导航:首页 > 耗材问题 > 环氧树脂表层保护膜

环氧树脂表层保护膜

发布时间:2022-01-03 13:13:05

❶ 19264的使用注意事项

使用注意事项
1 当您在你的产品设计中使用本液晶模组,注意液晶的视角与你的产品用途相一致。
2 液晶屏是玻璃为基础的,跌落或与硬物撞击会引起液晶屏破裂或粉碎。尤其是边角处。
3 尽管在液晶表面的偏振片有抑制反光的表层,应当小心不要划伤表面,一般推荐在液晶表面采用透明塑胶材料的保护屏。
4 如果液晶模组储藏在低于规定的温度以下,液晶材料会凝结而性能恶化。如果液晶模组储藏在高于规定的温度以上,液晶材料的分子排列方向会转变为液态,可能无法恢复到原来的状态。超出温度和湿度范围,会引起偏振片剥落或起泡。因此,液晶模组应储藏在规定的温度范围。
5 如液晶表面遇口水或滴水,应立即擦除,避免长时间过后引起色彩变化或留下污点。水蒸气会引起ITO电极腐蚀。
6 如果需要清洁液晶屏表面,应该用棉或软布轻快地擦拭,仍不能清除时,呵气之后再擦拭。
7 液晶模组的驱动应遵照规定的额定指标,避免故障及永久损坏。对液晶材料施加直流电压,会引起液晶材料迅速恶化,应该确保提供交流波形的M信号的连续应用。特别是,在电源开关时应遵照供电顺序,避免驱动锁存及直流直接加至液晶屏。
8 机械注意事项:
a) 液晶模组是在高精度下调试安装的。避免外力撞击,不要对其改变或修改。
b) 不要篡改金属框的任何突出部分。
c) 不要在PCB上打孔或改变外形,不要移动或修改元件。
d) 不要碰到导电橡胶,尤其是在插入背光板时。(如EL背光)。
e) 在安装液晶模组时,确保PCB没有受到扭曲或弯曲力等强制力。导电橡胶的接触是非常精密的,在原基础上轻微的错位会导致像素丢失。
f) 避免在金属卡位部加压,否则会导致导电橡胶变形而失去接触,造成像素丢失。
9 静电:由于液晶模组内部装配了CMOS电路,必须采取下列措施避免静电。
a) 作业员
穿防静电服,否则人体会产生静电。
任何时候人体的任何部分不应与模组的导电部分接触,
如:集成电路的引脚,PCB上的铜引线,接口部分的端子。
b) 设备
由于脱离或摩擦等可能引起设备产生静电,如人员,烙铁,工作台等。
将设备与地以适当的电阻连接(1x108 ohm)。
只有合理接地的烙铁才可使用。
如果使用电批,电批应良好接地并与转接器(电刷)隔离。
通常应该观测工作服,工作凳的防静电测量,对于工作凳,建议使用导电橡胶垫。
c) 地板
地板是将设备及人员产生的静电进行释放的重要部分。可能会由于地板绝缘导致静电无法释放。设置地板接地(1x108 ohm)。
d) 湿度
适当的湿度可以减少静电产生的几率。一般相对湿度应保持在50%以上。
e) 运输与储藏
由于人和包装材料可能会因为脱离或摩擦等引发静电,包装材料需要作防静电处理。模组应存放在防静电袋或其他防静电容器中保存。
f) 焊接
仅对I/O端子焊接。只能使用合理接地并没有漏电的烙铁。使用内充焊锡膏的低温焊锡丝。
如果使用助焊剂,应遮盖液晶表面,防止焊剂溅污。之后去除焊剂残留物。
焊接温度:280°C+10°C
焊接时间:3-4 秒。
g) 其它:与液晶屏表面贴和的保护膜是为防止表面划伤或污染,在剥离保护膜时,应使用静电消除器。静电消除器也应安装在工作台上,以防产生静电。
10 运行
a) 驱动电压应控制在规定的范围内,超出范围会缩短液晶使用寿命。
b) 液晶的响应时间会随温度的降低而增大。
c) 当温度高于操作温度范围时,液晶显示会变黑或深蓝色,这可能会导致”列”出现断裂。不论怎样,不要挤压显示区域。
d) 操作过程中机械扰动(如在显示区域挤压)可能会导致”列”出现断裂。
11 如果损坏的玻璃层中流出液体,用水和肥皂清洗接触到人体部位,虽然毒性非常低,仍然需要随时提醒注意。
12 拆解液晶模组会引起永久性的损坏,应该严格禁止。
13 液晶会有影像滞留余辉,为避免影像余辉不要长时间显示固定图案。影像余辉不是液晶恶化,当显示图案改变以后会自动消除。
14 不要使用具有挥发性的环氧树脂及硅粘合剂等,以防因此导致偏振片变色。
15 避免将液晶模组长时间暴露在阳光或强紫外线照射下。
16 液晶模组的亮度可能会由于CCFL引线对金属壳的耦合分流而受到影响。逆变器的设计应该充分考虑这部分的漏电。有必要全面评估液晶模组和逆变器安装在主机设备中的情况,确保达到亮度要求。

❷ 反光材料的交通标志反光膜

反光膜是一种已制成薄膜可直接应用的逆反射材料,也是应用最为广泛的一种逆反射材料。1937年,世界上第一块反光膜在美国3M公司实验室诞生。这是交通标志大规模应用反光膜历史的起点。1939年,在美国明尼苏达州的公路边,第一次在露天条件下使用了一块用Scotchlite TM反光膜制作的标志牌,从此,揭开了一系列反光产品用于交通标志的新时期,开创了一个全新的交通安全行业。这一年,美国交通标志国家标准中(1939年版美国《统一交通控制设施手册》,Manual of United Traffic Control Devices, 1939)正式规定,要使用反光膜制造交通标志。
此后,随着化学工业、特别是合成树脂的发展,各个研发机构不断研究创新,利用玻璃珠技术,合成树脂技术,薄膜技术和涂敷技术,相继开发了一系列高质量逆反射产品。
20世纪40年代开始,这种最初制造的反光膜,被冠以“工程级”反光薄膜,广泛开始用于道路交通标志。此后,用于衣物等个人安全防护领域的反光膜等一系列产品,也伴随着合成树脂的问世,社会发展的需要,陆续被开发出来。此后,伴随着一系列材料科技和光学技术的研究成果,特别是微棱镜反光材料的出现,使这种最初主要用于交通标志的反光材料,开始逐步被更新、更好的反光材料所代替。
反光膜的分类方法有很多。其中比较普遍接受的分类原则,是以逆反射单元的基本结构为基础,根据反光膜正面光度性能的逆反射系数高低为主的排序方法。但考虑到反光膜的不同工艺,有些是专门为解决非正面逆反射亮度的,有些是兼顾两方面性能的,还有些是针对恶劣气候条件下的视认需求的,所以这种分类方法,也存在不足之处。因此,熟悉和掌握各种不同的反光膜的应用条件和设计功能,就显得十分必要。
在传统习惯里,根据反光膜反光单元的结构,将反光膜划分为两大类别,玻璃珠型反光膜和微棱镜型反光膜。每类反光膜都还包含很多种类,如微棱镜型反光膜,由于采用了更先进的技术工艺,其材料选择和棱镜结构上,都有了很多变化,可以应对更多的交通需求。根据棱镜的形式和技术特点,微棱镜型反光膜又可分为远距离逆反射能力好的截角型棱镜反光膜,近距离大角度逆反射性能好的截角型棱镜反光膜,以及兼顾各方面需求的全棱镜反光膜,白天和恶劣气候条件性能都好的荧光型全棱镜反光膜,符合传统工程级逆反射参数的棱镜型反光膜等等。
玻璃珠型反光膜较早出现,但其工艺变化比较少,主要有两种类型,一种为透镜埋入型反光膜,习惯上称为工程级反光膜;一种为密封胶囊型,通常称为高强级反光膜,出于应用的需要,应该关注的是,在透镜埋入型反光膜里,由于其出现历史悠久,各个不同的厂家,在漫长的生产制造过程中,利用透镜的直径、密度、耐侯涂层的厚度的不同,制作了很多种反光膜,比如超工程级反光膜,主要是在工程级反光膜的基础上,用更高质量的玻璃珠,并把玻璃珠的密度加大,以提高一些亮度;俗称经济级的反光膜,主要在中国生产,基本上是在工程级反光膜的技术基础上,通过减少透镜(玻璃珠)数量与密度的方式实现的,这两种反光膜,经济级反光膜,其反射能力无法满足交通安全的需要,更多的是用在商业领域,在国际上很少有将其列入交通安全向光的标准之中。
谈到反光膜的科学分类方法,就不能离开对应用反光膜有很大指导意义的反光膜标准。在世界各国的反光膜标准中,美国材料与测试协会标准、澳大利亚和新西兰标准、美国联邦公路管理署交通标志逆反射材料指导意见等,对世界各国的研究和应用逆反射材料制作交通标志,改善交通安全,起到了积极的指导作用。下面,我们逐一进行介绍。
美国的材料与测试协会是一家历史悠久的材料测试标准国际组织,英文全称是Association of Standard Testing of Materials,简称ASTM,它的成立,就是为了向科学界和产业界,提供一系列的材料检测标准,以实现对新生材料的定义,为全世界的科学界,提供一个能共同交流的技术平台。为逆反射材料,以及石油、天然气、化工等各种产业领域里的很多材料,提供检测标准化的技术支持。
有鉴于这样的技术溯求,ASTM对逆反射材料的检测标准,也是随着逆反射材料的发明和使用,不断累加进行的,每出现一种新材料,只要这种材料出现一段时间并由其生产厂家向ASTM提出加入申请,它的委员会就会授权对这种材料进行类别界定,建立检测标准。也正是由于这样的原因,在ASTM4956的反光膜标准里,反光膜种类多达11个,而且还在不断延续;然而另一方面,ASTM标准更象是一个关于逆反射材料的产品目录,而不是一个能够帮助了解反光膜应用方法和问题的标准,因为在ASTM对这些材料进行最初的分类时,并没有考虑驾驶员的表现和需求。
由于这样的原因,世界各发达国家,为了能对自己的交通工程建设单位提供更有效的技术支持和指导,都专门设立了自己国家的技术标准,而不是直接沿用ASTM对反光材料的分类。
反光膜是由多层不同性能材料组成的层结构,不同的反光膜,其组成的层结构也是不同的。 图3是最早出现的玻璃珠反光膜的基本结构图,由图中可以看出,反光膜一般都是由表层(保护膜)、反射层(功能层)、基层(承载层)、胶粘层和底层(保护层)等多层不同物质组成的膜结构物体。反光膜的表层一般是由是透光性和耐候性能良好的树脂薄膜,反射层根据不同类型的反光膜其组成材料也各不相同,有微小玻璃珠、微棱镜或金属反光镀层等,基层多为树脂有机化合物制成的薄膜,胶粘层一般是环氧树脂胶,底层是厚纸做的保护层。
表1是各种反光膜的结构图,由此可见反光膜的种类不同,它的组成材料和结构也是各不相同。
表1 各种反光膜主要结构图解表 反光膜的首要作用,就是改善交通标志的表面性能,使之能适应全天候状态的交通需要,提高道路安全运行条件。
由于不同种类的反光膜的反光性能存在差异,所以在具体应用到交通标志的制作时,就需要根据标志的设置功能和目的,进行相应的规范。研究这种应用规范的科学,被世界各国通安全工程专业人士,看作是交通控制与安全技术的重要组成部分。
交通控制与安全技术,已经发展了上百年。从人类第一部交通标志标准在1908年问世于英国以来,世界上很多国家都持续投入了大量的科研技术资源,来分析和掌握逆反射技术在交通安全领域的作用和价值。在这方面,走在最前列的,是欧美等发达国家,他们的研究成果,在很多方面,帮助中国在短短的10多年时间里,走过了从无到有的过程——中国的交通标志反光技术研究起步于20世纪80年代末,以交通标志国家标准GB5768和交通标志用反光材料国家标准GB18833为主要技术规范。在很多方面,这些标准还处在大量完善和发展的阶段,相关的科学应用方法和效果研究结论等,需要大量的时间和实践。 俗称“工程级”的透镜埋入式反光膜,是玻璃珠型反光膜的最初一类产品,业内习惯称为“工程级”系列反光膜,1937年发明。“工程级”的称呼,来自曾经注册过的英文产品名称“Engineering Grade”,是该产品发明公司的命名。后来,很多科研机构直接使用这个产品名称来代表实验材料用名,所以该名称得以在全世界交通工程界成为习惯用法,其正面亮度(0.2º/-4 º)一般在100cd/lx/m以下。直到2008年11月,根据工程级反光膜反光亮度特点研制的新的棱镜型工程级反光膜(也有称之为超工程级,英文 EGP,Engineering Grade Prismatic)问世,才又一次用科技的创新,突破和丰富了工程级反光膜的含义。
传统意义的工程级反光膜在20世纪80年代引进到中国,20世纪90年代,中国境内开始陆续出现了一批生产厂家,制造这种反光膜。
工程级反光膜的背胶,一般分为压敏型和热敏型两种,都可以完成粘贴。采用同类别的油墨使用丝网印刷技术,也可以在上面印制各类图案。工程级反光膜适用的底板为铝板, 施工操作温度一般要求在18摄氏度以上。温度过低,会影响粘胶性能,导致标志寿命受损。图4是透镜埋入式反光膜的结构示意图。 工程级反光膜的寿命一般为3~7年,白色膜正面两度(0.2º/-4 º)一般在100cd/lx/m左右,根据生产厂家的不同。有些厂家只提供7年的反光膜,7年后的亮度保留值至少为初始亮度值的50%。有些厂家则只提供3年和5年的质量担保。这主要是反光膜的耐侯性不同造成的,同样的原材料制成的反光膜,在不同地域气候条件下使用时,其寿命长度是不同的。
需要多注意的一点是,工程级反光膜的亮度稳定性、亮度强度和耐侯性,都是一些考察这类反光膜生产质量的一些重要依据。在这些环节上,任何一个环节上的偷工减料,虽然都能减少产品成本,但是其质量,也会大打折扣的,特别是耐侯性和光度参数上的差距,能明显体现工程级反光膜的优劣。 透镜密封式反光膜是一种耐久的玻璃珠型反光膜,业内习惯称为“高强级”反光膜,于1972年研发成功。“高强级”来自英文的High Intensive Beads(简称HIB),最初是该产品研发公司的专用名称,直到1985年,从日本开始,一些国家和地区的企业,也陆续开始制作这种反光膜,于是“高强级”一词开始陆续被其他厂使用,并逐渐变成了对这种特殊结构的反光膜的统一称谓。考虑到本书的读者大多是业内人士,高强级的名称已经成为业内的通用名称,所以本书从读者方便理解的角度出发,在后面的章节,也以“高强级”为主要称谓。
经过合格工艺和材料制造的这种高强级反光膜,至少比工程级反光膜的反光系数高两倍,其内部真空支架结构还解决了由于温度变化导致标志牌上凝结露水的问题,从而进一步提高了材料的反光能力。该材料问世的20世纪70年代,顺应了当时车速提高,道路条件变好的技术进步的需要,被成功地用来制作交通标志,拯救了大量生命。与工程级反光膜相比,即使标志在较大角度情况以及光亮地区,高强级反光膜都使标志更加清晰可见,有效地预告驾驶员前方道路危险情况。
高强级反光膜采用的是玻璃珠反光技术,由于它在产品结构上的创新,拥有了比工程级反光膜无可比拟的反光亮度和角度性能,但同时,也是由于高强级自身结构导致了一些难以克服的产品缺陷,如产品脆而易撕裂,起皱、气泡、表面蜂窝突起、生产能耗高、排放大等。玻璃珠技术的局限,也阻碍了高强级向更高亮度和更好的角度性的改进。
高强级反光膜也是带有背胶的材料,一般分为压敏型和热敏型两种。采用同类别的油墨使用丝网印刷技术可以制作各类图案。高强级反光膜一般是由透光性和耐候性能良好的树脂薄膜作为表层,第二层是真空层,第三层是嵌入式微小玻璃珠,第四层为金属反光镀层,第五层为树脂承载层,第六层是胶粘剂,第七层背纸保护层。图5是高强级反光膜的结构示意图,图6是高强级反光膜的典型外观。 高强级反光膜主要用来制作指路标志、禁止标志、警告标志和指示标志等交通主要标志。高强级反光膜问世后,驾驶员识别交通标志的时间缩短,发现前方标牌和障碍的距离显著提前,大大地增加了采取安全防范措施的时间,降低了夜间公路交通事故发生率,提高了交通安全性。根据实证研究,高强级逆反射材料的亮度,比工程级逆反射材料的亮度,大幅度提高。从20世纪90年代开始,在中国高速公路上就已经大量使用了这种高强级逆反射材料。
此后,随着机动车性能和道路建设技术的提升,城市环境的巨大变化,高速公路和高速车辆大幅度增加,城市光源纷繁复杂,宽路急弯层出不穷,对驾驶员的预见识认视距,有了新的要求。高强级反光材料的一些缺点,特别是在大角度反光性能和加工工艺与成本上,已经无法和新出现的棱镜技术想比拟,逐渐开始被取代。
进入90年代后半期,特别是21世纪,美国和欧洲地区,已经全面启动了用棱镜级级材料取代高强级材料的进程。特别是2004年问世的“超强级”逆反射材料,使用了棱镜技术,不仅从反光性能、加工方式、节能减排上,都比高强级有了质的提升,价格成本上,也不输于高强级材料,从此,作为高强级材料的发源地美国,已经不再出产这种材料,使中国成为高强级反光材料唯一生产地。
优质的高强级反光膜寿命一般为10年,白色膜正面亮度(0.2º/-4 º)一般在250cd/lx/m以上,在正常使用状况下,10年后的亮度保留值至少为初始亮度值的80%,高强级反光膜适用的基材为铝板,操作温度通常要求在18摄氏度以上。 微棱镜反光膜的逆反射原理与工程级(透镜埋入式)和高强级(透镜密封型)反光膜不同,工程级和高强级反光膜均采用玻璃珠反射原理,而微棱镜反光膜的反射原理是运用微棱镜的折射与反射。微棱镜反光膜的主要代表性产品,从逆反射特点和结构上,主要可以分为四类:注重远距离识别性的截角棱镜、注重近距离大角度识读性的截角棱镜、兼顾远距离识别性能和近距离识读性能的全棱镜,和这些棱镜技术与新型材料技术相结合的新型棱镜型反光膜。他们是顺应应用层次的多元化,而在近些年涌现出来的应对不同层次需求的新型反光材料。
远距离型截角微棱镜反光膜是第一代的微棱镜反光膜,问世于20世纪80年代早期,英文名称是Long Distance Prismatic(LDP),市场能见到的第一代钻石级、水晶级、星光级,都是这类产品。这类反光膜的正面亮度非常高,白色膜正面亮度(0.2º/-4º)一般在800cd/lx/m一般在800以上,而且逆反射光的分布没有方向性,反光膜无论是水平或者垂直贴膜,在反光效果上的差别不大。但在大的入射角和观测角下,反光亮度会有很大的衰减。如图7所示是该类反光膜的显微镜下结构图。这种突出正面逆反射光度的反光膜,更多的适合用来做轮廓标,警示柱等,不适合用来做在识读距离内需要更多视认亮度的交通标志。这种早期的棱镜反光膜,是当时设计和研发的一个阶段性的成果,那时候的棱镜结构,还没有能解决大观测角的逆反射亮度问题。
在第一代微棱镜反光膜问世后,人们发现了一个问题,当机动车真正驶入标志的识读距离时,也就是在大观测角度情况下,标志的亮度衰减太大了,以至于在识读距离内,无法阅读标志内容,或是要花更长的时间来阅读。由此,人们又利用大角度截角微棱镜结构,制造了大角度截角微棱镜反光膜,以解决在识读距离内,保持标志两度的问题。所以,这种大角度反光膜,同样是从反光性能方面来描述的一种特殊的棱镜型反光膜。
相对于远距离截角微棱镜反光膜,大角度截角微棱镜反光膜的正面亮度比较低,但在大的入射角和观测角时,它的反光亮度不会有很大的衰减。而大角度对应的是多车道和弯道多的地点,以及标志内容复杂,需要较长阅读时间的标志,所以这种反光膜适合于城市道路和宽阔道路的交通标志。虽然它在远距离的正面反光亮度一般(仅相对于远距离棱镜级,与高强级的正面亮度相比,仍然能高出一倍多),但在近距离时(需要进行标志内容识读的距离),其反光亮度比远距离反光膜要高很多。其方向性要比远距离反光膜要强,可以根据标志设置的位置和方向,进行调整,来适应识读的需要。图8所示是VIP大角度截角微棱镜在显微镜下的结构图。VIP(Visual Impact Prismatic),翻译为视觉影响型棱镜,20世纪80年代晚期问世,曾经一度广泛使用,全棱镜技术出现后停产。
全棱镜反光膜是使用全棱镜结构完成的棱镜型逆反射材料,就是去除了传统微棱镜结构中不能反光的部分,使反光膜全部由可以实现全反光的棱镜结构组合而成。它结合了远距离和大角度微棱镜反光膜的两种特点,在保持正面亮度大、远距离容易发现的同时,提高了在50-250米距离时的大入射角和观测角下的反光亮度。
这种全棱镜反光膜的问世,突破了棱镜型反光膜不能同时兼顾远距离反光能力和近距离反光能力的学术屏障。它根据车灯光传播的路径和方式,找到了在理想距离内的标志视认需要的角度(入射角和观测角),再确定了传统截角微棱镜上的不反光区域,然后将这些不反光区域去掉,从而实现了单位面积反光膜上的反光结构面积100%,也就是所谓的“全反光”。
当然,这只是理论反光效率100%。在实际制作中,由于材料等条件的限制,反射车灯亮度的100%还不能实现,目前,最好的反射效率是58%,这已经大大高于其他类型的反光膜,比如高强级的反射效率,只有23%。而且从观测角0.2º开始一直到2º,w其逆反射效率可以始终保持在50%以上。图9是全棱镜反光膜的电子显微照片。
现在的全棱镜反光膜上,通过每一微晶立方体联结并按一定规律排列后,在一个平方厘米的材料面积上会有930个以上的单元,以控制光线射入和反射出的路径。微晶立方角体下层经密封后形成一空气层,利用光的衍射现象,使入射光线形成内部全反射,从而不需借助金属反射层即可达到最优越的反光效果。使用耐磨高硬度的聚碳酸脂材料和微晶立方体技术制成的这种反光膜与传统的工程级和高强度级反光膜比较,其反光性能不仅成倍增加,而且大角度反光性能亦有很大提高。这种全棱镜反光膜的正面亮度为工程级的六倍以上,白色膜正面亮度(0.2º/-4º)一般在600 cd/lx/m以上,是高强级的两倍以上,而大观测角下(0.5º和2º时)的逆反射性能,则要高出大约二到四倍以上。
全棱镜反光膜是一种适用于所有等级公路和城市道路的交通标志材料。在西方的应用,开始逐渐替代了标志照明的投资和消耗。在制作道路标志时,如果从长期的投资效益和安全效益出发,全棱镜反光膜可以代替任何等级的反光膜。在正常使用状况下,使用十年后的全棱镜反光亮度保留值,至少为初始亮度值的80%,也就是十年后,它仍然能大大超过全新的高强级和工程级反光膜的逆反射性能,是一种从科学发展的角度考察,更节约的选择。同时,如果采用同类别的油墨,结合丝网印刷技术,可以制作各类带有图案的交通标志。
全棱镜反光膜主要用在指路标志,禁止标志,警告标志和指示标志等,特别是需要较长时间阅读的标志,视觉环境复杂的标志,以及宽阔路面和高等级公路上,其性能表现尤为突出。钻石级反光膜适用的底板是铝板,加工操作温度一般要求在18摄氏度以上进行。
图10是工程级反光膜、高强级、截角棱镜和全棱镜在各个角度的逆反射亮度值比较。随着科技的进步,全棱镜反光膜各个角度的光度性能有显著的提升。
近年来,棱镜型反光膜,在结构没有大的变化的情况下,将创新的重点,更多地转向了通过不同的材料处理技术,实现更丰富的光控制效果和丰富的材料特性上来,以完成不同的逆反射能力,不同的柔韧性,以便适应不同层面的需要。在市场上俗称为“超强级”、“特强级”、棱镜型工程级(新超工程级)的反光膜,都是棱镜型反光膜的新形式。这些反光膜的截角棱镜结构基本一样,但是材料加工工艺有所区别,形成了不同的反光效果、优越的耐候能力和加工适应性,以应对不同的应用需求。
其中,尤其是超强级反光膜,由于顺应了市场的需求,在21世纪初问世后,迅速普及开来。其设计初衷,就是发挥棱镜结构的优势,在确保能够超越高强级反光膜所有功能的基础之上,又能在多角度条件下,具有更好的逆反射性能,更优越的性价比。
这些新型棱镜反光膜具有非常高的强度和厚度,消除了反光膜在标志加工中易撕裂,起皱、气泡、表面蜂窝突起等缺陷,大大简化了施工时的难度,使标志加工过程更加容易控制,减少了加工不良带来的损失。同时,由于反光膜的表面亮度因子大,逆反射性能大大改善。它不仅具备了长距离下的优越逆反射系数,在一般的视认需求下,近距离的大观测角度依然能使标志保持较好的亮度,使驾驶者能更早的发现标志牌,并在近距离更加清楚的阅读标志牌的内容。图11是这些棱镜结构反光膜的结构示意图。通过树脂层、立方晶体表面的材料加工差异,就能形成不同的逆反射效果。
这类反光膜的表层大多采用聚碳酸酯材料,不仅更加耐磨损,耐刮擦,而且可以配套丝印油墨,还可以应用到热转印打印,制作彩色的交通标志。同时,由于表面亮度因子的提高,使标志牌在白天更加醒目,鲜艳,也具备了更好的耐候性。
值得一提的是,在各方面都对交通标志有着严格要求的2008年北京奥运会上,北京市交通管理机关就使用了这种反光膜高质高速地完成了赛事准备任务,使中国成为奥运会历史上第一个使用这种反光膜制作专用车道提示标志的国家。这也从一个侧面,展现了中国交通标志制作工艺,已经迅速地和国际先进水平接近。见图12。 图12(a)是正在安装的超强级反光膜标志,上面的彩色部分,是由打印机打印完成的。图(b)为正在打印的超强级反光膜。超强级反光膜表面最大的与众不同点,是图(c)这种独特的条纹图案。这是其他反光膜所不具备的特征。
2008年才问世的棱镜型工程级反光膜,也是一个全新的产品概念。它在保证了传统工程级反光膜正面亮度性能的同时,在大角度反光性能上,有了长足的进步,逆反射能力甚至超越了高强级反光膜的参数,同时,由于聚碳酸脂材料的使用,使这种反光膜具备了坚硬和高耐侯的能力,可以大大提高施工效率,为逆反射材料的应用和推广,提供了更多技术选择空间。
在全棱镜结构以后的反光膜,还没有在结构上再有所突破。但在反光膜的成本、材质和化学涂层上,还有很多发展的空间。荧光反光膜就是其中改善涂层技术,以进一步优化反光膜功能的一个典型案例。荧光全棱镜反光膜,是把耐侯性优异的特殊荧光材料(一般荧光材料耐候性很差),和全棱镜技术结合以后的具有特殊光学效果的反光膜。荧光反光膜里有一种独特的耐候性荧光因子,能够在吸收光谱内的可见光和部分不可见光的能量后,增加活跃程度,从而将不可见光的能量转化为可见光的能量,使反光膜的色度和光度在白天发挥得更加强大,从而增加标志的显著性。
由于荧光反光膜能够吸收光谱内的不可见光的能量并加以转化,这就使其能具有更加好的色度和光度,也就是所谓的更加鲜艳。这种荧光反光膜,在恶劣天气条件下,和当太阳光不那么强烈时,要比普通颜色鲜艳得多,更容易引起人们的注意。将这种荧光反光膜用于交通安全设施产品中,对确保黎明、黄昏或雨、雪、雾等恶劣天气的行车安全具有重大意义。目前荧光全棱镜反光膜在国外的应用已经很普遍,如荧光警示标志、荧光线形轮廓标、道路施工区荧光标志等。黄绿色荧光全棱镜反光膜已经被美国联邦公路局批准用于行人、非机动车和学校区域的交通标志;橙色荧光全棱镜反光膜多应用于施工区域标志。世界各国针对荧光反光膜也出台了相应的标准规范和技术条件。图13是荧光和非荧光反光膜的对比。

在中国,从2006年开始,荧光黄反光膜和荧光黄绿反光膜等都已经开始有了一些应用。在四川通往峨眉山的高速公路的多雨雾路段,北京八达岭高速公路上的事故多发路段,以及北京五环路上的奥运专用车道上,都能看到中国交通工程界对这种新型技术的细纳和应用发挥。见图14和图15。图14北京奥运水上赛场附近的人行道提示标志,使用了荧光黄绿全棱镜型反光材料提高警告标志的视认效果。注意观察旁边使用普通反光膜的警告标志的光度和色度差距。为确保奥运交通,五环路上正在安装带有荧光黄绿全棱镜型反光膜的车速提示设备(图15),值得注意的是,逆光状态下,其他的交通标志色度和光度都不好,但荧光黄绿全棱镜反光膜区域,非常醒目 。
需要注意的是,荧光反光膜是耐侯型荧光因子和棱镜型反光膜结合产物,那种使用柠檬黄印刷的广告材料,不属于这个技术范畴,尽管表面看起来色谱接近,但并没有荧光反光膜的所有技术特性。

❸ 环氧树脂表面用什么涂料

环氧树脂漆,是以环氧树脂为主要成膜物质的涂料。种类众多,各具特点。以固专化方式分类有自干型属单组分、双组分和多组分液态环氧涂料;烘烤型单组分、双组分液态环氧涂料;粉末环氧涂料和辐射固化环氧涂料。以涂料状态分类有溶剂型环氧涂料、无溶剂环氧涂料和水性环氧涂料。

❹ 想找一种胶水可以在物体表面形成透明保护膜,以便防止灰尘、油渍污染。等到不需要时可以剥下不留下痕迹。

环氧树脂软胶应该可以,不要的时候容易剥下来,其他的可能有难度

❺ 碳纳米管薄膜表面涂覆e51环氧树脂固化样条提高拉伸强度可行吗

碳纳米管可以制成透明导电的薄膜,用以代替ITO(氧化铟锡)作为触摸屏的材料内。先前的技容术中,科学家利用粉状的碳纳米管配成溶液,直接涂布在PET或玻璃衬底上,但是这样的技术至今没有进入量产阶段;目前可成功量产的是利用超顺排碳纳米管技术;该技术是从一超顺排碳纳米管阵列中直接抽出薄膜,铺在衬底上做成透明导电膜,就像从棉条中抽出纱线一样。该技术的核心-超顺排碳纳米管阵列是由北京清华-富士康纳米中心于2002年率先发现的新材料。
碳纳米管触摸屏首次于2007~2008年间成功被开发出,并由天津富纳源创公司于2011年产业化,至今已有多款智慧型手机上使用碳纳米管材料制成的触摸屏。

❻ 环氧树脂胶加固化剂时表面有一层白色物体释出是什么是不是钛白粉怎么消除

环氧油漆胺发白,或叫胺析。在油漆表面表现出来的是一层油光光的、似蜡的或似乳的膜,颜色呈半透明状。它通常是在阴凉、潮湿的条件下,当漆膜固化时发生。涂料中的固化剂(聚酰胺、聚胺)的胺成分和大气中的二氧化碳和水在涂层表面上发生反应,生成氨基甲酸铵。
可以用温水或油漆商推荐的溶解清除氨基甲酸铵。严重的清洗后打磨下。

❼ 环氧树脂和不饱和聚酯树脂哪个将来发展前景较好

给你看两篇文章

不饱和聚酯树脂产品发展至今大约有70多年的历史。在这么短的时期内,不饱和聚酯树脂产品无论从产量还是从技术水平方面均得到了飞速的发展,目前不饱和聚酯树脂产品已发展成为热固性树脂行业中最大的品种之一。
在不饱和聚酯树脂的发展过程中,从产品专利、商业杂志、技术书籍等方面的技术信息层出不穷。至今每年都有上百项发明专利是关于不饱和聚酯树脂的。由此可见,不饱和聚酯树脂制造和应用技术随着生产的发展也日益成熟,逐步形成了自己独特的完整的生产与应用理论的技术体系。
在过去的发展过程中,不饱和聚酯树脂对于一般用途来说,具有特殊意义的贡献。将来我们要向一些特殊用途的领域发展,同时还要使通用树脂低成本化。下面介绍几种比较有意义和发展前景的不饱和聚酯树脂类型。
1)低收缩树脂。这个树脂品种或许只是一个老话题,不饱和聚酯树脂在固化时伴随有较大的收缩,一般体积收缩率达6-10%。这种收缩会使材料严重变型甚至破裂,尤其是在模压成型工艺中(SMC、BMC)。为了克服这一缺点,通常采用热塑性树脂作低收缩添加剂。在这个领域的第一个专利是1934年杜邦公司,专利号为U.S.1,945,307。专利叙述了二元羧酸与乙烯基化合物的共聚合反应。很明显,在当时,这项专利开创了聚酯树脂低收缩技术的先河。此后,有很多人志力于共聚物体系的研究,这些共聚物体系当时被认为是塑料合金。1966年Marco的低收缩树脂被首次用于模塑成型中并用于工业化生产。其后塑料工业协会将这种产品称为"SMC",含义为片状模塑料,它的低收缩预混配合物"BMC"含义为团状模塑料。对于SMC板材,一般要求树脂成型后的部件具有良好的配合公差、柔韧性和A级光泽,要避免表面有微裂纹,这就要求配合的树脂要有较低的收缩率。
当然,其后又有很多专利对这项技术进行了改进和提高,对于低收缩作用的机理的认识也逐渐成熟,各种各样的低收缩剂或低轮廓添加剂品种应运而生。常用的低收缩添加剂有聚苯乙烯、聚甲基丙烯酸甲酯等。

2)阻燃树脂。有时阻燃材料与药品救助具有同等的重要性,阻燃材料可以避免或减少灾难的发生。欧洲最近十年由于采用了阻燃剂,火灾致死人数降低了约20%。阻燃材料本身的安全性也是很重要的,在工业上,规范使用材料类型是缓慢的、艰难的过程,目前欧共体已经和正在对很多卤系及卤-磷系阻燃剂进行危害性评估,其中很多将于2004年-2006年间完成。
目前我国一般采用含氯或含溴的二元醇或二元酸卤素取代物作为原料来制得反应型阻燃树脂。卤素阻燃剂在燃烧时会产生大量烟雾并伴有刺激性很强的卤化氢生成。在燃烧过程产生的这一浓烟毒雾给人们造成极大的危害。据统计,火灾事故中80%以上的死亡原因是由此而造成的。用溴或氯系作为阻燃剂的另一不利条件是在其燃烧时还会产生腐蚀性和污染环境的气体,会导致对电器原件的破坏。采用无机阻燃剂如水合氧化铝、镁、硼、钼化合物等阻燃添加剂,虽有明显消烟作用,能制得低烟低毒阻燃树脂,但如果无机阻燃剂填料量过大,不但树脂粘度增大,不利于施工,同时树脂中加入大量添加型阻燃剂时,会影响树脂固化成型后的机械强度和电性能。
目前,国外很多专利报导了采用磷系阻燃剂生产低毒、低烟阻燃树脂的技术。磷系阻燃剂的阻燃效果相当大,燃烧时生成的偏磷酸可聚合成稳定的多聚态,形成保护层,覆盖在燃烧物表面,隔离氧气,促进树脂表面脱水碳化,形成碳化保护膜从而阻止燃烧。同时磷系阻燃剂还可与卤素阻燃剂配合使用,有非常明显的协同作用。
当然,将来阻燃树脂的研究方向是低烟、低毒、低成本。理想的树脂是无烟、低毒、低成本、不影响树脂固有的物理性能、不需加入添加材料,能够在树脂生产厂直接生产制造的阻燃树脂。

3)增韧树脂。与最初的不饱和聚酯树脂品种相比,现在的树脂韧性已经有了大幅度的提高。但随着不饱和聚酯树脂下游行业的发展,对不饱和树脂的性能提出了更多新的要求,尤其是韧性方面。不饱和树脂固化后的脆性,几乎成了限制不饱和树脂发展的重要问题。不论是从浇铸成型的工艺品产品还是模压成型或缠绕成型的产品,断裂延伸率成为考核树脂产品质量的重要指标。
目前国外一些厂商采用加入饱和树脂的方法来提高韧性。如添加饱和聚酯、丁苯橡胶和端羧基丁苯橡胶等,这种方法属于物理增韧法。还可采用向不饱和聚酯的主链中引入嵌段聚合物,例如不饱和聚酯树脂与环氧树脂和聚氨酯树脂形成的互穿网络结构,极大地提高了树脂的拉伸强度和冲击强,这种增韧方法属于化学增韧法。还可采用物理增韧与化学增韧相结合的方法如把活性较高的不饱和聚酯与活性较低的材料相混就能达到所需的柔韧性能。目前SMC板材由于其轻质、高强、耐腐蚀性、设计灵活性在汽车行业得到了广泛的应用,对于汽车而板、车后门、外面板等重要部位,要求有较好的韧性,例如汽车外护板可在稍受碰后有限度地向后弯曲并恢复原状。
提高树脂的韧性,往往会损失树脂的其它性能,如硬度、弯曲强度耐热性能以及在施工时的固化速度等。提高树脂的韧性又不损失树脂的其它固有性能成了不饱和聚酯树脂科研开发的重要课题。

4)低苯乙烯挥发树脂。在加工不饱和聚酯树脂的过程中,挥发性的有毒苯乙烯会对施工人员的健康产生很大的危害。同时苯乙烯散发到空气中,也会造成严重的空气污染。因此,很多国家的职能机关限制苯乙烯在生产车间空气中允许的浓度。例如在美国其允许PEL值(permissibleexposurelevel)是50ppm,而在瑞士,其PEL值为25ppm,这样低的含量是不太容易达到的。依靠强力的通风作用也很有限。同时,强力的通风还会导致苯乙烯从制品的表层散失以及大量苯乙烯挥发到空气中。因此寻找减少苯乙烯挥发的方法,从根源上来说,还是要在树脂生产厂完成这项工作。这就要求开发不污染或少污染空气的低苯乙烯挥发(LSE)树脂或无苯乙烯单体的不饱和聚酯树脂。
减少挥发性单体含量,在近几年来一直是国外不饱和聚酯树脂行业开发的课题,目前采用的方法有很多种:1)加入低挥发抑制剂的方法。2)不含苯乙烯单体的不饱和聚酯树脂配方有用二乙烯基体、乙烯基甲基苯、α-甲基苯乙烯来取代含苯乙烯单体的乙烯基单体3)低苯乙烯单体的不饱和聚酯树脂配方是并用上述单体与苯乙烯单体,比如使用邻苯二甲酸二烯丙酯、丙烯酸共聚物等高沸点乙烯基单体与苯乙烯单体其用4)另一种减少苯乙烯挥发的方法是把双环戊二烯及其衍生物等其它单元引入不饱和聚酯树脂骨架,实现低粘度化,最终使苯乙烯单体含量降低。
在寻求解决苯乙烯挥发问题的途径上,必须综合考虑树脂对现有的成型方法如表面喷涂、层压工艺、SMC成型工艺的适用性,工业化生产的原料成本问题,与树脂体系的相容性,树脂的反应活性、粘度,成型后树脂的机械性能等问题。在我国在限制苯乙烯挥发方面还没有明确立法,但随着人民生活水平的提高,人们对自身健康认识以及环保意识的提高,对于我们这样的不饱和消费大国,相关的立法是只是迟早的问题。

5)耐腐蚀树脂。不饱和聚酯树脂的一个较大的用途是其对有机溶剂、酸、碱、盐等化学品的耐腐蚀性。目前耐腐蚀树脂分为以下几类:1)邻苯型、2)间苯型、3)对苯型、4)双酚A型、5)乙烯基酯型,以及其它如二甲苯型、含卤素化合物型等,经过几十年来几代科学家的不断探索,对于树脂的腐蚀以及抗腐蚀机理已经研究的比较透彻了。
通过各种方法对树脂进行改性,如向不饱和聚酯树脂中引入难于耐腐蚀的分子骨架或采用不饱和聚酯与乙烯基酯及异氰酸酯形成互穿网络结构,对于提高树脂的耐腐蚀性是很有效的,加外采用酸树脂混配的方法制造的树脂也能达到较好的耐腐蚀效果。与环氧树脂相比,不饱和聚酯树脂的低成本、加工方便成为极大的优势,但不饱和聚酯树脂的耐腐蚀性尤其是耐碱性却远不如环氧树脂,很长一段时期来,尤其是在腐蚀严重的场合,不饱和聚酯树脂还不能取代环氧树脂。目前防腐蚀地坪的兴起,更是对不饱和聚酯树脂形成机遇与挑战。因此,开发专用耐腐蚀树脂具有广阔的前景。

6)胶衣树脂。胶衣在复合材料中起着重要的作用,它不仅起着对玻璃钢制品表面的装饰作用,而且起着耐磨、耐老化、耐化学腐蚀的作用。胶衣树脂的发展方向是研制低苯乙烯挥发、空气干燥性好、耐腐蚀性强的胶衣树脂。胶衣树脂中耐热水胶衣有很大的市场,玻璃钢材料如果长期浸入热水中,表面就会出现水泡,同时由于水逐渐浸透到复合材料内部而使得表面水泡逐渐膨胀,水泡不仅会影响胶衣的外观,而且会逐渐降低制品的各项强度性能。美国堪萨斯州厨房用具公司(CookCompositesandPolymersCo.)采用环氧树脂和缩水甘油醚封端的方法制造一种胶衣树脂,具有低粘度和优异的耐水性、和耐溶剂性。另外,该公司还采用经过聚醚多元醇改性和环氧树脂封端的树脂A(柔性树脂)与双环戊二烯(DCPD)改性的树脂B(刚性树脂)复配,这两种均具有耐水性能的树脂经过复配,除具的好的耐水性外,还具有好的韧性和强度,可作为胶衣树脂或胶衣树脂与普通树脂之间的隔离层树脂使用,可有效地阻止水或溶剂或其它低分子物质穿过胶衣层渗入到玻璃钢材料体系中,成为综合性能优异的耐水树脂。

7)光固化不饱和聚酯树脂。不饱和聚酯树脂的光固化特点是适用期长、固化速度快。不饱和聚酯树脂通过光固化可满足对苯乙烯挥发量限制的要求。由于光敏剂及光照装置的进步,为光固化树脂的发展打下基础。各种紫外光固化的不饱和聚酯树脂已研制成功并已大量投入生产。提高了材料性能、工艺性能以及表面耐磨性,同时采用这种工艺也提高了生产效率。

8)特殊性能的低价树脂。这种树脂包括发泡树脂与含水树脂――目前,木材能源的缺乏在世界范围内有一个上升的趋势。同样也缺乏从事木材加工业的熟练的操作工人,而这些工人的薪金也越来越高。这种条件下就为工程塑料进入木材市场创造了条件。不饱和发泡树脂和含水树脂作为人造木材在家具行业里将以其低成本、高强度的特性而得到发展。应用一开始将是缓慢的,以后随着加工技术的不断提高,这种应用必将得到迅速的发展。
不饱和聚酯树脂可以发泡,制成发泡树脂,可用作墙板、预成型的浴室隔板等。以不饱和聚酯树脂作为基体的泡沫塑料可的韧性、强度比发泡PS好;加工比泡沫PVC容易;成本比泡沫聚氨酯塑料低,添加阻燃剂等也可使其阻燃和耐老化。虽然树脂的应用技术已全面发展,但发泡不饱和聚酯树脂在家具中的应用还没有被重视,经过调查,一些树脂制造商对于开发这种新型的材料有很大的性趣。一些主要的问题(结皮、蜂窝结构、胶凝-成泡的时间关系、放热曲线控制)在工业化生产以前还没有完全解决。在没有得到答案前,这种树脂由于它的低成本只能应用于家具行业。一旦这些问题得到解决,这种树脂将会广泛地应用于泡沫阻燃材料等领域而不仅仅是利用其经济性。
含水不饱和聚酯树脂可分为水溶型和乳液型两种。国外早在60年代就开始就有这方面的专利和文献报导。含水树脂是将水作为不饱和聚酯树脂的一种填料在树脂凝胶前加入树脂中,含水量最高可达50%,这样的树脂称为WEP树脂。该树脂具有低成本、固化后质量轻、阻燃性好、低收缩率低等特点。我国对于含水树脂的开发和研究始于80年代,已经有很长一段时期,在应用方面,已见用于锚固剂。含水不饱和聚酯树脂是UPR的一个新品种。实验室的技术日趋成熟,但应用方面的工作研究较少,需要进一步解决的问题是乳液稳定性问题和固化成型过程中的一些问题以及客户的认可问题。一般一个万吨级不饱和聚酯树脂每年可产生约600吨废水,如果利用不饱和聚酯树脂生产过程中产生的缩水循环利用生产含水树脂,即降低了树脂成本又解决了生产环保问题。

9)采用新的原材料和新的工艺合成的高性能树脂。双环戊二烯改性不饱和聚酯树脂是最近几年在我国迅速发展的树脂品种。据江苏亚邦涂料公司和天津合材有限公司提供测试数据表明,DCPD改性树脂其浇铸体和玻璃钢性能的技术指标与普通邻苯型树脂不相上下。目前双环戊二烯树脂以其较低的价格和良好的性能迅速被市场所接受。各企业纷纷开发此类产品,产品技术逐渐成熟。其中天津合材树脂有限公司开发的"低温催化法合成双环戊二烯不饱和聚酯树脂"于2004年通过天津市科委的科技成果鉴定,并于2005年获得天津市优秀项目二等奖。
用回收的废聚对苯二甲酸乙二醇酯(PEF)或回收废对苯二甲酸(PTA)可生产不饱和聚酯树脂,既解决了环保问题,又降低了合成高性能树脂的成本,合成的树脂具有优异的韧性、弹性、和强度,一些性能甚至优于用间苯二甲酸制备的树脂,且成本可与邻苯二甲酸树脂相比。由于对苯型树脂在耐腐蚀、耐热性能方面优于邻苯型及间苯型树脂,也大大拓展该树脂在化工防腐领域中应用。我国天津合成材料厂(天津合材树脂有限公司)利用这项技术生产的199A树脂曾获天津市科技进步奖。江浙地区窨井盖用BMC树脂和广东地区缠绕树脂已部分采用了下脚对苯型树脂。下脚对苯型树脂产区在温州、富阳、武进、泉州、番禺等地有较大的市场。厦门汇大化工公司为综合利用厦门翔鹭石化公司的PTA下脚料,正在进行扩建成10万吨树脂生产能力进行配套。随着国家提出"循环经济"的发展方针,这两大类树脂会加速增产。
近几年,一些专利报导用双环戊二烯与废PET联合使用,作为生产不饱和聚酯树脂的原材料,可以产生优势互补的效果。即解决PET树脂与苯乙烯相溶性差的缺陷,又解决了双环戊二烯改性树脂韧性较差缺陷,还可进一步降低树脂成本。
2-甲基1,3-丙二醇(MPD)是近年来市场上常见的品种,它具有较高的沸点,具有两个羟基可快速缩合反应,由此制备的树脂具有较高的反应活性以及优异的机械性能和耐腐蚀性能。可以和对苯二甲酸配合使用,起到优势互补的作用,制造的树脂可用于强腐蚀环境如玻璃钢槽、罐等场合。
采用甲基丙烯酸缩水甘油酯(GMA)作为合成树脂的原材料。GMA含有一个活性的环氧基团,可以与聚酯链中的羧基反应,起到封端的效果。这种树脂在分子链的端基产生一个甲基丙烯酰组份,可以与苯乙烯单体发生聚合反应,分子链中间是柔性链节,可使固化后的树脂具有很好的韧性和回弹性。
10)用于不饱和聚酯树脂辅料的开发。与不饱和聚酯树脂相关的辅料包括:各种催化剂、分散剂、消泡剂、抗氧剂、紫外线吸收剂、促进剂、固化剂、色浆、胶衣、脱模剂、添加剂等材料。国内各种辅料的开发已比较完善,尤其是复合促进剂的开发,为树脂的快速固化提供了良好的条件。目前,国产的促进剂质量已有大幅度的提高,在固化速度、固化后对制品的色泽影响方面都优于进口材料。但国产固化剂的质量(主要是过氧化甲乙酮)却有所下降,存在着固化剂中低分子物过高、含水量过高等缺点,且固化剂生产厂时有爆炸现象发生,这主要是由于我国的固化剂生产技术还不过关,还需要进一步巩固和提高。其它辅料方面,高档助剂(如分散剂、消泡剂、抗氧剂等)仍以进口为主,我国专业研究和生产不饱和聚酯树脂相关助剂的厂家很少,说明我国的不饱和辅料技术还有一个很大的缺口。
总之,如果一种材料具有低成本,那么在工业上一定会找到它的用途和价值;如果一种材料具有满足市场所需求的性能,就一定会有生命力,而这些材料在制造过程中的一些技术问题,也终将会被攻克。很简单,例如如果能够制造出一种普通价位的阻燃树脂,我们将会看到市场上所有的树脂材料都将是阻燃的。
环氧树脂是指分子中含有两个或两个以上环氧基团的有机高分子化合物,其分子结构是以分子链中含有活泼的环氧基团为特征。这使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物,并由此特性成为先进复合材料中应用最广泛的树脂体系,可适用于多种成型工艺配制成不同配方,可调节粘度范围大;以适应于不同的生产工艺。近年来橡胶弹性体增韧、树脂合金化改性以及环氧树脂增韧改性新技术等增韧技术的日益成熟,环氧树脂得到了更好更广泛的应用。目前环氧树脂统治着高性能复合材料的市场,因此对环氧树脂市场的研究有着广泛的意义。
根据最新统计,我国2005年全年环氧树脂产量为44万吨、进口量为25万吨、出口量为6万吨、消费总量为63万吨,产量继续保持较大增长,进口量在总消费量中的比较进一步下降,消费量已趋于稳定合理。
纵观近年来国际环氧树脂市场,1993年,世界环氧树脂生产能力为130万吨,1996年递增到143.5万吨,1999年为159.5万吨,2002年为 186万吨,2005年为201万吨,预计2010年可达到250万吨左右。尤其是欧美、日本环氧树脂公司兼并及投资建设较为活跃。国际大鳄经过一系列重组整合,全球环氧树脂行业三甲已轮流坐庄,由20世纪末的Shell、DOW、Ciba-Geigy,变成Hexion、DOW、南亚。市场新三强生产能力分别达到38、36、30万吨/年!并且Hexion、DOW、南亚三甲目前在中国都设有生产基地,中国在数量上已成为全球环氧树脂最大生产国和重要消费国,但从消费结构以及企业个体角度来看,作为经济组织国内企业还有待做大做强。
一、产业历史 我国环氧树脂产业起步于 1958年,但是计划经济的束缚、加上文革的影响,使我国的发展步子明显慢于国外。上世纪80年代情况有所好转,年增长率达到了7%左右,但从总量上看每年计划安排的环氧树脂用量始终在万吨以下。90年代初,我国经济发展逐渐与国际市场、国际经济接轨,环氧树脂行业出现了众多外资企业、中外合资企业,加上大量乡镇企业、私营企业的进入,我国环氧树脂生产企业如雨后春笋,一下子由原来的几十家扩大到近200家,出现了多种经济成份相互竞争、共同发展的局面。但当时的单套装置规模均在5000吨/年以下,与国外相比差距甚远,工艺技术上同样具有很大距离。
经过上世纪90年代的大力发展,我国环氧树脂行业进入了又一个发展期。1998年环氧树脂消费量达到12万吨。技术引进在此过程中发挥了重要作用,使我国环氧树脂生产从技术水平到生产规模都有了一个很大的提高,他们生产的环氧树脂已经能够与进口货抗衡。在这一发展期间,我国环氧树脂行业出现了聚集发展的格局,龙头企业充分发挥了对整个行业的牵幅射作用,形成了我国环氧树脂的核心产业带;安徽黄山地区异军突起,他们独辟蹊径发展粉末涂料专用的固体树脂,凭借专业化的优势,构成了环氧树脂和环氧树脂粉末涂料联合生产基地;华南地区成为我国环氧树脂应用的一个高地,该地区凭借毗邻港的地域优势在大力发展电子工业的同时,带动了环氧树脂在电子领域的应用,是电子领域成为我国环氧树脂主要消费方向之一的重要推动力量。
进入21世纪,电子电气、交通运输、石油化工、建筑工程等与环氧树脂相关的行业发展尤其迅猛,经济建设对环氧树脂的需求量急剧增加。在这一“发展”的大背景,我国环氧树脂迎来了黄金发展阶段。生产和消费的平均增长达到30%左右,远远高于同期全球3%的增长水平,成为全球环氧树脂增长的主要拉动力量。主要的发展特点表现为以下几个方面。
二、产业特点
一是外资带动。美国以及台资等纷纷在大陆建厂生产,这些外资工厂具有相当生产规模,几乎占了目前中国大陆环氧树脂生产能力的一半。同时采用的工艺技术都是国际最先进的,使我国环氧树脂产业不仅生产能力大幅提升,而且技术素质有了飞跃,特别是从国外到国内的技术“领先”刺激,促使国内原有的环氧树脂企业奋发创新,从而实现了良好的整体带动战略。
二是行业内部通过结构调整,产业链与区域经济整体发展、同步提升,企业素质有了质的提高。规模化成为当前内资环氧树脂企业的最大特点,目前企业数量已从高峰时的200多家调整到100家左右,企业生产规模则有了极大提高,技术水平同样快速提高,而且其发展不再是孤立的而是具有带动或呼应整个产业链同步提升的能力,产生的聚集效应值得充分肯定,已经把我国环氧树脂产业水平推进到了一个新的高度。
三是技术创新能力大为提高,技术水平进入世界较先进行列。当今环氧树脂产业领域的竞争,除了人才、管理、资本等因素外更重要的是技术的比较,目前中国环氧树脂业随着资本结构的多元化,同时也成为中外各种先进工艺技术的比拼舞台,在这一决定竞争成败的竞技场上,中国本土的企业在依靠自有知识产权的同时不断推进技术进步,在竞争中逐步发展壮大。

四是整个行业呈现分工较为明确的格局。生产能力在2万吨/年左右的大型企业,无论内资、外资均以大宗的基础树脂为主,在这些领域没有规模就没有优势,小企业难以有所作为;内资企业的一些传统大厂也是新产品研发的中心,不断培育新的品种,不断形成新的大宗品种;而在粉末涂料重镇黄山,单一优势明显,产品大量出口;特种、专用产品和技术全面开花,一些小型企业“内精外王”,为业界瞩目。
五是环氧树脂应用领域迅速打开。应用的力度和深度是产品生产规模的基础,材料制造行业为应用行业提供先进的材料、满足其生产出更好产品的要求,而应用行业又反过来要求材料制造行业提供更加先进的材料、促进其不断发展。其中许多以前依赖进口的产品,实现了国内部分或全部替代。
六是信息化建设进展神速、与行业的现代化发展相辅相成。信息化促进产业化、产业化带动现代化已成该行业的真实写照,该行业先进企业大都有着信息化手段的有力支撑。通过ERP系统等全面的信息化建设,在流程上实现效率、在应用中实现了降耗的目标。
三、应用分析
目前我国环氧树脂应用主要领域有:电子信息,其中彩电、音响、电话机产量跃居世界第一,目前正在聚焦信息家电、移动计算、数字电视、无线局域网、汽车电子等领域的新兴市场,环氧树脂在其中的应用主要形式是敷铜板、塑封料、浇注料、包封料、贴片胶、模具胶等;交通设备,交通运输设备制造业中大量使用环氧电泳涂料、重防腐涂料、模具胶、工具胶等各类粘接剂、复合材料等;能源工业,环氧树脂在该行业中的应用主要是作为绝缘材料,应用形式主要有层压板、浇注料、塑封料、绝缘漆、粘接剂;汽车制造,高速发展的汽车产业将大力促使环氧树脂生产,目前每辆汽车平均需耗环氧树脂5公斤,随着我国汽车产业的腾飞,内需拉动下环氧树脂在该领域大有可为;建筑、水利行业,环氧树脂在该领域中的使用形式主要包括地坪、防腐涂料、其它建筑涂料、复合材料混凝土、环氧沥青、建筑补强和堵漏材料、大坝防腐材料等;石油石化,环氧树脂在石油石化的应用以防腐为核心,应用形式主要有海上石油平台、油罐、输油管道防腐材料。环氧树脂消费与经济发展存在着高度正相关联系,经济越发达、生活水平越高则环氧树脂消费量越高,目前发达国家人均消费环氧树脂水平达到1公斤/年左右。而我国人均消费环氧树脂 2000年仅0.1公斤,而2005年已达到0.3公斤,增长了2倍,由于我国人口基数的庞大因此在今后几年的产业震荡中行业规模的扩张还是非常可观的。
我国环氧树脂需求量的急速增加,引起国际业界高度关注。环氧树脂跨国公司几乎全部前来或正在前来我国投资兴建大型生产厂,国内企业也纷纷新建扩建环氧树脂装置。据公开披露的信息,目前拟新增环氧树脂生产能力达到55万吨/吨左右,加上现有生产能力40万吨/吨,预计2010年前后我国环氧树脂生产能力将达到 130万吨/吨,接近全球的一半,成为世界环氧树脂大国。我国环氧树脂事业目前正进入一个新的关键发展期。
四、市场建议
但我国环氧树脂产业如何实现大国梦,并进而成为强国,还有很多课题要解决。首先要走专和特的道路。我国环氧树脂市场大,国产环氧树脂市场占有率一直持续上升并逐渐占据优势,同时开始走向国际市场,成绩可喜;但是进一步扩大优势就要从环氧树脂市场面大量广、用户产品更新换代快、工艺技术进步迅速这个特点出发,根据应用行业发展特点大力发展特种或专用环氧树脂,学习黄山的产业结构,中小企业力争单一优势,以专以特作市场。
其次积极瞄准国外高档产品进行攻关,早日实现替代。我国短缺的、需要依赖进口的环氧树脂产品,价格都相当高甚至高得离谱,这些产品开发难度大、成本高,有些目前需求不大,但决不能因此放弃发展,有条件的厂应积极组织开发。一来可以为下游行业压缩过高成本,二来可以为自身赢得未来的市场。
再次,要开发绿色产品,实现清洁生产。环氧树脂废水的治理是环氧树脂行业的一大难题,这主要是由于环氧废水中含有大量老化树脂和较高浓度的碱盐,采用传统的废水治理方法难以奏效。尤其电气、电子、建材方面对环保产品的要求呼声很高,目前大量使用非环保的溴化环氧树脂的覆铜板、阻燃电器浇注料已受到一定的限制,发展非卤化阻燃环氧树脂要立即行动。环保水溶性环氧树脂、无溶剂型环氧树脂、高固体份环氧树脂目前产量还很低、品种也不多,要大力推动发展。

最后,必须加快发展原料、辅料的配套发展。目前我国双酚A、环氧氯丙烷、固化剂的生产远远跟不上环氧光固化涂料用环氧树脂的研究。

你对比下吧,其实不管是哪个行业,只要是你去研究了你会发现他们都是海有很多空间去开发的,我就是研究环氧树脂的

❽ 什么是固化剂

固化剂又名硬化剂、熟化剂或变定剂,是一类增进或控制固化反应的物质或混合物。

树脂固化是经过缩合、闭环、加成或催化等化学反应,使热固性树脂发生不可逆的变化过程,固化是通过添加固化(交联)剂来完成的。固化剂是必不可少的添加物,无论是作粘接剂、涂料、浇注料都需添加固化剂,否则环氧树脂不能固化。 固化剂的品种对固化物的力学性能、耐热性、耐水性、耐腐蚀性等都有很大影响。

结构特性

固化剂的固化温度和固化物的耐热性有很大关系。同样地,在同一类固化剂中,虽然具有相同的官能基,但因化学结构不同,其性质和固化物特性也不同。因此,全面了解具有相同官能基而化学结构不同的多胺固化剂的性状、特点,对选择固化剂来说,是很重要的。

在色相方面,脂环族最浅,基本上是透明的,而脂肪族和芳香族,其着色程度相当显著。在黏度方面,也有很大不同,脂环族不过零点零几Pa·s,而聚酰胺则非常黏稠,达数Pa·s,芳香族胺多为固态。适用期长短正好与固化性完全相反,脂肪族反应性最高,而脂环族、酰胺、芳香族依次降低。

以上内容参考:网络-固化剂

❾ 双曲型铝板,怎么么制作的咧!

铝塑复合板是以经过化学处理的涂装铝板为表层材料,用聚乙烯塑料为芯材,在专用铝塑板生产设备上加工而成的复合材料。 铝塑复合板本身所具有的独特性能,决定了其广泛用途:它可以用于大楼外墙、帷幕墙板、旧楼改造翻新、室内墙壁及天花板装修、广告招牌、展示台架、净化防尘工程。铝塑复合板在国内已大量使用,属于一种新型建筑装饰材料。铝塑板生产工艺铝塑板的生产工艺有多种,按塑料芯板和两面铝板的复合工艺可分为冷复合法和热复合法;还可分为连续复合法与间歇复合法。生产铝塑板的工艺首先是清洗铝卷材。铝卷材在生产中因工艺的需要,表面都涂有润滑剂和防氧化剂,在运输中也会附着一些污物,这些都会影响其粘接性,因此必须清洗干净。铝卷材经清洗及化学处理后,表面会产生一层致密的化学保护膜;这层化学膜可以提高铝卷材的抗氧化能力和延长漆膜的寿命。清洗的大致工艺如下:铝卷材→喷淋脱脂→水洗→中和→化学处理→水洗→烘干→冷却→收卷。
清洗干净的铝卷材被送入涂覆机,在铝卷材外表面涂覆高性能氟碳树脂。其工艺流程如下:
铝卷材→送料→涂覆氟碳涂料→热风循环烤漆→ 冷却→覆膜→裁切→收卷外墙铝塑板的面板要各涂覆两层面漆和底漆。外墙板的面漆是耐候性极高的氟碳树脂涂料,即聚偏二氟乙烯(PVDF),其优异的抗紫外线性能和抗环境污染性使被保护的铝卷材表面保持绚丽的色彩。铝塑复合板的表面不仅可以有金属的色泽,也可以有美丽的大理石花纹及色彩。氟碳涂料通常采用辊涂的方法涂覆到铝卷材上,再经过高温烘烤,使其干燥。设备为连续式生产,先涂底漆,再涂面漆,最后涂表层清漆。三层漆的总厚度达30μm,每层漆都需在 200 ℃以上烘烤60s 左右,使其干燥,出烘烤箱后通过风冷机使其迅速冷却。内墙板漆可采用环氧树脂、聚酯树脂及丙烯酸类树脂。底漆、面漆、表层清漆涂覆完毕后,马上在涂覆层表面贴一层 PE保护膜,以避免表面涂层在以后的加工和运输流通及安装时被划伤。保护膜为自粘膜,安装完毕揭去即可。涂覆过氟碳树脂的铝卷材即可进入与塑料芯材复合的工序。塑料芯材实质上也是三层,中间是PE塑料,两边是粘接剂。PE片材和粘接剂可分别生产,也可采用三层共挤出的方法生产。先生产结构为粘接剂/PE/粘接剂的三层共挤出片材,再与上下两层铝板复合,复合好的铝塑复合板两面为0.15mm 厚的铝板,芯层为3~5mm,总厚度为4~6mm。最后切割成1220mm×2440mm规格的板材。无法满足你的提问需要,非常抱歉!!!详细的加工核心技术属于商业机密,故无法获得,但有专利技术转让,需要花钱购买。。。

❿ 反光膜的反光膜综述

反光膜是一种已制成薄膜可直接应用的逆反射材料,也是应用最为广泛的一种逆反射材料。 1937年,世界上第一块反光膜在美国的一家实验室诞生。是交通标志大规模应用反光膜历史的起点。1939年,在美国明尼苏达州的公路边,第一次在露天条件下使用了一块用反光膜制作的标志牌,从此,揭开了一系列反光产品用于交通标志的新时期,开创了一个全新的交通安全行业。这一年,美国交通标志国家标准中(1939年版美国《统一交通控制设施手册》,Manual of United Traffic Control Devices, 1939)正式规定,要使用反光膜制造交通标志。
此后,随着化学工业、特别是合成树脂的发展,各个研发机构不断研究创新,利用玻璃珠技术,合成树脂技术,薄膜技术和涂敷技术,相继开发了一系列高质量逆反射产品。
20世纪40年代开始,这种最初制造的反光膜,被冠以“工程级”反光薄膜,广泛开始用于道路交通标志。 此后,用于衣物等个人安全防护领域的反光膜等一系列产品,也伴随着合成树脂的问世,社会发展的需要,陆续被开发出来。此后,伴随着一系列材料科技和光学技术的研究成果,特别是微棱镜反光材料的出现,使这种最初主要用于交通标志的反光材料,开始逐步被更新、更好的反光材料所代替。 反光膜的分类方法有很多。其中比较普遍接受的分类原则,是以逆反射单元的基本结构为基础,根据反光膜正面光度性能的逆反射系数高低为主的排序方法。但考虑到反光膜的不同工艺,有些是专门为解决非正面逆反射亮度的,有些是兼顾两方面性能的,还有些是针对恶劣气候条件下的视认需求的,所以这种分类方法,也存在不足之处。因此,熟悉和掌握各种不同的反光膜的应用条件和设计功能,就显得十分必要。
在传统习惯里,根据反光膜反光单元的结构,将反光膜划分为两大类别,玻璃珠型反光膜和微棱镜型反光膜。每类反光膜都还包含很多种类,如微棱镜型反光膜,由于采用了更先进的技术工艺,其材料选择和棱镜结构上,都有了很多变化,可以应对更多的交通需求。根据棱镜的形式和技术特点,微棱镜型反光膜又可分为远距离逆反射能力好的截角型棱镜反光膜,近距离大角度逆反射性能好的截角型棱镜反光膜,以及兼顾各方面需求的全棱镜反光膜,白天和恶劣气候条件性能都好的荧光型全棱镜反光膜,符合传统工程级逆反射参数的棱镜型反光膜等等。玻璃珠型反光膜较早出现,但其工艺变化比较少,主要有两种类型,一种为透镜埋入型反光膜,习惯上称为工程级反光膜;一种为密封胶囊型,通常称为高强级反光膜。在透镜埋入型反光膜里,由于其出现历史悠久,各个不同的厂家,在漫长的生产制造过程中,利用透镜的直径、密度、耐侯涂层的厚度的不同,制作了很多种反光膜,比如超工程级反光膜,主要是在工程级反光膜的基础上,用更高质量的玻璃珠,并把玻璃珠的密度加大,以提高一些亮度;俗称经济级的反光膜,主要在中国生产,基本上是在工程级反光膜的技术基础上,通过减少透镜(玻璃珠)数量与密度的方式实现的,这两种反光膜,经济级反光膜,其反射能力无法满足交通安全的需要,更多的是用在商业领域,在国际上很少有将其列入交通安全向光的标准之中。
按照反光膜的背胶种类,反光膜可以分为热敏胶反光膜、压敏胶反光膜和无背胶反光膜。传统的应用于交通设施领域的反光膜以压敏胶为主。压力敏感型背胶,无需加热、溶剂或其他准备工作可粘附在光滑、清洁表面,交通标志一般粘贴在铝板或铝合金板面上。热敏胶的粘性在对材料加热并施加压力的情况下才会被激发。无背胶反光膜,通常用于交通锥反光带、临时卷叠警告标志及设施柱反光带等自带支撑的材料制造而成。
谈到反光膜的科学分类方法,就不能离开对应用反光膜有很大指导意义的反光膜标准。在世界各国的反光膜标准中,中国的反光膜标准、美国材料与测试协会标准、澳大利亚和新西兰标准、美国联邦公路管理署交通标志逆反射材料指导意见等,对世界各国的研究和应用逆反射材料制作交通标志,改善交通安全,起到了积极的指导作用。下面,我们逐一进行介绍。
中国反光膜标准是GB/T 18833-2012,《道路交通反光膜》。 反光膜按照其光度性结构和用途,分为7种类型。
I类,通常为透镜埋入式玻璃珠型结构,称工程级反光膜,使用寿命一般为7年,可用于永久性交通标志和作业区设施。
II类,通常为透镜埋入式玻璃珠型结构,称超工程级反光膜,使用寿命一般为10年,可用于哟耐久性交通标志恶化作业区设施。
III类,通常的密封胶囊式玻璃珠型结构,称高强级反光膜,使用寿命一般为10年,可用于永久性交通标志和作业区设施。
IV类,通常为微棱镜结构,称超强级反光膜,使用寿命一般为10年,可用于永久性交通标志、作业区设施和轮廓标。
V类,通常为微棱镜就够,称大角度反光膜,使用寿命一般为10年,可用于永久性交通标志、作业区设施和轮廓标。
VI类,通常为微冷静结构,有金属镀层,使用寿命一般为3年,可用于轮廓标和交通柱,无金属镀层时也可用于作业区设施和字符较少的交通标志。
VII类,通常为微棱镜结构,柔性材质、使用寿命一般为3年,可用于临时性交通标志和作业区设施。
美国的材料与测试协会是一家历史悠久的材料测试标准国际组织,英文全称是Association of Standard Testing of Materials,简称ASTM,它的成立,就是为了向科学界和产业界,提供一系列的材料检测标准,以实现对新生材料的定义,为全世界的科学界,提供一个能共同交流的技术平台。为逆反射材料,以及石油、天然气、化工等各种产业领域里的很多材料,提供检测标准化的技术支持。
有鉴于这样的技术溯求,ASTM对逆反射材料的检测标准,也是随着逆反射材料的发明和使用,不断累加进行的,每出现一种新材料,只要这种材料出现一段时间并由其生产厂家向ASTM提出加入申请,它的委员会就会授权对这种材料进行类别界定,建立检测标准。也正是由于这样的原因,在ASTM4956的反光膜标准里,反光膜种类多达11个,而且还在不断延续;然而另一方面,ASTM标准更象是一个关于逆反射材料的产品目录,而不是一个能够帮助了解反光膜应用方法和问题的标准,因为在ASTM对这些材料进行最初的分类时,并没有考虑驾驶员的表现和需求。
由于这样的原因,世界各发达国家,为了能对自己的交通工程建设单位提供更有效的技术支持和指导,都专门设立了自己国家的技术标准,而不是直接沿用ASTM对反光材料的分类。
如下1,2二个分类方法是美国联邦公路管理署在ASTM的基础上,制定的供给交通工程实施单位使用的关于逆反射材料的使用建议分类方法,其亮点是结合玻璃珠和棱镜型逆反射材料的结构特点,明确区分了交通标志和非交通标志的逆反射材料应用类别。
1 美国联邦公路管理署逆反射材料分类方法——2005年9月(交通标志用反光膜)
2 美国联邦公路管理署逆反射材料分类方法——2005年9月(交通锥、交通柱等用反光膜)
与美国的联邦公路管理署提供的指导意见相比,澳大利亚和新西兰的道路交通标志逆反射材料标准具备更简洁、更清晰的指导意义。目前,包括中国在内的很多国家的标准,特别是欧洲很多国家,都受到这个标准不同程度的影响。
表3 澳大利亚/新西兰的交通标志反光膜标准(AS/NZS1906.1:2007) 级别 结构 性能 应用 1W 微棱镜结构 超高等反光强度,尤其是在大入射角和大观测角条件下具有高反光亮度。通常有12-15年的使用寿命 适合用于路侧和龙门架标志,尤其是对文字信息和方向信息的指引 1A 微棱镜结构 超高等反光强度,尤其是远距离,小观测角条件下具有高反光亮度 轮廓标 1 大多为密封胶囊式玻璃珠结构 高等反光强度通常有12-15年的使用寿命 适合用于高速公路和城市道路的路侧标志 2 大多为透镜埋入式玻璃珠结构 中等反光强度通常有7年的使用寿命 适合用于非常靠近路面的路侧标志,且周围环境较暗,不需要远距离进行识别 2A 大多为透镜埋入式玻璃珠结构 中高等反光强度通常有10年的使用寿命 基本与2相近,只是担保寿命是10年 1W(CW) 微棱镜结构 与1W 一致,但有更好的柔韧性,不提供质量担保 施工区设施 1(CW) 大多为密封胶囊式玻璃珠结构 与1W 一致,但有更好的柔韧性,不提供质量担保 施工区设施 在这版2007年最新的澳新标准里,有一些亮点,非常值得关注。这个标准,是建立在国际交通安全工程界近15年研究成果的基础上的,集中体现了全新的安全需求,也体现了英国、瑞典、荷兰、西班牙等一批发达国家交通标志逆反射技术标准的最新趋势,其中包括:
1. 用1W(wide angularity,大观测角)取代了传统1A(只注重正面亮度)在交通标志上的位置,1A转作轮廓标用反光膜;
2. 在前言中大篇幅的介绍大角度反光性能优越的反光膜(1W级别)在交通标志应用中的优势,重点论述了大观测角性能在驾驶者阅读标志牌过程中的重要性
3. 在所有级别的反光膜性能要求上都增加了1度观察角的反光亮度
4. 在标准的附录B中专门介绍了反光膜的选择和使用
1) 讲到选择反光膜应该综合考虑性能,耐候性和价钱等多方面因素,并明确提出选择耐候性能更好的产品,从长远来说是更经济的。
2) 介绍了各级别反光膜适用的位置和道路
3) 介绍了驾驶者在阅读标志牌的过程中观测角的变化,并指出随着观测角的增大,交通标志的亮度应该保持相对稳定,而前后亮度相差太大的反光膜不适合用于制作交通标志,同时也指出,即使驾驶不同类型的车辆,也应该保持稳定的反光亮度 反光膜是由多层不同性能材料组成的层结构,不同的反光膜,其组成的层结构也是不同的。
图1是最早出现的玻璃珠反光膜的基本结构图,由图中可以看出,反光膜一般都是由表层(保护膜)、反射层(功能层)、基层(承载层)、胶粘层和底层(保护层)等多层不同物质组成的膜结构物体。反光膜的表层一般是由是透光性和耐候性能良好的树脂薄膜,反射层根据不同类型的反光膜其组成材料也各不相同,有微小玻璃珠、微棱镜或金属反光镀层等,基层多为树脂有机化合物制成的薄膜,胶粘层一般是环氧树脂胶,底层是厚纸做的保护层。
表4是各种反光膜的结构图,由此可见反光膜的种类不同,它的组成材料和结构也是各不相同。

反光膜的首要作用,就是改善交通标志的表面性能,使之能适应全天候状态的交通需要,提高道路安全运行条件。
由于不同种类的反光膜的反光性能存在差异,所以在具体应用到交通标志的制作时,就需要根据标志的设置功能和目的,进行相应的规范。研究这种应用规范的科学,被世界各国通安全工程专业人士,看作是交通控制与安全技术的重要组成部分。
交通控制与安全技术,已经发展了上百年。从人类第一部交通标志标准在1908年问世于英国以来,世界上很多国家都持续投入了大量的科研技术资源,来分析和掌握逆反射技术在交通安全领域的作用和价值。在这方面,走在最前列的,是欧美等发达国家,他们的研究成果,在很多方面,帮助中国在短短的10多年时间里,走过了从无到有的过程——中国的交通标志反光技术研究起步于20世纪80年代末,以交通标志国家标准GB5768和交通标志用反光材料国家标准GB18833为主要技术规范。在很多方面,这些标准还处在大量完善和发展的阶段,相关的科学应用方法和效果研究结论等,需要大量的时间和实践。

阅读全文

与环氧树脂表层保护膜相关的资料

热点内容
深度过滤器厂家 浏览:381
米家空气净化器2怎么拆开 浏览:917
工业润滑油过滤市场 浏览:495
医院污水池除臭排放标准 浏览:166
阴离子阳离子交换膜 浏览:123
戴森空气净化器滤芯怎么拆 浏览:928
净化器上面显示复位什么意思 浏览:999
净水器里有什么水可以做雾化 浏览:396
蒸馏石油的分馏 浏览:744
饮水机水桶为什么会变绿 浏览:803
饮水机热水往上出是什么意思 浏览:627
如何当好污水处理厂的班长 浏览:327
微动力污水处理器 浏览:729
四氯化碳如何蒸馏水 浏览:950
废水资源化问题与出路 浏览:705
树脂补牙还要打磨 浏览:189
什么叫做雨污水阴阳管 浏览:438
废水处理ph是什么意思 浏览:17
反渗透净水器有废水比是什么意思 浏览:507
净化器过滤芯怎么取出 浏览:837