离子交换树脂原理即是离子交换树把溶液中的盐分脱离出来的过程:
离子交换树脂作用环境中的水溶液中,含有的金属阳离子(Na+、Ca2+、 K+、 Mg2+、Fe3+等)与阳离子交换树脂(含有的磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基团,在水中易生成H+离子)上的H+进行离子交换,使得溶液中的阳离子被转移到树脂上,而树脂上的H+交换到水中,(即为阳离子交换树脂原理)。
水溶液中的阴离子(Cl-、HCO3-等)与阴离子交换树脂(含有季胺基[-N(CH3)3OH]、胺基(—NH2)或亚胺基(—NH2)等碱性基团,在水中易生成OH-离子)上的OH-进行交换,水中阴离子被转移到树脂上,而树脂上的OH-交换到水中,(即为阴离子交换树脂原理)。而H+与OH-相结合生成水,从而达到脱盐的目的。
(1)树脂具有弹性的机理扩展阅读:
离子交换树脂使用方法:
1、预选。离子交换树脂的粒度一般控制在20-35目,有些可达到50目,因此在使用前要先干燥,粉碎,过筛,通常干燥时在烘箱中进行,亦可在装有五氧化二磷、氧化钙或者浓硫酸的干燥器中进行,粉碎时不要分得过细,否则影响实验收率。
2、预处理。强碱性离子交换树脂应先用20倍树脂体积的4%氢氧化钠水溶液处理,然后用10倍体积的水洗,再用10倍量4%盐酸处理,最后用蒸馏水洗至中性,然后将氯型转化成OH型,再转化成氯型,最后用10倍4%氢氧化钠水溶液处理。弱碱性离子交换树脂处理时只需用10倍量蒸馏水洗即可,不必洗至中性。
3、装柱。将处理好的树脂至于烧杯中,加水充分搅拌除掉气泡,静置几分钟待树脂大部分沉降后,倾去上层泥状颗粒;反复操作直至上层液澄清后,即可装柱。注意要在柱子底部放1cm后的玻璃丝,用玻璃棒将其压平,将树脂倒入柱子中,还要注意防止气泡产生。
4、树脂交换。将样品配制成一定浓度的水溶液,以适当流速通过柱子,亦可将样品溶液反复通过柱子,直到成分交换完全。用显色法检验成分是否交换彻底。
5、树脂洗脱。注意亲和力弱的成分先被洗下来,常用的离子交换树脂洗脱剂有强酸、强碱、盐类、不同pH缓冲溶液、有机溶液等,可选择梯度洗脱或者单一浓度洗脱。
6、树脂再生。
⑵ 哪种高分子树脂材料弹性大
高分子树脂漆指以含有双键的乙烯衍生物单体经自聚或共聚制成的高分子树脂作为主要成膜物质的一类涂料。其主要品种有:聚醋酸乙烯树脂漆、聚氯乙烯树脂漆、氯醋树脂漆、聚乙烯醇缩醛树脂漆等。 此类漆漆膜柔韧、色浅、不易泛黄、耐磨损,耐化学腐蚀性良好,含氟的乙烯树脂漆还有耐高温、耐候性好等优点。但耐溶剂性差,漆的固体分低。 其用途因品种不同而异。如聚乙烯偏氯乙烯树脂涂料可供混凝土、皮革橡胶表面涂覆用;聚醋酸乙烯涂料用于建筑工业部门;聚乙烯醇缩醛类涂料可作漆包线用漆等。
⑶ 树脂基复合材料知识
纤维增强树脂基复合材料常用的树脂为环氧树脂和不饱和聚酯树脂。目前常用的有:热固性树脂、热塑性树脂,以及各种各样改性或共混基体。热塑性树脂可以溶解在溶剂中,也可以在加热时软化和熔融变成粘性液体,冷却后又变硬。热固性树脂只能一次加热和成型,在加工过程中发生固化,形成不熔和不溶解的网状交联型高分子化合物,因此不能再生。复合材料的树脂基体,以热固性树脂为主。早在40年代,在战斗机、轰炸机上就开始采用玻璃纤维增强塑料作雷达罩。60年代美国在F—4、F—111等军用飞机上采用了硼纤维增强环氧树脂作方向舵、水平安定面、机翼后缘、舵门等。在导弹制造方面,50年代后期美国中程潜地导弹“北极星A—2”第二级固体火箭发动机壳体上就采用了玻璃纤维增强环氧树脂的缠绕制件,较钢质壳体轻27%;后来采用高性能的玻璃纤维代替普通玻璃纤维造“北极星A—3”,使壳体重量较钢制壳体轻50%,从而使“北极星A—3”导弹的射程由2700千米增加到4500千米。70年代后采用芳香聚酰胺纤维代替玻璃纤维增强环氧树脂,强度又大幅度提高,而重量减轻。碳纤维增强环氧树脂复合材料在飞机、导弹、卫星等结构上得到越来越广泛的应用。
在化学工业上的应用
编辑
环氧乙烯基酯树脂在氯碱工业中,有着良好的应用。
氯碱工业是玻璃钢作耐腐材料最早应用领域之一,目玻璃钢已成为氯碱工业的主要材料。玻璃钢已用于各种管道系统、气体鼓风机、热交换器外壳、盐水箱以至于泵、池、地坪、墙板、格栅、把手、栏杆等建筑结构上。同时,玻璃钢也开始进入化工行业的各个领域。在造纸工业中的应用也在发展,造纸工业以木材为原料,造纸过程中需要酸、盐、漂白剂等,对金属有极强的腐蚀作用,唯有玻璃钢材料能抵抗这类恶劣环境,玻璃钢材料已、在一些国家的纸浆生产中显现其优异的耐蚀性。
在金属表面处理工业中的应用,则成为环氧乙烯基酯树脂重要应用,金属表面处理厂所使用的酸,大多为盐酸、基本上用玻璃钢是没有问题的。环氧树脂作为纤维增强复合材料进入化工防腐领域,是以环氧乙烯基酯树脂形态出现的。它是双酚A环氧树脂与甲基丙烯酸通过开环加成化学反应而制成,每吨需用环氧树脂比例达50%,这类树脂既保留了环氧树脂基本性能,又有不饱和聚酯树脂良好的工艺性能,所以大量运用在化工防腐领域。
其在化工领域的防腐主要包括:化工管道、贮罐内衬层;电解槽;地坪;电除雾器及废气脱硫装置;海上平台井架;防腐模塑格栅;阀门、三通连接件等。为了提高环氧乙烯基酯树脂优越的耐热性、防腐蚀性和结构强度,树脂还不断进行改性,如酚醛、溴化、增韧等环氧乙烯基酯树脂等品种,大量运用于大直径风叶、磁悬浮轨道增强网、赛车头盔、光缆纤维牵引杆等。
树脂基复合材料作为一种复合材料,是由两个或两个以上的独立物理相,包含基体材料(树脂)和增强材料所组成的一种固体产物。树脂基复合材料具有如下的特点:
(1)各向异性(短切纤维复合材料等显各向同性);
(2)不均质(或结构组织质地的不连续性);
(3)呈粘弹性行为;
(4)纤维(或树脂)体积含量不同,材料的物理性能差异;
(5)影响质量因素多,材料性能多呈分散性。
树脂基复合材料的整体性能并不是其组分材料性能的简单叠加或者平均,这其中涉及到一个复合效应问题。复合效应实质上是原相材料及其所形成的界面相互作用、相互依存、相互补充的结果。它表现为树脂基复合材料的性能在其组分材料基础上的线性和非线性的综合。复合效应有正有负,性能的提高总是人们所期望的,但有进材料在复合之后某些方面的性能出现抵消甚至降低的现象是不可避免的。
复合效应的表现形式多样,大致上可分为两种类型:混合效应和协同效应。
混合效应也称作平均效应,是组分材料性能取长补短共同作用的结果,它是组分材料性能比较稳定的总体反映,对局部的扰动反应并敏感。协同效应与混合效应相比,则是普遍存在的且形式多样,反映的是组分材料的各种原位特性。所谓原位特性意味着各相组分材料在复合材料中表现出来的性能并不只是其单独存在时的性能,单独存在时的性能不能表征其复合后材料的性能。
树脂基复合材料的力学性能
力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。
1、树脂基复合材料的刚度
树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。
由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。
对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。
2、树脂基复合材料的强度
材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。
树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。
单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。
单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表明,横向压缩强度是横向拉伸强度的4~7倍。横向拉伸的破坏模式是基体和界面破坏,也可能伴随有纤维横向拉裂;横向压缩的破坏是因基体破坏所致,大体沿45°斜面剪坏,有时伴随界面破坏和纤维压碎。单向树脂基复合材料的面内剪切破坏是由基体和界面剪切所致,这些强度数值的估算都需依靠实验。
杂乱短纤维增强树脂基复合材料尽管不具备单向树脂基复合材料轴向上的高强度,但在横向拉、压性能方面要比单向树脂基复合材料好得多,在破坏机理方面具有自己的特点:编织纤维增强树脂基复合材料在力学处理上可近似看作两层的层合材料,但在疲劳、损伤、破坏的微观机理上要更加复杂。
树脂基复合材料强度性质的协同效应还表现在层合材料的层合效应及混杂复合材料的混杂效应上。在层合结构中,单层表现出来的潜在强度与单独受力的强度不同,如0/90/0层合拉伸所得90°层的横向强度是其单层单独实验所得横向拉伸强度的2~3倍;面内剪切强度也是如此,这一现象称为层合效应。
树脂基复合材料强度问题的复杂性来自可能的各向异性和不规则的分布,诸如通常的环境效应,也来自上面提及的不同的破坏模式,而且同一材料在不同的条件和不同的环境下,断裂有可能按不同的方式进行。这些包括基体和纤维(粒子)的结构的变化,例如由于局部的薄弱点、空穴、应力集中引起的效应。除此之外,界面粘结的性质和强弱、堆积的密集性、纤维的搭接、纤维末端的应力集中、裂缝增长的干扰以及塑性与弹性响应的差别等都有一定的影响。
树脂基复合材料的物理性能
树脂基复合材料的物理性能主要有热学性质、电学性质、磁学性质、光学性质、摩擦性质等(见表)。对于一般的主要利用力学性质的非功能复合材料,要考虑在特定的使用条件下材料对环境的各种物理因素的响应,以及这种响应对复合材料的力学性能和综合使用性能的影响;而对于功能性复合材料,所注重的则是通过多种材料的复合而满足某些物理性能的要求。
树脂基复合材料的物理性能由组分材料的性能及其复合效应所决定。要改善树脂基复合材料的物理性能或对某些功能进行设计时,往往更倾向于应用一种或多种填料。相对而言,可作为填料的物质种类很多,可用来调节树脂基复合材料的各种物理性能。值得注意的是,为了某种理由而在复合体系中引入某一物质时,可能会对其它的性质产生劣化作用,需要针对实际情况对引入物质的性质、含量及其与基体的相互作用进行综合考虑。
树脂基复合材料的化学性能
大多数的树脂基复合材料处在大气环境中、浸在水或海水中或埋在地下使用,有的作为各种溶剂的贮槽,在空气、水及化学介质、光线、射线及微生物的作用下,其化学组成和结构及各种性能会发生各种变化。在许多情况下,温度、应力状态对这些化学反应有着重要的影响。特别是航空航天飞行器及其发动机构件在更为恶劣的环境下工作,要经受高温的作用和高热气流的冲刷,其化学稳定性是至关重要的。
作为树脂基复合材料的基体的聚合物,其化学分解可以按不同的方式进行,它既可通过与腐蚀性化学物质的作用而发生,又可间接通过产生应力作用而进行,这包括热降解、辐射降解、力学降解和生物降解。聚合物基体本身是有机物质,可能被有机溶剂侵蚀、溶胀、溶解或者引起体系的应力腐蚀。所谓的应力腐蚀,是掼材料与某些有机溶剂作用在承受应力时产生过早的破坏,这样的应力可能是在使用过程中施加上去的,也可能是鉴于制造技术的某些局限性带来的。根据基体种类的不同,材料对各种化学物质的敏感程度不同,常见的玻璃纤维增强塑料耐强酸、盐、酯,但不耐碱。一般情况下,人们更注重的是水对材料性能的影响。水一般可导致树脂基复合材料的介电强度下降,水的作用使得材料的化学键断裂时产生光散射和不透明性,对力学性能也有重要影响。不上胶的或仅只热处理过的玻璃纤维与环氧树脂或聚酯树脂组成的复合材料,其拉伸强度、剪切强度和弯曲强度都很明显地受沸水影响,使用偶联剂可明显地降低这种损失。水及各种化学物质的影响与温度、接触时间有关,也与应力的大小、基体的性质及增强材料的几何组织、性质和预处理有关,此外还与复合材料的表面的状态有关,纤维末端暴露的材料更易受到损害。
聚合物的热降解有多种模式和途径,其中可能几种模式同时进行。如可通过"拉链"式的解聚机理导致完全的聚合物链的断裂,同时产生挥发性的低分子物质。其它的方式包括聚合物链的不规则断裂产生较高分子量的产物或支链脱落,还有可能形成环状的分子链结构。填料的存在对聚合物的降解有影响,某些金属填料可通过催化作用加速降解,特别是在有氧存在的地方。树脂基复合材料的着火与降解产生的挥发性物质有关,通常加入阻燃剂减少着火的危险。某些聚合物在高温条件下可产生一层耐热焦炭,这些聚合物与尼龙、聚酯纤维等复合后,因这些增强物本身的分解导致挥发性物质产生可带走热量而冷却烧焦的聚合物,进一步提高耐热性,同时赋予复合材料以优良的力学性能,如良好的坑震性。
许多聚合物因受紫外线辐射或其它高能辐射的作用而受到破坏,其机理是当光和射线的能量大于原子间的共价键能时,分子链发生断裂。铅填充的聚合物可用来防止高能辐射。紫外线辐射则一般受到更多的关注,经常使用的添加剂包括炭黑、氧化锌和二氧化钛,它们的作用是吸收或者反射紫外线辐射,有些无面填料可以和可见光一样传输紫外线,产生荧光。
力学降解是另一种降解机理,当应力的增加频率超过一个键通过平移所产生的响应能力时,就发生键的断裂,由此形成的自由基还可能对下一阶段的降解模式产生影响。硬质和脆性聚合物基体应变小,可进行有或者没有链断裂的脆性断裂,而较软但粘性高的聚合物基体大多是力学降解的。
树脂基复合材料的工艺特点
树脂基复合材料的成型工艺灵活,其结构和性能具有很强的可设计性。树脂基复合材料可用模具一次成型法来制造各种构件,从而减少了零部件的数量及接头等紧固件,并可节省原材料和工时;更为突出的是树脂基复合材料可以通过纤维种类和不同排布的设计,把潜在的性能集中到必要的方向上,使增强材料更为有效地发挥作用。通过调节复合材料各组分的成分、结构及排列方式,既可使构件在不同方向承受不同的作用力,还可以制成兼有刚性、韧性和塑性等矛盾性能的树脂基复合材料和多功能制品,这些是传统材料所不具备的优点。树脂基复合材料在工艺方面也存在缺点,比如,相对而言,大部分树脂基复合材料制造工序较多,生产能力较低,有些工艺(如制造大中型制品的手糊工艺和喷射工艺)还存在劳动强度大、产品性能不稳定等缺点。
树脂基复合材料的工艺直接关系到材料的质量,是复合效应、"复合思想"能否体现出来的关键。原材料质量的控制、增强物质的表面处理和铺设的均匀性、成型的温度和压力、后处理及模具设计的合理性都影响最终产品的性能。在成型过程中,存在着一系列物理、化学和力学的问题,需要综合考虑。固化时在基体内部和界面上都可能产生空隙、裂纹、缺胶区和富胶区;热应力可使基体产生或多或少的微裂纹,在许多工艺环节中也都可造成纤维和纤维束的弯曲、扭曲和折断;有些体系若工艺条件选择不当可使基体与增强材料之间发生不良的化学反应;在固化后的加工过程中,还可进一步引起新的纤维断裂、界面脱粘和基体开裂等损伤。如何防止和减少缺陷和损伤,保证纤维、基体和界面发挥正常的功能是一个非常重要的问题。
树脂基复合材料的成型有许多不同工艺方法,连续纤维增强树脂基复合材料的材料成型一般与制品的成型同时完成,再辅以少量的切削加工和连接即成成品;随机分布短纤维和颗粒增强塑料可先制成各种形式的预混料,然后进行挤压、模塑成型。
组合复合效应
复合体系具有两种或两种以上的优越性能,称为组合复合效应贫下中农站这样的情况很多,许多的力学性能优异的树脂基复合材料同时具有其它的功能性,下面列举几个典型的例子。
1、光学性能与力学性能的组合复合
纤维增强塑料,如玻璃纤维增强聚酯复合材料,同时具有充分的透光性和足够的比强度,对于需要透光的建筑结构制品是很有用的。
2、电性能与力学性能的组合复合
玻璃纤维增强树脂基复合材料具有良好的力学性能,同时又是一种优良的电绝缘材料,用于制造各种仪表、电机与电器的绝缘零件,在高频作用下仍能保持良好的介电性能,又具有电磁波穿透性,适制作雷达天线罩。聚合物基体中引入炭黑、石墨、酞花菁络合物或金属粉等导电填料制成的复合材料具有导电性能,同时具有高分子材料的力学性能和其它特性。
3、热性能与力学性能的组合复合
①耐热性能
树脂基复合材料在某些场合的使用除力学性能外,往往需要同时具有好的耐热性能。
②耐烧蚀性能
航空航天飞行器的工作处于严酷的环境中,必须有防护材料进行保护;耐烧蚀材料靠材料本身的烧蚀带走热量而起到防护作用。玻璃纤维、石英纤维及碳纤维增强的酚醛树脂是成功的烧蚀材料。酚醛树脂遇到高温立即碳化形成耐热性高的碳原子骨架;玻璃纤维还可部分气化,在表面残留下几乎是纯的二氧化硅,它具有相当高的粘结性能。两方面的作用,使酚醛玻璃钢具有极高的耐烧蚀性能。
⑷ 树脂是什么从哪儿来的
树脂通常是指受热后有软化或熔融范围,软化时在外力作用下有流动倾向,常温下是固回态、半固答态,有时也可以是液态的有机聚合物。广义地上定义,可以作为塑料制品加工原料的任何高分子化合物都称为树脂。
树脂有天然树脂和合成树脂之分。天然树脂是指由自然界中动植物分泌物所得的无定形有机物质,如松香、琥珀、虫胶等。合成树脂是指由简单有机物经化学合成或某些天然产物经化学反应而得到的树脂产物,如酚醛树脂、聚氯乙烯树脂等,其中合成树脂是塑料的主要成分。
(4)树脂具有弹性的机理扩展阅读
树脂环保烫钻主要的产品系列有: 树脂环保烫钻,树脂,树脂烫钻,仿奥地利切面钻中东切面钻,仿奥钻,异形钻,光面钻,水滴,心形,马眼,桃心钻,圆形等等各种树脂烫钻。
各种可烫树脂钻及仿奥地利切面钻中东切面钻,采用进口技术生产,种类齐全、品质一流。可生产切面树脂钻、光面树脂和异形树脂钻等等各种形状;产品具有精度高,亮度好,棱角清,不易磨损,不易刮伤,颜色丰富,形状效果多样,环保自然等优点。
⑸ 不饱和聚酯树脂的固化原理
具有粘性的可流动的不饱和聚酯树脂,在引发剂存在下发生自由基共聚合反应,而生成性能稳定的体型结构的过程称为不饱和聚酯的固化。
发生在线型聚酯树脂分子和交联剂分子之间的自由基共聚合反应,其反应机理同前述自由基共聚反应的机理基本相同,所不同的它是在具有多个双键的聚酯大分子(即具有多个官能团)和交联剂苯乙烯的双键之间发生的共聚,其最终结果,必然形成体型结构。
固化的阶段性
不饱和聚酯树脂的整个固化过程包括三个阶段:
凝胶——从粘流态树脂到失去流动性生成半固体状有弹性的凝胶;
定型——从凝胶到具有一定硬度和固定形状,可以从模具上将固化物取下而不发生变形;
熟化——具有稳定的化学、物理性能,达到较高的固化度。
一切具有活性的线型低聚物的固化过程,都可分为三个阶段,但由于反应的机理和条件不同,其三个阶段所表现的特点也不同。不饱和聚酯树脂的固化是自由基共聚反应,因此具有链锁反应的性质,表现在三个阶段上,其时间间隔具有较短的特点,一般凝胶到定型有时数个小时就可完成,再加上不饱和聚酯在固化时系统内无多余的小分子逸出,结构较为紧密,因此不饱和聚酯树脂和其他热固性树脂相比具有最佳的室温接触成型的工艺性能。
引发剂
用于不饱和聚酯树脂固化的引发剂与自由基聚合用引发剂一样,一般为有机过氧化合物。各类有机过氧化合物的特性,通常用活性氧含量,临界温度和半衰期等表示。
活性氧含量
活性氧含量又称为有效氧含量。对于纯粹的过氧化物,活性氧含量是代表有机过氧化物纯度的指标。实际上,由于纯粹有机过氧化物贮存的不安定性,通常与惰性稀释剂如邻苯二甲酸二丁酯等混合配制,以利于贮存和运输。
临界温度
过氧化物受热分解形成自由基时所需的最低温度称为临界温度。一般在临界温度以上才发生引发反应,这可从固化放热效应反映出来。临界温度是不饱和聚酯树脂固化时应用的工艺指标。
半衰期
半衰期是指在给定温度条件下,有机过氧化物分解一半所需要的时间。实际应用上,可用下面两种方法表示半衰期,一种是给定温度下的时间,另一种是给定时间下的温度,它们都是引发剂活性的标志。显然,有机过氧化物的半衰期愈短,其活性也就愈大。
引发剂的种类虽然很多,但不饱和聚酯树脂固化最常用的主要是两种,即国产1
号引发剂和2号引发剂。
1号引发剂是50%过氧化环已酮糊。过氧化环已酮是几种化合物的混合物,外观是白色粉沫或硬块,易溶于苯乙烯中得到透明的溶液。由1:1的过氧化环已酮和邻苯二甲酸二丁酯组成的1号引发剂,呈糊状,久置后分层,上层为透明溶液,下层是白色沉淀物,使用时必须搅拌均匀成糊状。
过氧化甲乙酮具有与过氧化环已酮类似的特性,一般配成邻苯二甲酸二甲酯的50%溶液使用,该溶液无色透明,不含悬浮物,使用时不需要搅拌。
⑹ 涂装塑粉中的成分
楼上:答非所问:
根据不同的用途,粉末有不同的成分:
粉末涂料以粉末形态进行涂装并形成涂层,固体分可达100%,由于不使用溶剂,因此可以减少环境污染,节省资源,并具有可回收等特点。
功能性粉末涂料是具有特殊功能,提供特种用途的表面涂装材料。它不仅可以起到传统的保护和装饰等作用,还赋予材料的各种特异功能,主要包括绝缘、导电、防污、耐热、阻燃、防辐射等多种功能。我国功能性粉末涂料的研制和生产刚刚起步,与国外先进水平相比尚有较大差距。目前国际上普遍使用的功能性粉末涂料大致有以下几种类型:
绝缘型粉末涂料
绝缘型粉末涂料是用于电机、电子电器元件的一种专用涂料,除了具有一般粉末涂料的保护、装饰性能外,同时具有良好的电器绝缘性能。
环氧树脂是制造绝缘型粉末涂料的上佳原料。它可以通过改变固化剂的种类,或添加专用改性剂和具有优良绝缘性及耐热性的填充料来调节固化速度,得到从十分柔软、富有弹性到非常坚硬、耐磨的多种涂膜,以适应在不同绝缘条件下的应用。近年来,除环氧粉末涂料外,聚氨酯粉末涂料、聚酰亚胺粉末涂料、丙烯酸粉末涂料等也在不断开发与使用。
导电型粉末涂料
导电型粉末涂料是涂于非导电底材上,使之具有一定传导电流和消除静电能力的功能涂料。这种涂料主要有两种:掺合型和本征型。
掺合型粉末涂料是以绝缘聚合物为主要成膜物质,在其中掺入导电填料后形成涂料。导电填料主要有金属粉末,如银、镍、锌、铝等;非金属粉末,如石墨、炭黑等;金属氧化物,如氧化锌、氧化锑等。成膜基料主要选择乙烯基树脂、聚酯树脂、聚酰胺和环氧树脂等。
本征型导电聚合物是使聚合物本身导电,目前该类聚合物尚处于理论和研究阶段,没有实际应用。
防腐型粉末涂料
目前使用的该类涂料主要是环氧酚醛防腐型粉末涂料,它以环氧树脂与酚醛树脂为基础成膜物质,二者交联形成涂膜。
这种涂料中所采用的环氧树脂,一般选用分子量1400、2900及3570的高分子品种。环氧树脂本身具有附着力、柔软性及抗碱性好的特点,而酚醛树脂具有优良的耐酸碱、耐溶剂、耐热、耐湿寒等性能,两者有机结合成为防腐材料中比较理想的类型。由于环氧树脂与酚醛树脂之间反应活性较弱,所以涂层的成膜固化温度需在较高条件下进行,适量加入咪唑类催化剂可降低固化温度。
耐热型粉末涂料
耐热型粉末涂料是指能长期经受200℃以上温度,涂膜良好,并能使被保护对象在高温环境中正常发挥作用的粉末涂料。
从聚合物热稳定性机理来讲,聚合物的耐热性主要取决于其分子结构。因而通过在主链上引入较大或较多的极性侧基,增加分子间相互作用力,从而提高聚合物的热稳定性。提高粉末涂料耐热性能的另一种途径是在聚合物中加入耐热的颜料和填料。常用的颜料、填料有铝粉、云母粉、不锈钢粉、镉粉、二氧化硅等。
目前,耐热粉末涂料仍以有机硅粉末涂料为主。这种涂料今后研究的主要方向是开发能耐更高温度并具有良好成膜性和施工性能的耐高温树脂作为耐热涂料的基料,以及研究能显著提高基料在高温条件下的各种性能的颜料、填料新品种。
装饰型粉末涂料
装饰型粉末涂料的特点是涂膜表面有美观清晰的花纹,给涂装物体以美丽多彩的外观。粉末涂料形成花纹的机理与溶剂型涂料有很大差别,二者花纹形式亦有所不同。粉末涂料主要运用其熔融特性产生纹理效应,花纹形式和大小与配方组合、配制工艺和粉末粒度大小有很大关系。配方组合中的合成树脂、固化剂、流平剂、颜料和各种添加剂等,是形成花纹的主要因素。目前研制途径主要有以下思路:
采用不相容的高聚物产生不同的流平状态,形成立体感花纹;采用不同固化速率的固化剂,因流平速度的差异形成适宜的皱纹;采用不同的填料,造成粉末涂料流平性、光泽度和色相差别,产生纹理效应;采用不同粒度与不同色光的金属颜料,使其在涂膜中处于不同位置、不同角度,从而产生光泽与色相的差异。
阻燃型粉末涂料
高分子聚合物阻燃性差,在许多领域应用受到限制,改善高聚物的阻燃性是非常具有现实意义的。阻燃型粉末涂料具有防燃、阻燃、隔热的功能。随着现代电子和家用电器工业的迅速发展,对阻燃涂料的要求越来越迫切。目前这种涂料的主要品种是环氧粉末涂料
⑺ 怎么样可以使PVC糊树脂制品富有弹性和柔软性
大量的增塑剂
曾经用三百份的增塑剂,做成果冻状的东西,很好玩
⑻ 弹性树脂的用途有哪些
弹性树脂:弹性树脂一类是带羟基直链聚酯树脂,另一类是聚氨酯弹性体改性的聚酯树脂等。两类树脂产品对比而言,纯直链型聚酯树脂价格便宜,性价比较好,而改性聚酯树脂价格相对较高,但在某些主要性能(如手感、耐刮伤性、耐磨等性能测试)方面超过纯聚酯树脂。弹性树脂主要用于做弹性手感漆。
树脂:
通常是指受热后有软化或熔融范围,软化时在外力作用下有流动倾向,常温下是固态、半固态,有时也可以是液态的有机聚合物。广义地讲,可以作为塑料制品加工原料的任何高分子化合物都称为树脂的。
分类:
1、按来源
树脂有天然树脂和合成树脂之分。天然树脂是指由自然界中动植物分泌物所得的无定形有机物质,如松香、琥珀、虫胶等。合成树脂是指由简单有机物经化学合成或某些天然产物经化学反应而得到的树脂产物,如酚醛树脂、聚氯乙烯树脂等,其中合成树脂是塑料的主要成分。
2、按合成反应
按此方法可将树脂分为加聚物和缩聚物。加聚物是指由加成聚合反应制得的聚合物,其链节结构的化学式与单体的分子式相同,如聚乙烯、聚苯乙烯、聚四氟乙烯等。
缩聚物是指由缩合聚合反应制得的聚合物,其结构单元的化学式与单体的分子式不同,如酚醛树脂、聚酯树脂、聚酰胺树脂、弹性树脂等。
3、按分子主链组成
按此方法可将树脂分为碳链聚合物、杂链聚合物和元素有机聚合物。
碳链聚合物是指主链全由碳原子构成的聚合物,如聚乙烯、聚苯乙烯等。
杂链聚合物是指主链由碳和氧、氮、硫等两种以上元素的原子所构成的聚合物,如聚甲醛、聚酰胺、聚砜、聚醚等。
元素有机聚合物是指主链上不一定含有碳原子,主要由硅、氧、铝、钛、硼、硫、磷等元素的原子构成,如有机硅。
4、按性质
热固性树脂(玻璃钢一般用这类树脂):不饱和聚酯/乙烯基酯/环氧/酚醛/双马来酰亚胺/聚酰亚胺树脂等。
热塑性树脂:聚丙烯/聚碳酸酯/尼龙/聚醚醚酮/聚醚砜等。
合成树脂是由人工合成的一类高分子聚合物。合成树脂最重要的应用是制造塑料。为便于加工和改善性能,常添加助剂,有时也直接用于加工成形,故常是塑料的同义语。合成树脂还是制造合成纤维、涂料、胶粘剂、绝缘材料等的基础原料。合成树脂种类繁多,其中聚乙烯(PE)、聚氯乙烯(PVC)、聚苯乙烯(PS)、聚丙烯(PP)和ABS树脂为五大通用树脂,是应用最为广泛的合成树脂材料。
树脂工艺品
这组工艺品的造型材质里面都有用到树脂材料,其线条流畅性和明亮的质感都充分利用了其材质的优点。
⑼ 我想使PVC糊树脂做出来的产品富有弹性和柔软性
⑽ 弹性树脂有什么用呢
弹性树脂:弹性树脂一类是带羟基直链聚酯树脂,另一类是聚氨酯弹性内体改性的聚酯树脂容等.两类树脂产品对比而言,纯直链型聚酯树脂价格便宜,性价比较好,而改性聚酯树脂价格相对较高,但在某些主要性能(如手感﹑耐刮伤性、耐磨等性能测试)方面超过纯聚酯树脂,如果客户要求不是太高的话,从成本考虑可以采用等产品,虽然有些性能达不到,但大部分性能可以满足.目前国内弹性树脂生产技术日益成熟,弹性树脂主要用于做弹性手感漆!
弹性手感漆的组成:弹性手感漆主要是由弹性树脂﹑固化剂﹑催干剂﹑消光粉﹑弹性粉(较少用到)﹑手感助剂﹑有机溶剂(非醇类溶剂,PU级别,)等组成.目前国内弹性漆用途广,用量大,市场前景可观!国内目前弹性漆树脂生产较大较成熟的公司集中于广东珠三角地区,现今弹性手感漆用于特别是一些经常用手触摸的部位,要求喷涂弹性手感漆,如吹风筒手柄﹑MP3外壳﹑鼠标﹑手机外壳﹑望远镜﹑伞柄等等,不再是要求那种冷冰冰﹑粗糙﹑生硬的感觉,而是使人感觉到一种软绵绵爽滑的感觉,为此弹性手感漆应运而生.