A. 环氧树脂胶水的流动性怎么控制
有一种叫“增稠剂”的东西,白色的面粉样的粉末,加到比较稀的胶水中,就可以自己调节流动性。一般可以用原胶水加重量比例为5%,7%,10%,15%等等来调节流动性。
环氧树脂胶一般是指以环氧树脂为主体所制得的胶粘剂,环氧树脂胶一般还应包括环氧树脂固化剂,否则这个胶就不会固化。
环氧树脂胶粘剂是一类由环氧树脂基料、固化剂、稀释剂、促进剂和填料配制而成的工程胶粘剂。由于其粘接性能好、功能性好、价格比较低廉、粘接工艺简便,所以近几十年来在家电、汽车、水利交通、电子电器和宇航工业领域得到了广泛的应用。随着高新技术和纳米技术的不断发展,近年来,对环氧树脂的改性不断深入,互穿网络、化学共聚和纳米粒子增韧等方法广泛应用,由环氧树脂配制成的各种高性能胶粘剂品种也越来越多。
种类:环氧树脂胶又分为软胶和硬胶。
环氧树脂软胶:它是一种液型,双组份、软性自干型软胶,无色、透明、具有弹性,轻度划擦表面即自行恢复原形。适用于涤纶、纸张、塑料等标牌装饰。
环氧树脂硬胶:它是一种液型,双组份硬性胶,无色、透明,适用于金属标牌同时可制作各种水晶钮扣、水晶瓶盖、水晶木梳、水晶工艺品等高档装饰品。
分类:环氧树脂的分类目前尚未统一,一般按照强度、耐热等级以及特性分类,环氧树脂的主要品种有16种,包括通用胶、结构胶、耐温胶、耐低温胶、水下,潮湿面用胶、导电胶、光学胶、点焊胶、环氧树脂胶膜、发泡胶、应变胶、软质材料粘接胶、密封胶、特种胶、被固化胶、土木建筑胶16种。
对环氧树脂胶黏剂的分类在行业中还有以下几种分法:
按其主要组成,分为纯环氧树脂胶黏剂和改型环氧树脂胶黏剂;按其专业用途,分为机械用环氧树脂胶黏剂、建筑用环氧树脂胶黏剂、电子眼环氧树脂胶黏剂、修补用环氧树脂胶黏剂以及交通用胶、船舶用胶等;按其施工条件,分为常温固化型胶、低温固化型胶和其他固化型胶;按其包装形态,可分为单组分型胶、双组分胶和多组分型胶等;还有其他的分法,如无溶剂型胶、有溶剂型胶及水基型胶等。但以组分分类应用较多。
特性: 基本特性:双组份胶水,需AB混合使用,通用性强,可填充较大的空隙;
操作环境:室温固化,室内、室外均可,可手工混胶也可使用AB胶专用设备(如AB胶枪);
适用温度一般都在-50至+150度;
适用于一般环境,防水、耐油,耐强酸强碱;
放置于避免阳光直接照射的阴凉地方,保质期限12个月。
环氧树脂胶是在环氧树脂的基础上对其特性进行再加工或改性,使其性能参数等符合特定的要求,通常环氧树脂胶也需要有固化剂搭配才能使用,并且需要混合均匀后才能完全固化,一般环氧树脂胶称为A胶或主剂,固化剂称为B胶或固化剂(硬化剂)。
反映环氧树脂胶固化前的主要特性有:颜色、粘度、比重、配比、凝胶时间、可使用时间、固化时间、触变性(止流性)、硬度、表面张力等。
粘度(Viscosity):是指胶体在流动中所产生的内部摩擦阻力,其数值由物质种类、温度、浓度等因素决定。
凝胶时间:胶水的固化是从液体向固化转化的过程,从胶水开始反应起到胶体趋向固体时的临界状态的时间为凝胶时间,它由环氧树脂胶的混合量、温度等因素决定。
触变性:该特性是指胶体受外力触动(摇晃、搅拌、振动、超声波等)时,随外力作用由稠变稀,当外界因素停止作用时,胶体又恢复到原来时的稠度的现象。
硬度(Hardness):是指材料对压印、刮痕等外力的抵抗能力。根据试验方法不同有邵氏(Shore)硬度、布氏(Brinell)硬度、洛氏(Rockwell)硬度、莫氏(Mohs)硬度、巴氏(Barcol)硬度、维氏(Vichers)硬度等。硬度的数值与硬度计类型有关,在常用的硬度计中,邵氏硬度计结构简单,适于生产检验,邵氏硬度计可分为A型、C型、D型,A型用于测量软质胶体,C和D型用于测量半硬和硬质胶体。
表面张力(Surface tension):液体内部分子的吸引力使表面上的分子处于向内一种力作用下,这种力使液体尽量缩小其表面积而形成平行于表面的力,称为表面张力。或者说是液体表面相邻两部分间单位长度内的相互牵引力,它是分子力的一种表现。表面张力的单位是N/㎡。表面张力的大小与液体的性质、纯度和温度有关。
反映环氧树脂胶固化后特性的主要特性有:电阻、耐电压、吸水率、抗压强度、拉伸(引张)强度、剪切强度、剥离强度、冲击强度、热变形温度、玻璃化转变温度、内应力、耐化学性、伸长率、收缩系数、导热系数、诱电率、耐候性、耐老化性等。
电阻率:描述材料电阻特性通常用表面电阻或体积电阻。表面电阻简单地说就是同一表面上两电极之间所测得的电阻值,单位是Ω。将电极形状和电阻值结合在一起通过计算可得到单位面积的表面电阻率。体积电阻也叫体积电阻率、体积电阻系数,指通过材料厚度的电阻值,是表征电介质或绝缘材料电性能的一个重要指标。表示1cm2电介质对泄漏电流的电阻,单位是Ω?m或Ω?cm。电阻率愈大,绝缘性能愈好。
耐电压:又称耐压强度(绝缘强度),胶体两端所加的电压越高,材料内电荷受到的电场力就越大,越容易发生电离碰撞,造成胶体击穿。使绝缘体击穿的最低电压叫做这个物体的击穿电压。使1毫米厚的绝缘材料击穿时,需要加上的电压千伏数叫做绝缘材料的绝缘耐压强度,简称耐电压,单位是:Kv/mm。绝缘材料的绝缘性能与温度有密切的关系。温度越高,绝缘材料的绝缘性能越差。为保证绝缘强度,每种绝缘材料都有一个适当的最高允许工作温度,在此温度以下,可以长期安全地使用,超过这个温度就会迅速老化。
吸水率:是指物质吸水程度的量度。系指在一定的温度下把物质在水中浸泡一定时间所增加的质量百分数。
拉伸强度:拉伸强度是胶体拉伸至断裂时的最大拉伸应力。有称扯断力、扯断强度、抗张力、抗张强度。单位为MPa。
剪切强度:也称抗剪强度,是指单位粘接面积上能够承受平行于粘接面积的最大载荷,常用的单位为MPa。
B. 树脂是什么材料会出现变形吗
树脂具有较高的热变形温度和低收缩性。间苯树脂、乙烯基树脂及DCPD树脂均可作为模具树脂。
乙烯基型聚酯树脂高固含量、触变性、已促进使其具有优秀的工艺性能,低收缩性能;优良的机械性能,耐热降解性能,耐化学腐蚀性能。在高温下有优越的强度保留,热变形温度高。在制造高挡模具时可 做为模具材料的首选,确保产品表面质量靠的是模具胶衣,保证产品质量的稳定与一致性,则靠的是模具树脂的性能。
一般不会变形。
C. 什么是触变型树脂
在玻璃钢手糊、喷射成型等成型工艺中,有时为了防止流胶,要求所使用的不饱和聚酯聚内树脂具有触容变性,即在有外加机械力时,树脂的粘度变小,当机械力解除后,树脂的粘度迅速增大。这样就既便于将树脂均匀地涂敷在玻璃纤维织物上,又使涂敷上的树脂不会在垂直面或斜面上向下流动,从而能准确地制造大型垂直结构。
D. 什么是不饱和聚酯树脂的触变指数
据说是最大转速时测得的粘度除以最小转速时测得的粘度
E. 玻璃鳞片胶泥材料制成技术要点
1、首先将触变剂加入乙烯基树脂中采用高速分散机将其均匀的分散在乙烯基树脂中。2、之后将分散好触变剂的乙烯基树脂倒入真空捏合及中,然后加入其它材料进入捏合机封盖进行抽真空捏合搅拌均匀。南京大自然环境科技有限公司是从事重防腐及废水处理型企业,主要从事经营玻璃鳞片胶泥材料的研发与生产、脱硫防腐总承包、烟囱防腐总承包、烟道膨胀节生产、脱硫废水及其零排放系统工程总承包(含系统设计、设备配套、技术咨询服务、调试、技术改造等)。
F. 什么样的稀释剂可以提高环氧树脂的触变性,改善其流动性能
用醇类试试
G. 树脂胶粉和可再分散乳胶粉有什么区别
主要区别是,性质不同、作用不同、应用领域不同,具体如下:
一、性质不同
1、树脂胶粉
是由高分子聚合物树脂、超细负载抗固结剂、以及多种功能添加剂,经过复合加工而成的一种流动性佳的白色粉末。
二、作用不同
1、树脂胶粉
应用于外墙外保温行业,用于替代高成本高添加量的传统乳胶粉。
2、可再分散乳胶粉
①、可再分散乳胶粉分散后成膜并作为第二种胶粘剂发挥增强作用。
②、保护胶体被砂浆体系吸收(成膜后不会被水破坏掉,或“二次分散”)。
③、成膜的聚合物树脂作为增强材料分布与整个砂浆体系中,从而增加了砂浆的内聚力。
三、应用领域不同
1、树脂胶粉
应用于外墙外保温领域内产品(膨胀聚苯板薄抹灰外墙外保温系统)。
①、挤塑板系统专用胶粉。
②、聚苯板系统专用胶粉。
③、聚苯颗粒保温砂浆专用胶粉。
④、外墙腻子专用胶粉。
⑤、瓷砖粘接专用胶粉。
⑥、玻化微珠保温砂浆专用胶粉。
⑦、防水砂浆专用胶粉。
⑧、珍珠岩保温砂浆专用胶粉。
2、可再分散乳胶粉
①、瓷砖粘结剂。
②、外墙外保温系统粘结砂浆。
③、外墙外保温系统抹面砂浆。
④、瓷砖勾缝剂。
⑤、自流性水泥砂浆。
⑥、内、外墙柔性腻子。
⑦、柔性抗裂砂浆。
⑧、胶粉聚苯颗粒保温砂浆。
⑨、干粉涂料。
⑩、对柔韧性由较高要求的聚合物砂浆产品。
H. 如何评价填料在树脂中的分散效果
一、颜填料分散过程机理探讨
供应形式的颜料都处于团聚状态, 依靠分散设备施加的机械能破坏原生颗粒之间的内附着力, 原生颗粒被分散。一旦被分散, 原生颗粒就有重新团聚的趋势, 这一过程称作絮凝。从结构观点看, 絮凝非常类似于团聚, 只不过是用树脂溶液代替空气填充了颜料之间的空隙。为阻止絮凝, 必须依靠分散剂以某种形式结合在颜料粒子周围, 并提供空间位阻、电荷斥力等维持分散状态稳定。各国学者对分散稳定的理论提出了许多模型,其中比较成熟的有双电层理论、空间位阻理论等。其核心是如何有效阻止分散状态的颜料粒子重新聚集。
双电层理论又称静电稳定理论, 将分散状态的颜料粒子表面描述为双电层结构。当赋予颜料粒子表面某种电荷以后, 相反电荷的带电离子云会围绕其周围。当两个微粒靠近时, 电荷斥力将阻止其靠近, 从而阻止絮凝。这类分散剂分子中通常含有大量羧基或磺酸基, 用于提供电荷。在以水为主的高电解质媒介中, 该模型发挥主要稳定作用。
溶剂型体系中起主要作用的是空间位阻理论。该理论中分散剂分子被设计为一端为亲颜料基团, 另一端为树脂相容链段。分散剂分子依靠亲颜料基团吸附在颜料粒子表面, 树脂相容链段溶解在树脂溶液中, 从而在颜料粒子周围形成空间位阻, 阻止微粒靠近。
无论哪个理论,最重要的一点是相同的, 即分散剂分子对颜料粒子的吸附。为了增强分散剂分子与颜料粒子的结合力, 在新型高分子分散剂的设计中, 分散剂分子常被设计成嵌段聚合物、梳形聚合物、超枝化聚合物等。
某些有机颜料例(如酞青蓝)其表面很难与分散剂分子形成牢固的吸附。为了增强分散剂和颜料粒子的结合力, 经常在颜料后处理或者分散过程中添加一种颜料增效剂, 如毕克化学提供的BYK - SYNERG IST 2100, 能显著提高分散效果。颜料粒子与分散剂分子的结合被称为锚固作用, 主要依靠氢键、极化作用和范德华力实现。而某些颜料的分子结构中既不存在形成氢键的供体和受体, 又缺乏极性或可极化的基团,因此很难与分散剂分子形成强的锚固作用。
所谓颜料增效剂实际上是一种颜料衍生物, 将颜料分子引入极性基团或可以形成氢键的基团, 从而增强锚固作用。实际上在颜料化处理中, 添加很少量的颜料衍生物, 可以明显改善颜料的分散性能和其他性能。此类颜料衍生物具有与颜料相似的骨架结构,并含有特定基团或聚合物链。
二、基于吸附竞争理论的分散思路
以上颜料分散机理没有考虑颜料粒子吸附的空气分子、水分子和溶剂分子的影响。实际上团聚状态的颜料粒子表面被空气和水分子包围, 分散以后的颜料粒子被溶剂包围。空气、水和溶剂对分散过程肯定会产生影响。在润湿过程中,颜料粒子周围吸附的空气分子首先被溶剂分子所替代。然后是分散剂分子中的颜料亲和基团跟颜料粒子结合, 发生锚固作用。但颜料粒子的大部分表面仍然被溶剂分子所吸附。因此, 有理由认为分散剂和溶剂在颜料表面形成吸附竞争。
从热力学的角度分析, 由于分散剂分子经过专门设计, 对颜料表面的吸附力有竞争优势, 因此使得分散体系维持稳定。从动力学的角度分析, 在颜料表面吸附的溶剂分子被分散剂的亲颜料基团取代之前, 颜料粒子表面被溶剂分子包围。分散剂大分子在溶剂中展开以后其分子链周围也被溶剂吸附, 即被溶剂化。因此, 颜料粒子表面的溶剂分子和分散剂分子周围的溶剂分子必须同时被排挤开, 然后分散剂分子和颜料粒子的结合才能完成。这个过程中, 溶剂分子分别与颜料粒子和分散剂分子之间的范德华力不可以忽略, 且表现为对分散的阻力。于是, 可以设想, 将这个过程中的溶剂去掉, 或者在分散的后期将溶剂抽出, 必然有利于分散。排除溶剂的竞争以后, 由于接触面积增大, 颜料粒子和分散剂分子之间即便不能形成氢键和极化作用, 单纯依靠范德华力, 也可以获得牢固的锚固作用。
第一个思路是在加热的情况下, 使分散剂处于熔融状态,直接参与研磨。这样直接由分散剂分子取代颜料粒子表面吸附的空气分子而结合。这个思路的优点是能耗低、效率高, 缺点是熔融状态的分散剂黏度不能太大, 这就要求分散剂的相对分子质量不能太高。另一个思路是前期有溶剂参与, 因为溶剂能够使得颜料粒子比较容易被润湿, 即先由溶剂分子取代颜料粒子表面的空气分子, 然后加热或者负压或者同时加热加负压, 使得溶剂挥发出来, 促进颜料粒子和分散剂分子的紧密结合。这个思路的优点是适用于大多数分散剂, 缺点是挥发溶剂能耗高。
三、基于纳米技术的分散思路
近年来纳米材料的研究取得长足进展, 纳米材料的分散也是一个重要课题, 并且与颜料的分散有很多相通之处。颜料的加工过程跟纳米材料类似, 并且多数颜料的原始粒子为纳米级, 因此, 需要对颜料的加工工艺加以改进,把纳米级的颜料粒子分散在漆基树脂或者通用树脂之中, 制成纳米颜料预分散体。其优点是色强度高, 透明度好, 色值和其他各项性能稳定。对涂料、油墨以及喷绘墨水、液晶材料等应用都不会有粒径的限制。
如果纳米级的颜料粒子粒径足够小, 其表面能和吸附能力非常高, 可以使被吸附的官能团丧失化学活性。这个强度已经大于氢键和极化作用。按照这个思路, 就不用专门设计多种多样的适用于不同颜料的分散剂。而是直接用载体树脂或者用通用树脂参与分散, 采用无溶剂分散的办法制成色浆,这个色浆将是非常稳定的。这对目前的分散方法将是一次彻底的革命。
I. 想知道光固化涂料具体的生产工艺,如何将防沉剂气相二氧化硅均匀地分散于树脂与单体中,用什么设备呢
我之前做实验是直接加到树脂和单体中的,然后高速分散就可以了。
J. 环氧树脂固化后,内部是不是均匀分散的,怎么搅拌会不会有气泡怎么能保证没有一个气泡
1、 环氧树脂固化后,内部是不可能均匀分散的。因为我们所使用的环氧树脂和固化剂中都存在同分异构体和杂质,这些同分异构体再固化时的反应活性和固化产物结构肯定会有差异。
2、 搅拌环氧树脂尽应沿着一个方向匀速搅拌,尽可能减少搅拌时带入气体形成气泡。
3、 气泡可大致分为两种:
第一种是搅拌过程中产生的气泡。
搅拌过程中产生气泡又可以分为搅拌带入空气或气体形成的气泡和由于搅拌速度过快液体产生“空泡效应”而产生的气泡,搅拌过程中产生的气泡又分为肉眼看的见和肉眼看不见的。
第二种是固化过程中产生的气泡。
这是由于环氧树脂是通过聚合反应进行固化的,反应是放热反应。在固化反应过程中,环氧树脂体系中的微小气泡(或者说是溶解在环氧树脂中的气体物质)受热膨胀同时气体与环氧体系不再相容会发生迁移从而聚合在一起形成较大的气泡。
固化过程产生的气泡还有一种可能就是反应温度过高或反应放热温度过高造成环氧树脂固化体系中的小分子物质受热气化形成气泡,这个也是经常出现的。
4、要保证没有气泡,需要几个方面的配合:
①尽可能减小环氧树脂-固化剂体系的黏度,黏度越大,搅拌过程中越容易带入气体形成气泡。体系黏度越大,气泡越南消除。
②应当选择固化反应比较平稳,不会急剧反应放热的固化剂,这样可以避免因固化反应热量积累而形成气泡。
③可以选择使用涂料助剂(消泡剂、表面活性剂)或者真空脱泡的方式消除气泡。
④固化环氧树脂时及时移除反应产生的热量,使固化反应平稳进行。