导航:首页 > 耗材问题 > 高吸水性树脂技术发展

高吸水性树脂技术发展

发布时间:2023-01-01 07:19:57

『壹』 树脂为什么能吸水

世界上吸水本领最大的要数海绵。但现在人们已合成出一种吸水性胜过海绵的高分子材料,称为高吸水性树脂,其吸水量可达自身重量的500—3000倍。

这是一种神奇的白色粉末,每颗高分子树脂微粒,就像一个小小的蓄水池。把它们撒到干旱少雨的沙漠地,能在夜间汲取从地下渗上来的水分。如果预先拌好肥料和水,就能在沙漠地区栽培农作物。用它做尿布,吸水好,又卫生。用来做卫生棉、清洁餐巾,更受人们欢迎。这种高吸水性树脂没有毒性,它和药物、化妆品混在一起,药物会缓慢地释放出来,延长药效。用它做成水果的包装袋,新鲜水果就能长久保鲜。

高吸水性树脂的吸水本领,在于聚合物中有许多能吸引住水的“基团”,它像一双双能拉住水分子的“手”一样。当整个大分子上的“手”拉住了许许多多的水分子后,一颗白色的粉末,变成了一个“吃饱”水的小水球。

这种神奇的粉末,有的是用淀粉、纤维素天然高分子为骨架,通过接枝共聚的方法制造的;有的是用化学合成方法制造的;还有的是用腈纶废丝综合利用得到的。延展性最佳的金属

国际市场上通常以黄金代表货币价值。其实,黄金还具有很多优良特性,如不氧化和不容易与其他元素构成化合物,以及具有其他金属无可比拟的延展性,因而应用于工业和尖端科学技术方面。

人们利用黄金优良的延展性,把它锤打成极薄的金箔。最薄的金箔可薄至0.116~0.127微米。将23~26张极薄的金箔叠置起来,其总厚度刚与蝉翼最薄处相当,可见用“薄如蝉翼”来形容还是远远不够的。

手工锤锻加工的金箔因厚度不匀和有微孔,主要供装饰之用,称包金。如河北藁城商代中期遗址和安阳殷墟,都出土过装饰用金箔。随着生产技术的发展,金箔愈打愈薄,装饰用时,就只需将金箔粘贴到织物、皮革、纸张、器物或建筑物表面,既节省了黄金,又获得金光闪亮、永不锈蚀的装饰效果。

金箔对于红外线的反射率高达98.4%,如果用特殊工艺加工成不同厚度的金箔,看上去就会有各种不同的颜色。这种特殊的性能已应用在红外线探测器和反导弹技术上。

『贰』 谁知道国内高吸水性树脂的前景如何,有希望可以达到国外水准么。

.吸水性材料水能吸收水性质称吸水性(1)质量吸水率Wm (2)体积吸水率内Wv 质量吸水率与体积吸水率存列容关系 Wv=Wm×ρo/l000 (1-12) 式ρ――材料干燥状态表观密度 kg/ 材料吸水性与材料孔隙率孔隙特征关于细微连通孔隙孔隙率愈则 吸水率愈闭口孔隙水能进口孔虽水易进入能存留能润 湿孔壁所吸水率仍较各种材料吸水率相同差异花岗石吸水 率0. 5%~0. 7%混凝土吸水率2%~3%勃土砖吸水率达8%~20% 木材吸水率超100% 吸湿性材料潮湿空气吸收水性质称吸湿性潮湿材料干燥空气放水 称湿性材料吸湿性用含水率表示 Wh=(ms-mg)/mg×100% 式Wh――材料含水率 %; ms――材料吸湿状态质量 kg; mg――材料干燥状态质量 kg 材料所含水与空气湿度相平衡含水率称平衡含水率具微口孔 隙材料吸湿性特别强木材及某些绝热材料潮湿空气能吸收水 由于类材料内表面积吸附水能力强所致材料吸水性吸湿性均材料性能产利影响材料吸水导致其自身质 量增绝热性降低强度耐久性产同程度降材料吸湿湿引起其 体积变形影响使用利用材料吸湿起降湿作用用于保持环境干燥

『叁』 高吸水性树脂都分哪几类

高吸水性树脂生产现状及市场前景

hc360慧聪网塑料行业频道 2004-05-27 18:36:49

摘要:本文介绍了高吸水性树脂的国内外研究、生产概况和消费概况,并对我国高吸水性树脂今后的发展提出了建议。

关键词:高吸水性树脂;生产;市场;消费;建议

中图分类号: 文献标识码:A 文章编号:1009-4725(2003)12-00

Proction Status and Market Foreground of Super Absorbent Polymers

LIU Fu-shun3, YANG Xiao-rong1, YU Yang3, PANG Hui-yuan2, LI Shu-hong1, ZHAO Jing-feng1

(1. Institute of Science and Technology, Siping 136000, China; 2. Xia San Tai Reservoir, Siping 136000, China; 3. Dan Qing Pharmacy Factory, Siping 136000, China)

Abstract: This paper introced the research, proction and consumption of super absorbent polymers (SAP) at home and abroad. Suggestions about the development of SAP in the future were put forward in the end.

Keywords: super absorbent polymers; proction; market; consumption; suggestion

1 概述

高吸水性树脂(Super Absorbent Polymer, SAP)是一种含有羧基、羟基等强亲水性基因,并具有一定交联度网络结构的高分子聚合物[1],是一种特殊功能材料。它不溶于水,也不溶于有机溶剂,并具有独特的性能,通过水合作用能迅速地吸收几十倍乃至上千倍自身重量的水,也能吸收几十倍至100倍的食盐水、血液和尿液等液体,同时具有较强的保水能力。SAP作为一种很有前途的新型功能性高分子材料,完全不同于传统的吸水材料如海绵、纸、棉等。其应用涉及众多行业,除卫生用品领域外,在农林园艺和水土保持、医疗、化妆品、建材领域、电缆、电子工业方面也有广泛的应用[2]。

目前,发达国家对SAP在卫生用品方面的需求虽然日趋饱和,但在广大发展中国家在这方面的需求却日趋扩大,各公司纷纷扩大生产,增加研究和开发力度,由于SAP的用途极为广泛,受到各国高度重视,可见进一步开发SAP仍然有很重大的意义。

2. SAP的生产方法

2.1. SAP的分类

SAP一般按原料分为淀粉系、纤维素系和合成树脂系三大类。交联的丙烯酸盐聚合物是合成树脂系吸水材料的重要方面,而且被认为最有希望的吸水树脂。目前用于医药卫生用品的大部分SAP是丙烯酸类高吸水聚合物。与其它类型高吸水剂比较,该类聚合物除了具备高吸水性能外,其还具有生产成本低,工艺简单,产品质量稳定,长时间储存不会变质等特点,因此成为SAP产品的主流。

2.2 聚丙烯酸盐系SAP的生产方法

聚丙烯酸盐系SAP的生产方法主要有水溶液聚合法和反相悬浮聚合法[3-7]。

2.2.1 水溶液聚合法

水溶液聚合法是以水为溶剂,将经碱部分中和后的丙烯酸,在交联剂存在下进行交联聚合、干燥粉碎而制得的SAP的方法。

该法以水为溶剂,生产过程不产生污染,对设备要求低,投资省.操作简单,生产效率高,缺点是反应速度快.温度不易控制,后处理需增加干燥.粉碎.筛分工序,产品性能较差。主要表现:吸水率(吸蒸馏水和生理盐水)低,吸水速度慢、产品强度小、易吸潮、产品粒度不均等。很难达到卫生用品的要求。采用该法的厂家有日本触媒、住友精化、三洋化成等公司。国内的SAP生产也基本采用该法。

2.2.2 反相悬浮聚合法

反相悬浮聚合法是以溶剂为分散介质,经碱中和的水溶液单体丙烯酸钠,在悬浮分散剂和搅拌作用下分散成水相液滴,引发剂和交联剂溶解在水相液滴中进行的聚合方法。

该法解决了水溶液聚合法的传热、搅拌困难等问题,且反应条件温和,可直接获得珠状产品,生产的SAP粒径大小可根据用途和吸水要求调节。且吸水率高,吸水速度快,产品强度大,不易吸潮等。符合医疗卫生用品质量要求,但此法生产的吸水树脂的特性是其它方法无法比拟的,是一种合成SAP的独特方法。该方法的缺点是主设备材质要求高,设备投资大,采用有机溶剂。需要溶剂回收装置,容易产生污染。只能进行间歇性生产,设备利用率低,生产效率低。采用该法生产的有日本住友精化和触媒等公司。我国目前未见采用该法工业生产的报导。

3 SAP的生产概况

1978年日本实现了SAP的工业化生产,随后,美国Chemdal公司、日本住友精化、触媒化学公司、德国Stockhause、日本三洋化成、Dowchemica等数十家公司先后投产,1980年世界生产能力均为5 kt,1990年生产能力增强到210 kt,1998年已发展到850 kt,而到2000年,世界SAP生产能力迅速增加到1200 kt左右。目前主要生产地区包括美国、日本、西欧,随着亚洲市场的扩大,有些公司在亚洲也建厂并投产,东南亚也将成为第四大生产区。

我国从20世纪八十年代初开始了对SAP的研究工作,先后有40多个单位从事过SAP的研究,专利报道有几十项。目前我国SAP的生产能力在30 kt/a左右,生产企业近30家,但规模都不大,生产能力在1 kt以上的仅7家。其中年产5 kt 的有:陕西华光实业有限公司、青海新型高分子材料有限公司、江苏国达高分子材料有限公司。3 kt/a的有:保定科翰科技发展有限公司.唐山博亚科技发展有限公司.无锡佳宝卫生材料厂;1 kt/a的有:上海高桥浦江塑料厂,开工率不高,2001年产量约为15 kt。据报导,日本Sandage Polymer公司考虑中国对SAP需求的急速增长,计划在江苏南通新建一个产量为130 kt/a的生产基地,预计2005年竣工投产。日本触媒株式会社将于年底开工建设的日触化工(张家港)有限公司,总投资4300万美元,计划2004年底建成。投入运行后可实现年产SAP 30 kt 的生产能力。产品主要用于纸尿布。

4 SAP的消费情况

SAP是一种功能性吸水材料,由于SAP的应用十分广泛,SAP的消费近十年来增长很快,美国、西欧和日本是SAP的主要消费国,1999年世界高吸水性树脂原消费量估计为800 kt,其主要消费国为美国,消费量约为280 kt,占世界消费量的35%,其次是欧洲,消费量约为200 kt,占世界消费量的25%,日本消费量约为80 kt,占世界总消费量的10%。南美.中东和东南亚等地的消费量占30%,据预测,到2003年全球的需求量将达到1000 kt以上,高吸水性树脂主要用于卫生材料,如卫生巾.婴儿尿片.尿裤及病人床垫等,卫生材料的使用量约占总量的80%,农.林保水和育种占8%,建筑助剂占4%,油田矿产助剂占3%,其它占5%。

在我国进入90年代,随着卫生用品的迅速发展,已形成了中国SAP消费市场,但国内产品无论在价格还是产品质量方面都无法与进口产品竞争,与国外相比还有距离。在我国SAP的消费主要以卫生用品应用为主,预计到2003年,国内SAP的需求将达到30 kt,其中个人卫生用品的消费量约为26 kt ,农林和其它方面的消费量约为4 kt ,到2010年国内SAP的需求量将达到100 kt。目前国内卫生用品使用的SAP大部分为进口产品,目前进口价为1.5~1.8万元/t,国内SAP生产成本在1.2~1.5万元/t,售价为1.8~2.2万元/t。

5 发展建议

高吸水性树脂是一种多品种、多功能的材料,具有优异的吸水性和保水性,在许多领域已广泛应用。但是,目前我国高吸水性树脂的应用还仅局限于个人卫生用品,应大力开展其在农业、医药用品、日用化工和建筑等其它领域的应用研究。目前我国有几十家单位研究和生产,至今尚未形成生产规模,由于产品性能和造价过高,国内大部分高吸水性树脂仍需进口。因此,我国有关部门应积极合作,加大投入,加快科技进步,对现有的技术进行改进,尽快实现反相悬浮聚合的工业化生产,缩短同国外先进技术的差距,带动高吸水性树脂的产业化进程。

虽然国内市场对高吸水性树脂的市场需求迅速增加,但是从世界范围来看,随着一批新建装置的投产,高吸水性树脂的市场需求会逐渐趋于饱和,中国加入WTO,会给中国企业带来较大的冲击。因此,国内高吸水性树脂行业要克服小装置遍地开花现象。中国加入WTO后,国外的大公司不会再一味地兼并或重新建厂,而是带着自己的资金或技术在中国寻找伙伴。因此我国企业应改变观点、放下包袱,抓住机遇,积极同国外的企业进行合作,充分利用他们的资金或技术优势,尽快提升自己的产品竞争力,以满足我国人民日益增长的需求。

联系电话:0434-3271139。

参考文献:

[1] 林润雄,王基伟.高吸水性树脂的合成与应用[J].高分子通报,2000,(2) :85-92.

[2] 王勇,张玉英.高吸水性树脂的研究进展[J].中国塑料,2001,(10):14-16.

[3] 郑延成,周爱莲.溶液法合成高吸水性树脂的条件优化[J].精细石油化工,1999,(5):34-36.

[4] 邹新禧.超强吸水剂[M].北京:化学工业出版社,1991.

[5] 日本公开特许[P],83-127714.

[6] 华峰君,钱孟平,谭春红.反相悬浮法合成超强吸水剂[J].功能高分子学报,1996,(4):589-596.

[7] 范荣,朱秀林,路建美,等.丙烯酸钠反相悬浮聚合吸水性能研究[J].高分子材料科学与工程,1995,(6):25-29.

『肆』 高吸水性树脂的发展历史

1950年微架桥聚合丙烯酸(增粘剂)的工业化(Goodrich 公司;USA)
1960年亲水性高分子上市,架桥聚氧化乙烯(土壤保水剂),架桥聚乙烯醇(人工水晶体)
增粘剂
1974美国农业部发表了吸水性树脂的研究成果.
1978年世界上最早的吸水性树脂的商业化生产开始 (三洋化成)
吸水性树脂
1982年用于纸尿裤的需求增大。高分子凝胶的相转移理论的发表(田中豊一)
90年代高分子学会开始成立「高分子凝胶研究会」(对于机能性凝胶的研究发表日趋活跃)
机能性凝胶
它能够吸收自身重量几百倍至千倍的水分,无毒、无害、无污染;吸水能力特强,保水能力特高,通过丙烯酸聚合得到的高分子量聚合物→高保水量,高负荷下吸收量的平衡,所吸水分不能被简单的物理方法挤出,并且可反复释水、吸水。应用于农林业方面,可在植物根部形成“微型水库”。高吸水性树脂除了吸水,还能吸收肥料、农药,并缓慢的释放出来以增加肥效和药效。高吸水性树脂以其优越的性能,广泛用于农林业生产、城市园林绿化、抗旱保水、防沙治沙,并发挥巨大的作用。此外,高吸水性树脂还可应用于医疗卫生、石油开采、建筑材料、交通运输等许多领域。
现有的高吸水性树脂的厂家有:三大雅精细化学品有限公司、日本触媒、得米化工、住友精化、巴斯夫、台塑这几大公司占了全球产量的99%,其中三大雅占55%。

『伍』 高吸水性树脂制作固体清香剂

高吸水性树脂(SPA)又称超强吸水剂,是一种新型的功能高分子材料.吸水倍数可达自身质量的数百乃至数千倍.最早的高吸水性树脂是1974年美国学业部北方研究所研制的淀粉接枝丙烯腈共聚物的水解物,但20世纪80年代初却是日本的高吸水性树脂开发技术占据了主导地位.虽然高吸水性树脂的开发时间较短,但各方面发展非常快,如1983年世界总产量为6000t,到1987年仅日本的产量就达到了36000t;目前全世界生产高吸水性树脂的厂家达30-40个,主要分布在日本、美国及欧洲;产品从淀粉接枝丙烯腈发展到淀粉接枝丙烯酸、交联纤维素类、聚丙烯酸盐、共聚物水解、聚醚、聚氨酯等类;高吸水性树脂的吸水率从80年代的百倍提高到目前的四五千倍.我国开展高吸水性树脂研制的时间较短(20世纪80年代初开始),但研究、生产单位已达数十家,高吸水性树脂的专利已达数十种.1999年的累计产量已达近千吨,但仍存在品种单一、质量参差不齐等问题,缺少高功能的产品,某些含量的指标偏高.目前世界上占主导地位的是聚丙烯酸盐类高吸水性树脂.

『陆』 高吸水性树脂与高吸油性树脂在结构上有何不同

高吸水与高抄吸油性树脂



『柒』 求高吸水性树脂工艺比较

高吸水性树脂工艺比较

高吸水性树脂(SPA)又称超强吸水剂,是一种新型的功能高分子材料。吸水倍数可达自身质量的数百乃至数千倍。最早的高吸水性树脂是1974年美国学业部北方研究所研制的淀粉接枝丙烯腈共聚物的水解物,但20世纪80年代初却是日本的高吸水性树脂开发技术占据了主导地位。虽然高吸水性树脂的开发时间较短,但各方面发展非常快,如1983年世界总产量为6000t,到1987年仅日本的产量就达到了36000t;目前全世界生产高吸水性树脂的厂家达30-40个,主要分布在日本、美国及欧洲;产品从淀粉接枝丙烯腈发展到淀粉接枝丙烯酸、交联纤维素类、聚丙烯酸盐、共聚物水解、聚醚、聚氨酯等类;高吸水性树脂的吸水率从80年代的百倍提高到目前的四五千倍。我国开展高吸水性树脂研制的时间较短(20世纪80年代初开始),但研究、生产单位已达数十家,高吸水性树脂的专利已达数十种。1999年的累计产量已达近千吨,但仍存在品种单一、质量参差不齐等问题,缺少高功能的产品,某些含量的指标偏高。目前世界上占主导地位的是聚丙烯酸盐类高吸水性树脂。

1 高吸水性树脂生产方法

1.1 天然高分子的接枝

通过天然高分子的接枝改性合成的高吸水性树脂的优点是成本较低、产物超过使用周期可以分解,缺点是工艺复杂、产品易腐败,强度较差。天然高分子的接枝主要有以下几种方法。

淀粉-丙烯腈接枝共聚物:淀粉-丙烯腈接枝共聚物的水解产物是世界上第一个开发的高吸水性树脂。特点是吸水倍数高(1000-3000倍)、成本低。缺点是水解工艺比较复杂,干燥效率低。合成所用的硝酸铈铵是至今淀粉接枝不饱和单体最有效的引发剂,其工艺过程为:淀粉糊化→冷却→接枝共聚→加压水解→冷却→酸化→离心分离→中和→干燥→成品包装。如果采用三价锰盐-硫酸亚铁铵双氧水组成的复合引发体系,则接枝效率可达95%。合成时需要控制引发剂用量、加入方式、温度、淀粉种类和丙烯腈用量等。但关键是控制共聚物的皂化方法和皂化程度。

淀粉-混合单体的接枝共聚物:即在淀粉上除了接枝丙烯腈外,还可以接枝丙烯、甲基丙烯酸、丙烯酸、丙烯酰胺等单体。其优点是进一步提高产物的吸水倍数,此外,如采用颗粒淀粉,可省去糊化工序,缩短皂化时间,产品容易过滤、分离、清洗、贮存。

淀粉-聚丙烯酸钠的接枝共聚物优点是将淀粉和聚丙烯酸钠水溶液在加热条件下进行混炼,即过程力化学接枝形成产物。

纤维素的接枝共聚物:即将丙烯腈等单体分散在纤维素浆液中,在铈盐引发剂的作用下进行接枝共聚,再加压水解。其优点是:虽然吸水倍数不如淀粉类共聚物,但可制成高吸水性织物,可与纤维混纺,改善最终产品的吸水性能。

天然高分子羧甲基化:特点是控制羧甲基化的程度,交联后可得吸水性不同的产物。

1.2 交联水溶性合成树脂

以水溶性合成树脂为原料合成高吸水树脂是目前的主导,其优点是克服了天然高分子接枝后改性的不足,并且原料丰富,缺点是成本偏高。具体合成方法为:

聚乙烯醇的交联改性:主要通过酸酐的交联,并引入-COONa基团。特点是吸水性能可调。

聚丙烯酰胺的交联改性:主要通过辐射引发或引发剂引发磷酸、马来酸酐、邻苯二甲酸酐等与聚丙烯酰胺交联,如采用丙烯酸钠与丙烯酰胺共聚交联,可得吸水量可达2000g/g的高吸水性树脂。

聚丙烯腈的改性:主要是通过丙烯腈与甲基丙烯酸、N-羟甲基丙烯酰胺进行共聚、纺丝、再硫酸浸渍制得纤维状吸水树脂。

聚丙烯酸的改性:主要是通过丙烯酸盐类单体的水溶液聚合或反相悬浮聚合制得,其产量是最大的。交联方法可以采用交联剂交联、自身交联、离子交联等方法。

2 高吸水性树脂的应用

2.1 在农业与园艺方面的应用

用于农业与园艺方面的高吸水性树脂又称为保水剂和土壤改良剂。我国是世界上缺水较严重的国家,因此,保水剂的应用就显得越来越重要,目前国内已有十几家科研院所的研制高吸水性树脂产品用于粮、棉、油、糖、烟、果、菜、林等60多种植物上进行应用试验,推广面积超过7万多公顷,并在西北、内蒙等地利用高吸水性树脂进行大面积防砂绿化造林。用于这方面的高吸水性树脂主要是淀粉接枝丙烯酸盐聚合交联物和丙烯酰胺-丙烯酸盐共聚交联物,其中盐已由钠型转向钾型。使用的方法主要有拌种、喷撤、穴施、或用水调成糊状后浸泡植物根部。同时,还可以利用高吸水性树脂对化肥进行包衣后施肥,充分发挥化肥的利用率,防止浪费和污染。国外还利用高吸水性树脂作为水果、蔬菜、食品保鲜包装材料。

2.2 在医用、卫生方面的应用

主要用作卫生巾、婴儿尿布、餐巾、医用冰袋;用于调节环境气氛的胶状日用芳香材料。用作软膏、霜剂、擦剂、巴布剂等的基质医用材料,具有保湿、增稠、皮肤浸润、胶凝的作用。还可以制作成控制药物释放量、释放时间、释放空间的智能载体。

2.3 在工业方面的应用

利用高吸水性树脂高温吸水低温释放水的功能制作工业防潮剂。在油田采油作业中,尤其老油田的采油作业,利用超高相对分子质量的聚丙烯酰胺的水溶液进行驱油效果非常好。还可以用于有机溶剂的脱水,尤其对极性小的有机溶剂其脱水效果十分显著。还有工业用的增稠剂、水溶性涂料等。

2.4 在建筑方面的应用

在水利工程使用的遇水快速膨胀材料,是纯粹的高吸水性树脂,主要用于汛期大坝洞的堵漏、地下室、隧道、地铁预制缝的堵水;用于城市污水处理和疏竣工程的泥浆固化,以便于挖掘和运输等。

高吸水性树脂基本成本核算

广泛用于农业、工业、生活领域,极具发展前景的国内高吸水性树脂行业,由于反倾销后原材料市场形成垄断,价格暴涨,导致30多家高吸水性树脂企业纷纷倒闭、停产,与此同时,国外产品趁机大量涌入国内市场。

反倾销后丙烯酸价格惊人上涨

作为国内生产丙烯酸及酯的最大生产企业——北京东方化学工业集团(以下简称东方化工)、上海高桥石化丙烯酸厂、吉联(吉林)石油化学有限公司,针对国外出口丙烯酸酯的大量低价倾销行为提起了反倾销调查。2001年6月和2003年4月,国家先后公布了对原产日本、美国、德国,及韩国、印尼、马来西亚和新加坡等进口丙烯酸酯的反倾销案终裁决定。三家企业获得了反倾销的胜诉。

据了解,近10年来,我国丙烯酸工业发展很快,但仍不能满足迅速增长的市场需求。国内自给率呈逐年下降趋势,由1996年的80%降至2001年的44%,对进口依赖度相应由20%增加到56%。

实行反倾销措施后,国内丙烯酸由原来的供过于求,一下变为奇货可居,其价格出现了惊人的上涨:东方化工乙烯产品出厂价格报单显示,从2003年七八月份至今年2月,丙烯(基础原料)单价一直稳定为5700元/吨,但丙烯酸酯的最高价格为每吨17000元,上涨了1倍。而相关产品丙烯酸,由最低时的每吨6750元涨至21600元,上涨约3倍。

化工专家介绍,东方化工等三家企业的丙烯酸酯产品在市场上占有绝对优势,它们同时又是丙烯酸的仅有生产厂家。反倾销后,由于利润较低,国外已基本不再向我国出口丙烯酸。面对旺盛的市场需求,三家企业生产能力有限,对丙烯酸的价格又具备排他性。在这种情况下出现的大大超出成本的反常提价行为,令丙烯酸下游产业、高吸水性树脂行业难以为继。

下游企业遭受“灭顶之灾”

投资达5000万元的唐山博亚科技工业开发有限公司,是全国最大的保水剂生产示范基地,如今企业已经停产半年。财务主管任海霞说:“去年八九月份,丙烯酸价格往上猛蹿,实在太离谱了,我们的产品卖一吨要赔3000多元,卖得越多,赔得就越多,不停产拖不下去了。原料厂家获得这样的超额利润不正常。”

另一家被迫停产的陕西汉中树脂有限公司,也是一家国有企业,去年丙烯酸价格涨到1.3万元左右,就无力生产了。总经理隆建民说:“我们1989年就正式出高分子产品,到2000年占据了比较大的市场份额,光设备投入就有500万元。谁想到,市场刚刚发育并替代了进口,就遭致‘灭顶之灾’,职工放假8个多月了。”

目前我国高吸水性树脂生产企业有近40家,年产能力3万吨,但产量不到3000吨。国有企业尚且如此遭遇,由于原料供应不能保证,且价格大大超出企业承受能力的民营企业更是纷纷倒闭关门。

唯一苦苦支撑的济南昊月树脂有限公司,曾占据国内高分子吸水树脂销售市场的30%份额,是东方化工的丙烯酸大客户,几度全面停产,各项经济损失近500万元。这家企业自今年2月先后向商务部、发展改革委等提出反垄断调查,到目前没有明确结果。

昊月公司总经理杨志亮说:“最初丙烯酸价格飞涨,我们觉得是原材料丙烯价格上涨所致,然而,经过认真调查发现,丙烯的价格一直很稳定,而丙烯酸价格暴涨,厂家利用的正是他们供不应求的趋势及绝对的支配地位,是明显的不正当竞争。”

对下游企业的这些遭遇,东方化工销售部工作人员的说法是,由于一段时间以来石油、水、煤价格普遍上涨,加之丙烯酸类产品一直供不应求,多重因素作用其价格“随行就市”,国际上也是如此。至于高吸水树脂企业的停产、倒闭,这是市场的正常“洗牌”行为。

国外厂商进货量迅速上涨

企业负责人普遍反映,丙烯酸类项目都是国家巨资投入,发展改革委严格审批,目的就是考虑整个产业的配置,实现进口替代。可如今企业利用国家的保护政策,只顾自己生产,而无视下游厂商的死活,最终还是让国家财产和行业发展受损。

据国外一些企业驻中国代表处透露,今年高分子吸水树脂的进货量上涨了5倍。日本、韩国企业纷纷涌入,开始都采用平价供应策略,没想到国内竞争对手没有了,价格最近开始上涨。记者在调查中了解到,像天津小护士、重庆丝爽、四川吉庆卫生用品有限公司,自去年底以来,已纷纷转向采用进口商的产品。

化工专家表示,化工类产品实际是个链条产业。丙烯酸的涨幅过高,导致国内吸水性树脂企业萎缩、垮掉。昂贵的化工设备不用,老化是很快的,这些还都是有形损失,而无形损失呢?我国有三四亿人使用卫生巾,失去这样大的市场太可惜了。

反倾销是把“双刃剑”

著名反垄断法专家、对外经济贸易大学博士生导师黄勇教授认为,我国虽然没有反垄断法,但相关精神在反不正当竞争法和价格法中都有体现,问题是很多关键的技术性衡量指标无法可依。高吸水树脂行业的遭遇,反映出反垄断与反倾销也存在协调问题,特别是要防止对原材料产品占有垄断地位的企业借机抬高价格,使相关产业的发展受损。

一般而言,判断其行为是否发生垄断,有三个构成要件:一是企业是否占市场支配地位;二是企业之间是否有共谋,可从其价格上涨趋势、后果等进行推定;三是在一定时期内不正当地维持高定价。市场支配地位很好判断,但是否滥用就要进行更细致的调查。需要明确一点,各国的反垄断法不是反占市场支配地位的企业,而反的是对其支配地位的滥用行为,因而,国家应加快出台反垄断法。

黄勇教授同时指出,反倾销也是一把“双刃剑”,实施这项措施,特别是对化工类原材料产品,要进行上下游及相关产品的成本核算。丙烯酸酯反倾销,维护了国内几家企业的利益,但相关产业却濒临倒闭。这是令人深思的,表面上我们夺回了丙烯酸酯市场,但又拱手相让了高分子树脂市场。不管是反倾销还是反垄断,要建立制度性的沟通和协调机制,最终目的是维护公平的竞争格局,保护消费者福利的整体提高。

『捌』 高吸水树脂的简介

高吸水树脂一般为含有亲水基团和交联结构的高分子电解质。吸水前,高分子链相互靠拢缠在一起,彼此交联成网状结构,从而达到整体上的紧固。与水接触时,水分子通过毛细作用及扩散作用渗透到树脂中,链上的电离基团在水中电离。由于链上同离子之间的静电斥力而使高分子链伸展溶胀。由于电中性要求,反离子不能迁移到树脂外部,树脂内外部溶液间的离子浓度差形成反渗透压。水在反渗透压的作用下进一步进入树脂中,形成水凝胶。
同时,树脂本身的交联网状结构及氢键作用,又限制了凝胶的无限膨胀。
当水中含有少量盐类时,反渗透压降低,同时由于反离子的屏蔽作用,使高分子链收缩,导致树脂的吸水能力大大下降。通常,高吸水树脂在0.9% NaCl溶液中的吸水能力只有在去离子水中的1/10左右。
吸水和保水是一个问题的两个方面,林润雄等对此进行了热力学探讨。在一定温度和压力下,高吸水树脂能自发地吸水,水进入树脂中,使整个体系的自由焓降低,直到平衡。若水从树脂中逸出,使自由焓升高,则不利于体系的稳定。差热分析表明,高吸水树脂吸收的水在150°C以上仍有50%封闭在凝胶网络中。因此,常温下即使施加压力,水也不会从高吸水树脂中逸出,这是由高吸水树脂的热力学性质决定的。 高吸水聚合物用途广泛,应用前景非常广阔。目前其主要用途仍然是卫生用品,约占市场总量的70%左右。由于聚丙烯酸钠高吸水树脂吸水能力很大,并具有优异的保水性能,所以作为土壤保水剂在农业、林业方面应用范围很广。如果在土壤中加入少量的高吸水性聚丙烯酸钠,就能提高某些豆类的发芽率和豆苗的抗旱能力,使土壤的透气性能增强。另外,由于高吸水树脂的亲水性及优良的防雾性和抗结露性能,所以又可作为新的包装材料。利用高吸水聚合物独特性能制成的包装薄膜可有效地保持食品鲜度。在化妆品中加入少量的高吸水聚合物,还可使其乳液粘度增大,是一种理想的增稠剂。利用高吸水聚合物只吸水不吸油或有机溶剂的特点,在工业上又可作为脱水剂。
由于高吸水聚合物具有无毒、对人体无刺激性、无副反应、不引起血液凝固等特点,近年来,已被广泛应用于医药领域。例如,用于含水量大、使用舒适的外用软膏;生产能吸收手术及外伤出血和分泌液,并可防止化脓的医用绷带及棉球;制造能使水分和药剂通过而微生物不能透过的抗感染性人造皮肤等。 随着科学技术的发展,环境保护已越来越受到人们的关注。如果将高吸水聚合物装入到一个可溶于污水的袋中,并将此袋浸入污水中,当袋子被溶解后,高吸水聚合物就可迅速地吸收液体而使污水固体化。
在电子工业中,高吸水聚合物还可用作湿度传感器、水分测量传感器及漏水检测器等。高吸水聚合物可作为重金属离子吸附剂及吸油材料等。
总之,高吸水聚合物是一种用途非常广泛的高分子材料,大力开发高吸水聚合物树脂具有巨大的市场潜力。今年在我国北方大部分地区干旱少雨的情况下,如何进一步推广和使用高吸水聚合物,是摆在农业和林业科技工作者面前的一项迫切任务。在西部大开发战略实施过程中,在改良土壤的工作中,大力开发和应用高吸水聚合物的多种实用功能,具有现实的社会效益和潜在的经济效益。

『玖』 什么是“高吸水树脂”具体说说

高分子吸水树脂因其具有吸水量大,保水能力强和分之聚合物的许多性能,如:力学性能,可塑性,易加工和便于使用等,近二十年来发展速度,被广泛应用与一次性卫生用品,农用领域,光电缆业和防水行业。
一次性卫生用品是高分子吸水树脂的主要的也是较为成熟的应用领域,约占高分子吸水树脂总用量的70%-80% ,主要是婴幼儿护理卫生用品,妇女护理卫生用品和成人失禁卫生用品。由于上述产品所处理的液体不是简单的水,而是含有盐,矿物质以及血液的混合物。所以,我们在测试高分子吸水树脂和尿裤时使用的是生理盐水和人造血浆,以更符合实际使用时的状况。
尿裤的技术要求
尿裤是以木浆和高分子吸水树脂为主构成的吸收芯体,以及无妨布,纸巾,松紧带和粘合剂等组成。消费者对尿裤的要求是婴儿穿戴时不产生渗漏和吸水及保水性,并使婴儿皮肤表面干爽,穿戴舒适。尿裤生产商对尿裤产品的性能要求主要表现在保水性能,穿渗速度,液体扩散和防漏等。而尿裤的原材料对尿裤的每一种性能所作的贡献是不同的,如表面导流层的无妨布对穿渗速度,液体扩散范围影响比较大,而高分子吸水树脂会对尿裤等回渗性能产生比较大的影响,大约有70% 的贡献来自吸收树脂。
高分子吸水树脂的性能
高分子吸水树脂的出现带动了尿裤使用和生产的革命,由于它的高吸水性以及良好的保水性能使现代的一次性尿裤为母亲带来方便的同时也为婴儿带来干孀和舒适。
作为尿裤原材料的高分子吸水树脂具有许多特性,如:吸收速率,吸收量,加压下的吸收量和保水量。
吸收速率:它显示高分子吸水树脂在某个时间段中最大的吸收量,一般数据是以开始的30s,60s 或180s 内1g 高分子吸水树脂所能吸收的生理盐水。
吸收量:它显示1g 高分子吸水树脂最大的所能吸收的生理盐水量。
加压下的吸收量(0.70pa) :它显示在受到0.7pa 压力的情况下,1g 高分子吸水树脂最大的吸收量。这是因为婴儿在很多情况下是坐着或躺着的,而这时尿液往往是在人体的压迫下吸收尿液。这种测试方式就是为了模拟并了解吸收树脂在加压下的吸收情况。
保水量:它显示1g 高分子吸水树脂在吸收最大的生理盐水量后经过1400 转的离心处理所能保有的最大的生理盐水量。它表示了高吸收树脂真正能保持与固定的生理盐水量。
比重和颗粒分布:它显示高分子吸水树脂的比重和颗粒大小以及分布情况。
这些特性对尿裤的性能都有不同的贡献,所以我们并不认为某一数据高就一定是好的产品,但是相对而言,保水量和加压下的吸收量是比较重要的。
对尿裤性能的作用:
就尿裤的要求以及高分子吸收树脂在尿裤中所起的作用而言,保水量和加压下的吸收量是比较重要的性能。其次是吸水速率和吸水量。现在尿裤行业中,无论是尿裤制造商还是尿裤分销商都十分关注吸水速率,认为吸水快的尿裤是好的尿裤,特别是尿裤制造商将吸水速率作为评介高分子吸水树脂优劣的唯一标准,这对尿裤的发展产生一种误导,使我们的尿裤无法及时跟上世界先进尿裤发展的趋势。我们部析尿裤芯片可以发现其中有两种原料组成:高分子吸水树脂和木浆。高分子吸水树指具有高吸水量和高吸水保有量的特征,它的吸水量和保水量是木浆的几十位,而木浆堆积在一起具有良好的毛细管,产生较高的导流分散作用,它的吸水速率大约是高分子吸水树脂的5-6 位。所以两者的性能具有互补性,合适的配比和混合构成的尿裤芯片能达到最佳吸收速率和吸水保有量的效果。如果我们最大关注的只是速率,则木浆将裤芯片的最佳原材料。而我们使用尿裤并重点推广宣传 的是其能保持婴儿屁股的皮肤干爽,高分子吸水树脂所拥有的高水量和保水量才能保工业化这一特性,这也下是高分子吸水树脂能成为新一代尿裤芯片材料的主要原因。
为了了解高分子吸水树脂吸水速率与吸水量的关系,我们使用柱状吸水试验方法对不同的高分子吸水树脂进行了测试,我们发现,初吸收速率较快的高分子吸水树脂在经过一非常短的时间后,它的吸收量就没有增长,这就是产生了高分子聚合物胶凝阴隔的问题。高分子吸水树脂是一种颗粒表面经过一定程度交联的高分子聚合物。它在吸收液体的时候颗粒会快速膨胀同时机械强度下降,表面互相粘联和产生糊状的情况,如果表面互相粘联情况严重就会产生阴止液体透过已吸收并膨胀颗粒闻隙情况,使吸收速度趋于停滞,这种高分子吸水树脂的长期吸收能力和多次吸收能力就会产生比较大的问题。主要表现在它的尿裤的第二次和第三次回渗会比较高,它只能吸收婴儿的第一次排尿,在2-3h 后婴儿再次排尿后就会因为胶凝阴隔的问题而使吸收不畅,这样尿裤就无法保证婴儿的皮肤干爽从而失去它的真正协效。所以,我们在选择高分子吸水树脂时不可过多关注吸收速率,不是吸收速率越高对尿裤越好,而是相对于不同市场区隔的尿裤去选择具有不同保水量和加压下吸的高分子吸水树脂,同时在与木浆及面层等其他原料的合理配合下达到尿裤的设计要求。

『拾』 高吸水性树脂的高吸水性树脂的分类

高吸水性树脂发展很快,种类也日益增多,并且原料来源相当丰富,由于高吸水性树脂在分子结构上带有的亲水基团,或在化学结构上具有的低交联度或部分结晶结构又不尽相同,由此在赋予其高吸水性能的同时也形成了一些各自的特点。从原料来源、结构特点、性能特点、制品形态以及生产工艺等不同的角度出发,对高吸水性树脂进行分类,形成了多种多样的分类方法。 随着人们对高吸水性树脂研究的不断深入对传统的高吸水性树脂分为淀粉系列、纤维素系列和合成树脂系列的分类方法,已不能满足分类要求。因此,邹新禧教授结合自己的研究成果,提出了六大系列的分类。
淀粉系:包括接枝淀粉、羧甲基化淀粉、磷酸酯化淀粉、淀粉黄原酸盐等;
纤维素系:包括接枝纤维素、羧甲基化纤维素、羟丙基化纤维素、黄原酸化纤维索等;
合成树脂系:包括聚丙烯酸盐类、聚乙烯醇类、聚氧化烷烃类、无机聚合物类等;
蛋白质系列:包括大豆蛋白类、丝蛋白类、谷蛋白类等;
其他天然物及其衍生物系:包括果胶、藻酸、壳聚糖、肝素等;
共混物及复合物系:包括高吸水性树脂的共混、高吸水性树脂与无机物凝胶的复合物、高吸水性树脂与有机物的复合物等。 阴离子系:包括羧酸类、磺酸类、磷酸类等;
阳离子系:包括叔胺类、季胺类等;
两性离子系:包括羧酸-季胺类、磺酸-叔胺类;
非离子系:包括羟基类、酰胺基类等;
多种亲水基团系:包括羟基-羧酸类、羟基-羧酸基-酰胺基类、磺酸基-羧酸基类等。 高吸水性树脂在分子结构上具有大量的亲水性化学基团,而这些基团的亲水性很大程度上影响着高吸水性树脂的吸水保水性能,如何有效获得这些化学基团在高吸水性树脂化学结构上的组织结构,充分发挥各化学基团所在亲水点的效能,已经成为现在对高吸水性树脂研究的重点。故可以从亲水化方法进行分类。
亲水性单体的聚合(如聚丙烯酸盐、聚丙烯酰胺、丙烯酸-丙烯酰胺共聚物等);
疏水性(或亲水性差的)聚合物的羧甲基化(或羧烷基化)反应(如淀粉羧甲基化反应、纤维素羧甲基化反应、聚乙烯醇(PVA)-顺丁烯二酸酐的反应等);
疏水性(或亲水性差的)聚合物接枝聚合亲水性单体(如淀粉接枝丙烯酸盐、淀粉接枝丙烯酰胺、纤维素接枝丙烯酸盐、淀粉-丙烯酸-丙烯酰胺接枝共聚物等);
含氰基、酯基、酰胺基的高分子的水解反应(如淀粉接枝丙烯腈后水解、丙烯酸酯-醋酸乙烯酯共聚物的水解、聚丙烯酰胺的水解等)。 高吸水性树脂交联控制是控制其空间组织结构状态的重要方面,其交联点的密度大小直接影响高吸水性树脂的吸水和保水能力。因此根据交联点形成方式的不同,可进行如下分类。
交联剂进行网状化反应(如多反应官能团的交联剂水溶性的聚合物、多价金属离子交联水溶性的聚合物、用高分子交联剂对水溶性的聚合物进行交联等);
自交联网状化反应(如聚丙烯酸盐、聚丙烯酰胺等的自交联聚合反应);
放射线照射网状化反应(如聚乙烯醇、聚氧化烷烃等通过放射线照射而进行交联);
水溶性聚合物导入疏水基或结晶结构(如聚丙烯酸与含长链(C12~C20)的醇进行酯化反应得到不溶性的高吸水性聚合物等) 。 以制品形态分类,高吸水性树脂可分为粉末状、纤维状、膜片状、微球状等。
以制备方法分类,高吸水性树脂可分为合成高分子聚合交联、羧甲基化、淀粉接枝共聚、纤维素接枝共聚等。
以降解性能分类,SAP可分为非降解型(包括丙烯酸钠、甲基丙烯酸甲酯等聚合产品)、可降解型(包括淀粉、纤维素等天然高分子的接枝共聚产品)。

阅读全文

与高吸水性树脂技术发展相关的资料

热点内容
水处理反渗透膜有几种 浏览:902
辣椒油树脂商品编码 浏览:804
成都树脂产品招聘 浏览:147
贝斯净水怎么样 浏览:80
净水器烧开的水为什么沸腾 浏览:646
软水装置除水垢 浏览:582
抗油性笔UV树脂 浏览:604
大连EDI水处理公司 浏览:441
鸭嘴式饮水机什么意思 浏览:599
反渗透的浓缩液怎么处理 浏览:19
小米空气净化器怎么重置蓝牙 浏览:978
日胜过滤器有变频吗 浏览:339
过滤器出口压力大于进口压力 浏览:557
大连污水提升器价格 浏览:125
水过滤石英砂价格 浏览:794
处理高浓度含盐废水工艺 浏览:985
挖掘机如何正确更换机油滤芯 浏览:282
半透膜半径 浏览:462
树脂手表镜面划痕 浏览:990
GPAN超滤 浏览:122