① 环氧树脂的硬度与哪些因素有关
环氧树脂本身的来环氧值源:环氧值越小 固化后硬度越高
固化剂影响: 酚醛胺 脂环胺固化环氧树脂的硬度要高于聚酰胺 脂肪胺 聚醚胺
稀释剂、增塑剂影响:稀释剂、增塑剂加量增加 硬度降低
填充料类型影响:本身硬度高的填充料加入环氧树脂中比加本身硬度低的填充料硬度要高
填充料加量影响:填充料加量越多硬度越高
环氧树脂与固化剂配比影响:配比正确固化完全比配比不合适固化不完全硬度要高
还有其他一些因素的影响,具体看你怎么样设计配方了
② 环氧树脂胶为何出现假固化现象
树脂软化点较高于室温时,树脂在室温就是固态,经过加热或加入稀释剂就可以内溶解。容
如果是固化后的树脂,都也有Tg值限制。在温度升高到Tg以上时,就会变软,可能是你说的假固化。出现这种现象的原因是:环氧树脂固化机理造成的,固化是加成反应和分子链交联过程的综合,前期加成反应速度快,以加成反应为主,后期主要是交联过程,但是链段活性较差,需要加热提供活化能量。这是环氧树脂需要加热的原因,也是需要适当提高温度才能达到更高反应程度的原因。
③ 环氧树脂固化剂及其固化机理
环氧树脂是一种无定形抄黏稠液体,加热呈塑性,没有明显的熔点,受热变软,逐渐熔化而发黏,不溶于水,本身不会硬化,因此它几乎没有单独的使用价值,只有和固化剂反应生成三维网状结构的不溶不熔聚合物才有应用价值。当加入一定量固化剂后,就逐渐固化,形成性能各异的化学物质,因此,必须加入固化剂,组成配方树脂,并且在一定条件下进行固化反应,生成立体网状结构的产物,才会显现出各种优良的性能,成为具有真正使用价值的环氧材料。工程中常用胺类固化剂:乙二胺、二乙烯多胺、多乙烯多胺等。
④ 环氧树脂固化后,其强度、硬度等力学性能变好,这是为什么
环氧材料的固化成型过程是一个很复杂的物理变化和化学变化过程,其影响因素也很多。可概括如下:
(1)环氧胶液(液态环氧树脂胶液,或环氧树脂溶液,或环氧树脂熔液)对固体材料(纤维、填料、被粘接面、涂层基底等)的润湿、浸渍。也可制成预浸料或模塑料。主要影响因素是胶液与固体材料的相容性(亲和性,可用调整胶液配方设计和固体表面处理等方法来改善)和胶液的黏度,(取决于胶液配方和环境温度)。
(2)物料充填模腔或流平,形成致密的物体。主要影响因素是物料的流动性,主要是胶液的黏度。这都取决于胶液配方和环境温度。可以用加压和抽真空的方法来协助实现充模及形成致密的物体。
(3)进行固化反应。在一定的条件下环氧低聚物与固化剂、改性剂开始反应,从胶液→凝胶化→玻璃化→三维交联结构固化物。主要的影响因素是体系的热历程。包括:预热温度、升降温速度、固化温度、固化时间、后固化温度及时间等。此外,固化压力对固化反应及制品的密实和形状稳定也有一定的作用。主要影响因素是胶液配方和环境温度及湿度等。
(4)环氧基体(环氧固化物)的结构形成。这是随着环氧树脂固化反应的进行而逐步形成的。包括固化物化学结构的形成和固化物聚集态结构的形成。主要影响因素是胶液配方和体系的热历程。
(5)环氧材料界面层结构的形成。它也是随着环氧树脂固化反应的进行逐步形成的。不仅取决于胶液配方和体系的热历程,而且还与纤维、填料等材料的表面性能密切相关。
⑤ 环氧树脂固化成型过程及影响因素有哪些
环氧材料的性能不仅取决于环氧树脂的结构与性能、固化剂和添加剂的结构与性能,以及它们之间的配比,而且也取决于它的成型固化历程。
⑥ 环氧树脂固化剂吸潮会造成什么影响
欢颜树脂固化剂有很多种类的,最常见的为常温固化的胺/改性胺类固化剂、中/高温固化的版酸酐类/咪唑类固权化剂、低温固化的硫醇类固化剂等。通常我们讲的都是常温固化的胺/改性胺类固化剂,又分为脂肪胺 脂环胺 聚酰胺 芳香胺 酚醛胺 聚醚胺等,胺类固化剂吸潮会在固化剂表面形成一层膜,吸水严重的会产生白色结晶体而失效(例如异佛尔酮二胺吸水),失效是胺吸水后再与空气中的二氧化碳反应形成铵盐而失效。对于胺类固化剂来讲,微量的水分存在可能能够促进固化反应的进行,但随着含水量的增加固化速度会减慢,固化过程中容易在表面形成铵盐化发白、发粘的现象。以T31固化剂为例,含水量在5%以下时,与环氧树脂混合时是透明的,固化后胶层表面光泽度是很好的,胶层是透明的;含水量在10%左右调教就会出现发白的现象,固化后胶层表面有发粘现象,胶层是白色的;含水量在15%以上时,调出来是乳白色,固化后表面黏糊糊怎么也干不了。
⑦ 双酚A型环氧树脂交联固化中存在那些反应机理是什么采用胺类固化剂时,水对固化过程有什么影响
环氧树脂交联固化是加聚反应。采用胺类固化剂时,微量的水对环氧基团的开环有促进作用,但随着水分的增加会阻碍固化反应的进行。
⑧ 环氧树脂固化问题
环氧树脂不加固化剂的话是不会固化的。固化是一个环氧基与固化剂(一般是胺类和酸酐类)反应的过程。反应是需要一定的温度和时间的。
溴化环氧树脂是热固性树脂,需要加入固化剂才能固化。
二甲基咪唑,不怎么了解,看看书吧!
推荐《环氧树脂应用原理和技术》或者其他关于环氧树脂的书籍,也有很多环氧树脂网站。
⑨ 影响环氧树脂TG值的主要因素有哪些
复合材料由于质量轻且具有比一般金属材料高的比强度、比模量,热固性树脂特别是环氧树脂通常用作复合材料基体树脂,对基体树脂进行增韧改性是提高复合材料的性能的关键措施之一。上世纪80年代初首次报道用Ulteml000R聚醚酰亚胺(PEI)改性环氧树脂的研究:李善君等合成了一系列与环氧树脂具有良好相容性的结构新颖的可溶性聚醚酰亚胺PEI,在EPOn-828和TGD-DM环氧树脂体系中取得了非常优异的增韧效果,材料断裂能提高5倍、模量和玻璃化温度维持不变。那么聚醚酰亚胺到底如何影响环氧树脂性能?专家从化学结构和使用数量2个方面进行了介绍。
关于聚醚酰亚胺化学结构的影响,专家以4种不同主链结构的聚醚酰亚胺改性了4,4’-二氨基二苯甲烷四缩水甘油醚环氧树脂(TG-DDM,环氧值为0.66)和4,4’-二氨基二苯砜(DDS)固化体系,双酚A二醚酐(BISA-DA)与4种不同结构的二胺合成聚醚酰亚胺。观察以20%聚醚酰亚胺(PEI)与TGDDM/DDS(40%)共混物在150%固化5 h后导致共混物呈现不同的相结构,结果TGDDM/PID共混物的断裂面如有褶皱的丝绸(A),经CH2Cl2刻蚀也未发现两相结构,表明共混物在固化反应过程中并未发生相分离;TGDDM/PIM共混物显示PIM粒子分散在环氧树脂连续相中(B);而PIP改性的环氧树脂为双连续结构,深色的环氧富集相中有PIP的粒子分散其中,浅色的聚醚酰亚胺富集相是相反转结构(C);TGDDM/PIB共混物为相反转结构(D),环氧形成粒子被聚醚酰亚胺的连续相所包围。上述结果表明,聚醚酰亚胺的主链结构对改性体系相结构有显著影响,PIP改性TGDDM体系具有双连续相结构。
聚醚酰亚胺用量不仅对改性体系相结构有影响,且对其力学性能有显著影响。以PIM聚醚酰亚胺改性双马来酰亚胺BMI/DBA为例(BMI是4,4’-双马来酰亚胺基二苯甲烷,DBA是0,0’-二烯丙基双酚A),专家了聚醚酰亚胺用量,对PIM/BMI改性体系相结构的影响和对改性材料力学性能的影响。加入5%PIM后改性体系的断裂能较纯双马树脂有所升高,加入10%及15%PIM的改性体系断裂能有显著的增大。在PIM 15%改性体系断裂能增大了2倍多,而改性材料弯曲模量略有下降。可见聚醚酰亚胺用量的增大有利于材料韧性的升高。改性双马树脂体系的相结构随聚醚酰亚胺用量而变化,5%时所得为PIM分散粒子相结构,10%时形成双连续相结构,15%以上导致相反转,聚醚酰亚胺作为连续相和力学强度支撑相,有利于力学性能的大幅度提高,使断裂韧性得以提高。
⑩ 环氧树脂和固化剂反应是属于什么反映
这和你使用的固化剂有关,比如多元胺是环氧开环与氨基缩合。我隔壁实验室用的是酸苷类固化剂~~
这类反应统称交联反应。