A. 不饱和树脂延迟固化使用那种促进剂比较好
不饱和树脂需要延时的话可以加入阻聚剂
生产上一般用到对苯二酚(HQ),邻甲基对苯二酚(THQ),丁基邻苯二酚(TBC)
这三种
调整促进剂与固化剂比例只能调整短时间内树脂固化
B. 不饱和聚酯树脂固化剂
不饱和聚酯树脂在常温使用固化剂有过氧伦甲乙酮和过氧化环巳酮,最常用是过氧化甲专乙酮,添加比例属为千分之二至百分之二不等,具体看做什么制品而定,太少产品固化不完全,太多会暴聚,总之根据实际情况添加,凝胶快慢主要靠促进剂多少调整,固化剂相对固定,湿度大时候多添加促进剂,温度较低多添加固化剂。
以上两种固化剂又称为引发剂、或催化剂,都是过氧化物,都是易燃易爆品。
C. 不饱和树脂有哪些固化剂
不饱和聚酯树脂的固化剂实际上是引发剂,通常都是过氧化物,常用的有机过氧化物内引发剂有过氧化甲乙容酮、过氧化环己酮、过氧化甲异丁酮、过氧化苯甲酰、异丙苯过氧化氢、叔丁基过氧化氢、2,4-二氯过氧化苯甲酰、过氧化十二酰等等.
D. 不饱和树脂与固化剂和促进剂的使用比例
固化剂、促进剂是相对于树脂用量而定的。固化剂和促进剂只与树脂内发生化学反应,而不会与石容粉、铝粉发生化学反应。
一般配比为:树脂:促进剂:固化剂=100:3:3,其填充料可控制在120份以下。固化剂和促进剂之前间没有比例。促进剂过多,固化时间缩短,成品性脆,严重的会炸裂。固化剂的加入量和树脂固化的时间成反比。操作时注意促进剂和固化剂不可直接混在一起用,以免发生激烈的化学反应。存放时也不可放在一起。
增加促进剂的用量,可明显的加快固化速度; 增加固化剂的比例,也可以缩短固化时间。
以上配方,固化时间在3分钟左右,固化时间受温度影响。
加入铝粉和钙粉对树脂、促进剂和固化剂的影响可忽略不计。
人造大理石在成型过程中要控制好产品固人时间,固化时间短,产品性脆,影响产品性能。
树脂类人造大理石产生过程中会产生成品收缩,收缩率在7%以下。
人造大理石的成型方式有:1.注塑模塑法;; 2.压机(压缩)成型法; 3.注射成型法; 4.浇铸成法和手糊成型法。
E. 不饱和树脂的促进剂制作工艺,有没有大神
晚上好,191和196不饱和聚酯促进剂一般就是环烷酸钴或者异辛酸钴的邻苯二甲酸酯稀释溶液(邻苯二甲酸二甲酯和乙酯),具体固含量未知是商业机密但有时间可通过对比颜色深度来接近完美。固化剂方面同样也是过氧化甲乙酮的相同溶液俗称阿克苏。
F. 不饱和树脂类胶粘剂是水性还是溶剂型的
不饱和聚酯树脂一般是由不饱和二元酸、饱和二元酸和二元醇缩聚而成的线型聚合物,在树脂分子中同时含有重复的不饱和双键和酯键。由于这样得到的不饱和聚酯树脂是一种固体或半固体状态,而且不能很好地交链成为性能良好的体型结构产物,因此在生产后期,还必须经交联剂苯乙 烯稀释形成具有一定粘度的树脂溶液。实际上使用的不饱和聚酯树脂就是这种树脂溶液,使用中再加入固化剂等物质,使苯乙烯单体和不饱和聚酯分子中的双键发生自由基共聚反应,最终交链成为体型结构的树脂。
由此可见,不饱和聚酯树脂是一种热固性树脂,其形成体型结构的反应过程是:第一步通过二元酸和二元醇的缩聚反应生成线型分子;第二步在固化过程中通过树脂和交联剂的双键间的自由基共聚反应得到体型结构。这种不同的反应阶段通过不同的官能团和不同的反应机理得以实现,是不饱和聚酯树脂合成和固化的特点。 性能特点和助剂 不饱和树脂的价格比双酚A型EPOXY便宜一半,粘度低,可常温触压固化,固化物透明度高,粘接强度高,常用于玻璃钢工业上。
不饱和树脂的交联剂有苯乙烯(PS),丙烯酸,甲苯丙烯酸甲酯和瓴苯二甲酸二烯丙酸,引发剂有过氧化苯甲酰,过氧化环已酮和过氧化丁酮等,促进剂有环烷酸钴(苯酸钴即含2%金属钴的苯乙烯溶液,)辛酸钴,二甲基苯胺和二乙基苯胺,阻聚剂有:
(一)无机物:硫黄,铜盐和亚硝酸盐。
(二)多元酚:对苯二酚,邻苯二酚和对叔丁基邻苯二酚
(三)醌:醌,1,4-苯醌和菲醌
(四)芳香族硝基化合物:二硝基苯,三硝苯甲苯和芳味酸。
(五)胺类:吡,N苯基胺和吩。
不饱和聚酯树脂主要优点:
(1)工艺性能优良。这是不饱和聚酯树脂最突出的优点。在室温下具有适宜的粘度,可以在室温下固化,常压下成型,固化过程中无小分子形成,因而施工方便,易保证质量,并可用多种措施来调节它的工艺性能,特别适合于大型 和现场制造玻璃钢制品。
(2)固化后的树脂综合性能良好。该树脂的力学性能略低于环氧树脂,但优于酚醛树脂和呋喃树脂;耐腐蚀性能,如树脂品种选用适当,优于环氧树脂;其它性能如电性能、阻燃性能等,可选用适当树脂满足需要;此外该树脂颜色浅,可以制成浅色、半透明或透明的玻璃钢制品。
(3)品种多,适应性广。
(4) 常用的不饱和聚酯树脂,价格较低。
不饱和聚酯树脂的主要缺点:1 固化时体积收缩率较大。2 贮存时有一定期限,一般为半年。3 施工时有一定气味。
树脂分类:按性能用途不同,不饱和聚酯树脂可分为通用树脂、耐蚀树脂、阻燃树脂、低收缩树脂、浇铸树脂、光固化树脂、胶衣树脂及涂料和钮扣用树脂等。每一类树脂又有许多品种,如耐蚀树脂又分为中等耐蚀树脂和高度耐蚀树脂,高度耐蚀树脂按结构不同又包括双酚A型树脂、乙烯基酯树脂和二甲苯型树脂等几个品种。
G. 不饱和树脂固化剂促进剂掺少了凝固吗
有多少,不能太少,固化剂少了强度达不到。不饱和树脂不加固化剂促进剂,过了保质期(或更长时间)也可能自然固化。
H. 不饱和聚酯树脂的基本配方是什么各起什么作用
不饱和聚酯树脂是热固性树脂中最常用的一种,它是由饱和二元酸、不饱和二元酸和二元醇缩聚而成的线形聚合物,经过交联单体或活性溶剂稀释形成的具有一定黏度的树脂溶液,简称UPR。
工艺性能优良
这是不饱和聚酯树脂最大的优点。可以在室温下固化,常压下成型,工艺性能灵活,特别适合大型和现场制造玻璃钢制品。固化后树脂综合性能好。
力学性能指标略低于环氧树脂,但优于酚醛树脂。耐腐蚀性,电性能和阻燃性可以通过选择适当牌号的树脂来满足要求,树脂颜色浅,可以制成透明制品。
品种多
品种多,适应广泛,价格较低。缺点是,贮存期限短。
(8)不饱和树脂柔软剂扩展阅读:
邻苯型不饱和聚酯和间苯型不饱和聚酯
邻苯二甲酸和间苯二甲酸互为异构体,由它们合成的不饱和聚酯分子链分别为邻苯型和间苯型,虽然它们的分子链化学结构相似,但间苯型不饱和聚酯和邻苯型不饱和聚酯相比,具有下述一些特性:
①用间苯型二甲酸可以制得较高分子量的间苯二甲酸不饱和聚酯,使固化制品有较好的力学性能、坚韧性、耐热性和耐腐蚀性能;
②间苯二甲酸聚酯的纯度高,树脂中不残留有间苯二甲酸和低分子量间苯二甲酸酯杂质;
③间苯二甲酸聚酯分子链上的酯键受到间苯二甲酸立体位阻效应的保护,邻苯二甲酸聚酯分子链上的酯键更易受到水和其它各种腐蚀介质的侵袭,用间苯二甲酸聚酯树脂制得的玻璃纤维增强塑料在71℃饱和氯化钠溶液中浸泡一年后仍具有相当高的性能。
双酚A型不饱和聚酯
双酚A型不饱和聚酯与邻苯型不饱和聚酸及间苯型不饱和聚酯大分子链的化学结构相比,分子链中易被水解遭受破坏的酯键间的间距增大,从而降低了酯键密度;双酚A不饱和聚酯与苯乙烯等交联剂共聚固化后的空间效应大,对酯基起屏蔽保护作用,阻碍了酯键的水解。
而在分子结构中的新戊基,连接着两个苯环,保持了化学瓜的稳定性,所以这类树脂有较好的耐酸、耐碱及耐水解性能。
乙烯基树脂
乙烯基树脂又称为环氧丙烯酸树脂,是60年代发展起来的一类新型树脂,其特点是聚合物中具有端基不饱和双键。
乙烯基树脂具有较好的综合性能:
①由于不饱和双键位于聚合物分子链的端部,双键非常活泼,固化时不受空间障碍的影响,可在有机过氧化物引发下,通过相邻分子链间进行交联固化,也可与单体苯乙烯其聚固化;
②树脂链中的R基团可以屏蔽酯键,提高酯键的耐化学性能和耐水解稳定性;
③乙烯基树脂中,每单位相对分子质量中的酯键比普通不饱和聚酯中少35%~50%左右,这样就提高了该树脂在酸、碱溶液中的水解稳定性;
④树脂链上的仲羟基与玻璃纤维或其它纤维的浸润性和粘结性从而提高复合材料的强度;
⑤环氧树脂主链,它可以赋与乙烯基树脂韧性,分子主链中的醚键可使树脂具有优异的耐酸性。
乙烯基树脂的品种和性能,随着所用原料的不同而有广泛的变化,可按复合材料对树脂性能的要求设计分子结构。
卤代不饱和聚酯
卤代不饱和聚酯是指由氯茵酸酐(HET酸酐)作为饱和二元酸(酐)合成得到的一种氯代不饱和聚酯。
氯代不饱和聚酯树脂一直是当作具有优良自熄性能的树脂来使用的。但90年代以来研究表明氯代不饱和聚酯树脂亦具有相当好的耐腐蚀性能。
它在某些介质中耐腐蚀性能与双酚A不饱和聚酯树脂和乙烯基树脂基本相当,而在某些例如湿氯中的耐腐蚀性能则优于乙烯基树脂和双酚A不饱和聚酯树脂。
热湿氯在不饱和聚酯树脂接触后会发生反应而产生氯代的不饱和聚酯树脂或称"氯奶油"。由双酚A不饱和聚酯 树脂和乙烯基酯树脂产生"氯奶油"性状柔软。
湿氯可以通过该"氯奶油"层进一步(腐蚀)渗透,但由氯代不饱和聚酯产生"氯奶油"性状坚硬,可以阻止湿氯的进一步(腐蚀)渗透。
不饱和聚酯树脂用途:建筑领域:制树脂冷却塔,8米3/小时-3000米3/小时的横流、逆流、喷射式塔及风筒、风机叶片、收水器等辅件。玻璃钢树脂管、罐、槽等防腐产品及工程:包括大、中、小口径管道。
管件、阀门、贮罐、贮槽、格栅、填仓板、塔器、烟囱、防腐地面及建筑防腐等。玻璃钢树脂船艇:包括游艇、救生艇、交通艇、渔船、快艇、舢舨、养殖船、冲锋舟等。玻璃钢树脂食品容器:高位水箱、食品运输罐、饮料罐。
I. 请问不饱和树脂能不能固化用什么固化剂
具有粘性的可流动的不饱和聚酯树脂,在引发剂存在下发生自由基共聚合反应,而生成性能稳定的体型结构的过程称为不饱和聚酯的固化。
发生在线型聚酯树脂分子和交联剂分子之间的自由基共聚合反应,其反应机理同前述自由基共聚反应的机理基本相同,所不同的它是在具有多个双键的聚酯大分子(即具有多个官能团)和交联剂苯乙烯的双键之间发生的共聚,其最终结果,必然形成体型结构。
固化的阶段性
不饱和聚酯树脂的整个固化过程包括三个阶段:
凝胶——从粘流态树脂到失去流动性生成半固体状有弹性的凝胶;
定型——从凝胶到具有一定硬度和固定形状,可以从模具上将固化物取下而不发生变形;
熟化——具有稳定的化学、物理性能,达到较高的固化度。
一切具有活性的线型低聚物的固化过程,都可分为三个阶段,但由于反应的机理和条件不同,其三个阶段所表现的特点也不同。不饱和聚酯树脂的固化是自由基共聚反应,因此具有链锁反应的性质,表现在三个阶段上,其时间间隔具有较短的特点,一般凝胶到定型有时数个小时就可完成,再加上不饱和聚酯在固化时系统内无多余的小分子逸出,结构较为紧密,因此不饱和聚酯树脂和其他热固性树脂相比具有最佳的室温接触成型的工艺性能。
引发剂用于不饱和聚酯树脂固化的引发剂与自由基聚合用引发剂一样,一般为有机过氧化合物。各类有机过氧化合物的特性,通常用活性氧含量,临界温度和半衰期等表示。
活性氧含量活性氧含量又称为有效氧含量。对于纯粹的过氧化物,活性氧含量是代表有机过氧化物纯度的指标。实际上,由于纯粹有机过氧化物贮存的不安定性,通常与惰性稀释剂如邻苯二甲酸二丁酯等混合配制,以利于贮存和运输。
临界温度过氧化物受热分解形成自由基时所需的最低温度称为临界温度。一般在临界温度以上才发生引发反应,这可从固化放热效应反映出来。临界温度是不饱和聚酯树脂固化时应用的工艺指标。
半衰期半衰期是指在给定温度条件下,有机过氧化物分解一半所需要的时间。实际应用上,可用下面两种方法表示半衰期,一种是给定温度下的时间,另一种是给定时间下的温度,它们都是引发剂活性的标志。显然,有机过氧化物的半衰期愈短,其活性也就愈大。
引发剂的种类虽然很多,但不饱和聚酯树脂固化最常用的主要是两种,即国产1 号引发剂和2 号引发剂。
1号引发剂是50%过氧化环已酮糊。过氧化环已酮是几种化合物的混合物,外观是白色粉沫或硬块,易溶于苯乙烯中得到透明的溶液。由1:1的过氧化环已酮和邻苯二甲酸二丁酯组成的 1号引发剂,呈糊状,久置后分层,上层为透明溶液,下层是白色沉淀物,使用时必须搅拌均匀成糊状。
过氧化甲乙酮具有与过氧化环已酮类似的特性,一般配成邻苯二甲酸二甲酯的50%溶液使用,该溶液无色透明,不含悬浮物,使用时不需要搅拌。
J. 不饱和树脂的固化剂种类
按引发方式的不同,不饱和聚酯树脂固化类型可为三种:
热固化:靠专外部加热使固化剂释放属游离基,从而引发树脂固化的过程。(也称为热引发固化)
冷固化:在室温或固化温度不高的条件下,通过加入促进剂使固化剂释放游离基从而使树脂固化的过程。(也称为化学分解引发固化)
光固化:通过加入光敏剂,用紫外线作为能源,引发树脂交联固化的过程。(也称为光引发固化)
冷固化体系中常用的固化剂类型。
1、 过氧化环己酮(是多种氢过氧化物的混合物)
过氧化环己酮溶解在二丁酯中,成为50%的糊状物,称为1#固化剂。
2、过氧化二苯甲酰(是一种过氧化物,简称BPO)
过氧化二苯甲酰溶解在二丁酯中,成为50%的糊状物,称为2#固化剂。
3、 过氧化甲乙酮(简称MEKP)
固化剂 树脂重量的1%~2% 一般要配合促进剂一同使用 固化剂也叫引发剂,o=o键打开需要的能量比较低,一般在50-120度就会打开。