具、运动用品、工艺品等产品上。
④光电行业:可用于发光二极管(LED)、数码管、像素管、电子显示屏、LED灯饰等产品的封装、灌注和粘接。
⑤建筑工业:在道路、桥梁、地坪、钢铁结构、建筑、墙体涂料、堤坝、工程施工、文物修补等行业也会广泛用到。
⑥胶粘剂、密封剂和复合材料领域:如风力发电机叶片、工艺品、陶瓷、玻璃等各种物质之间的粘接,碳纤维板材的复合、微电子材料的密封等等。
(四).环氧树脂胶的特性
1、环氧树脂胶是在环氧树脂的基础上对其特性进行再加工或改性,使其性能参数等符合特定的要求,通常环氧树脂胶也需要有固化剂搭配才能使用,并且需要混合均匀后才能完全固化,一般环氧树脂胶称为A胶或主剂,固化剂称为B胶或固化剂(硬化剂)。
2、反映环氧树脂胶固化前的主要特性有:颜色、粘度、比重、配比、凝胶时间、可使用时间、固化时间、触变性(止流性)、硬度、表面张力等。
粘度(Viscosity):是指胶体在流动中所产生的内部摩擦阻力,其数值由物质种类、温度、浓度等因素决定。
凝胶时间:胶水的固化是从液体向固化转化的过程,从胶水开始反应起到胶体趋向固体时的临界状态的时间为凝胶时间,它由环氧树脂胶的混合量、温度等因素决定。
触变性:该特性是指胶体受外力触动(摇晃、搅拌、振动、超声波等)时,随外力作用由稠变稀,当外界因素停止作用时,胶体又恢复到原来时的稠度的现象。
硬度(Hardness):是指材料对压印、刮痕等外力的抵抗能力。根据试验方法不同有邵氏(Shore)硬度、布氏(Brinell)硬度、洛氏(Rockwell)硬度、莫氏(Mohs)硬度、巴氏(Barcol)硬度、维氏(Vichers)硬度等。硬度的数值与硬度计类型有关,在常用的硬度计中,邵氏硬度计结构简单,适于生产检验,邵氏硬度计可分为A型、C型、D型,A型用于测量软质胶体,C和D型用于测量半硬和硬质胶体。
表面张力(Surface tension):液体内部分子的吸引力使表面上的分子处于向内一种力作用下,这种力使液体尽量缩小其表面积而形成平行于表面的力,称为表面张力。或者说是液体表面相邻两部分间单位长度内的相互牵引力,它是分子力的一种表现。表面张力的单位是N/m。表面张力的大小与液体的性质、纯度和温度有关。
3、反映环氧树脂胶固化后特性的主要特性有:电阻、耐电压、吸水率、抗压强度、拉伸(引张)强度、剪切强度、剥离强度、冲击强度、热变形形温度、玻璃化转变温度、内应力、耐化学性、伸长率、收缩系数、导热系数、诱电率、耐候性、耐老化性等。
电阻(Resistivity):描述材料电阻特性通常用表面电阻或体积电阻。表面电阻简单地说就是同一表面上两电极之间所测得的电阻值,单位是Ω。将电极形状和电阻值结合在一起通过计算可得到单位面积的表面电阻率。体积电阻也叫体积电阻率、体积电阻系数,指通过材料厚度的电阻值,是表征电介质或绝缘材料电性能的一个重要指标。表示1cm2电介质对泄漏电流的电阻,单位是Ω•m或Ω•cm。电阻率愈大,绝缘性能愈好。
耐电压(Proof voltage):又称耐压强度(绝缘强度),胶体两端所加的电压越高,材料内电荷受到的电场力就越大,越容易发生电离碰撞,造成胶体击穿。使绝缘体击穿的最低电压叫做这个物体的击穿电压。使1毫米厚的绝缘材料击穿时,需要加上的电压千伏数叫做绝缘材料的绝缘耐压强度,简称耐电压,单位是:Kv/mm。绝缘材料的绝缘性能与温度有密切的关系。温度越高,绝缘材料的绝缘性能越差。为保证绝缘强度,每种绝缘材料都有一个适当的最高允许工作温度,在此温度以下,可以长期安全地使用,超过这个温度就会迅速老化。
吸水率(Water absorption):是指物质吸水程度的量度。系指在一定的温度下把物质在水中浸泡一定时间所增加的质量百分数。
拉伸强度(Tensile strength):拉伸强度是胶体拉伸至断裂时的最大拉伸应力。有称扯断力、扯断强度、抗张力、抗张强度。单位为MPa。
剪切强度(Shear strength):也称抗剪强度,是指单位粘接面积上能够承受平行于粘接面积的最大载荷,常用的单位为MPa。
剥离强度(Peel strength):也称抗剥强度,是指每单位宽度所能承受的最大破坏载荷,是衡量线受力能力的,单位为kN/m。
伸长率(Elongation):是指胶体在拉力作用下长度的增加,以原长的百分数表示。
热变形温度(Heat deflection temperature under load):是指固化物耐热性的一种量度,是将固化物试样浸在一种等速升温的适宜传热介质中,在简支梁式的静弯曲负荷作用下,测出试样弯曲变形达到规定值时的温度,即为热变形温度,简称HDT。
玻璃化温度(Glass transition temperature):是指固化物从玻璃形态向无定形或高弹态或流态转变(或相反的转变)的较窄温度范围的近似中点,称为玻璃化温度,通常以Tg表示,是耐热性的一个指标。
收缩率(Shrinkage ration):定义为收缩量与收缩前尺寸之比的百分数,收缩量则为收缩前后尺寸之差。
内应力(Internal stress):是指在没有外力存在下,胶体(材料)内部由于存在缺陷、温度变化、溶剂作用等原因所产生的应力。
耐化学性(Chemical resistance):是指耐酸、碱、盐、溶剂和其他化学物质的能力。
阻燃性(Flame resistance):是指材料接触火焰时,抵制燃烧或离开火焰时阻碍继续燃烧的能力。
耐候性(Weatherability):是指材料曝露在日光、冷热、风雨等气候条件下的耐受性。
老化(Aging):固化后胶体在加工、贮存和使用过程中,由于受到外界因素(热、光、氧、水、射线、机械力和化学介质等)的作用,发生一系列物理或化学变化,使高分子材料交联变脆、裂解发粘、变色龟裂、粗糙起泡、表面粉化、分层剥落、性能逐渐变坏,以至丧失力学性能不能使用,这种变化的现象叫老化。
介电常数(Dielectric Constant):又称电容率、诱电率(Permittivity)。是指每“单位体积”的物体,在每一单位之“电位梯度”下所能储蓄“静电能量”(Electrostatic Energy)的多少。当胶体的“透电率”越大(表示品质越不好),而两逼近之导线中有电流工作时,就愈难到达彻底绝缘的效果,换言之就越容易产生某种程度的漏电。故绝缘材料的介质常数在通常情况下要愈小愈好。水的介电常数是70,很少的水分,会引起显著的变化。
4、环氧树脂胶大部分是热固型的胶,它有以下主要特点:温度越高固化越快;一次混合的量越多固化越快;固化过程中有放热现象等。
『玖』 怎样做树脂胶水
制作方法:树脂来胶水需自要利用原料混合然后通过微波反应釜搅拌加热合成。通过不同的应用行业需要不同的环氧树脂胶水混合比例,根据生产经验调节微波反应釜分段温度和时间即可以制作出不同特性的胶水。
性能特点: 树脂胶水毒性低,挥发性小,配用比例宽,操作简便,可常温固化,粘接力强,韧性好,明显地优越于一般的单体胺类固化剂。
『拾』 复合材料中易产生哪些缺陷,原因何在
色斑、颜色不均匀、变色 原因:树脂中颜料混合不均匀,颜料分解耐温性不好
措施:加强搅拌,使树脂胶液混合均匀,更换颜料及类型
污染、异物混入 原因:树脂胶液中混入异物,玻璃毡表面被污染,进入模具时夹带进了异物
措施:细心检查防止成型中异物的混入,更换被污染的原材料
表面凹痕 原因:缺纱或局部纱量过少,模具黏附造成碎片堆积,划伤制品表面。
措施:增加纱量,清理模具,短暂停机后再重新启动,选用好的脱模剂。
等等,给你列举几个