㈠ 水杨酸生产废水处理办法及工艺。在生产水杨酸过程中产生的废水如何处理。
水杨酸生产废水是典型的高盐、含酚且难生物降解的强酸性有毒有机工业废水,其pH值为2、含盐量高达2.5%、含酚高、B/C仅为0.07,不适宜采用常规的生物法处理,而物理法的处理成本又很高,因此基本采用化学氧化法中的Fenton法来处理该废水。针对传统Fenton工艺中存在的产泥量大的问题,可通过对纳米Fe3O4颗粒的制备和表面改性,在基于新型磁纳米催化剂的Fe3O4-H2O2类Fenton体系中,通过该类Fenton体系对水杨酸生产废水的处理效能,优化工艺的运行参数,是为该废水可行的处理方法。
首先采用化学共沉淀法合成纳米Fe3O4,用四甲基氢氧化铵(TMAH)和2,3-二巯基丁二酸(DMSA)对其进行表面改性,共合成5种催化剂,分别为:1#Fe3O4、2#Fe3O4-TMAH(1mL)、3#Fe3O4-TMAH(2mL)、4#Fe3O4-DMSA和5#Fe3O4-TMAH-DMSA。纳米颗粒的平均粒径约为30nm,并在20~80nm的范围内呈现良好的粒度分布,改性后的纳米Fe3O4表面有甲基、巯基、羧基包覆,颗粒的分散性提高。
利用纳米Fe3O4-H2O2类Fenton体系对苯酚废水的处理效果进行探讨。12±2℃时,催化剂投量为0.8mmol/L、H2O2浓度为2.0mmol/L、pH为4.5、反应180min后,COD去除率最高可达72%,挥发酚去除率接近100%。在催化剂稳定性方面的回用性最好。
与传统Fenton法相比,该类Fenton体系在降低铁泥产量方面有较好的改善,反应结束后,磁纳米Fe3O4在外磁场作用下可快速分离回收,并且催化剂可以重复利用。
该类Fenton体系对水杨酸生产废水的处理效能,并优化反应器的工艺运行参数。15±2℃时,催化剂投量为2.0mmol/L、H2O2浓度为7.0mmol/L、pH为5.0、反应120min后,水杨酸生产废水的处理效果达到最佳,出水COD值为34~42mg/L,挥发酚值为0.21~0.43mg/L;使用TMAH和DMSA对纳米Fe3O4进行表面改性能提高催化剂的稳定性,综合考虑最佳催化剂。
20±2℃时,调节进水pH为5.0、停留时间60min,将H2O2混合在进水中连续投加且浓度在7.0mmol/L附近,催化剂维持在1.0~2.0mmol/L,连续运行反应器后,出水COD值在40~50mg/L左右,挥发酚值在0.2mg/L附近波动,色度为2~4倍,调节pH后能稳定达标排放。
应用纳米Fe3O4-H2O2类Fenton体系处理实际的工业废水,并且连续运行反应器使催化剂循环使用,是技术的创新。该类Fenton体系一定程度上改善了传统Fenton法在铁泥产生量方面的不足。
㈡ 环氧树脂废水如何处理
近年来我国环氧树脂行业快速发展,与此同时产生了大量高盐有机废水。该类废回水治理难度极大,已答成为制约环氧树脂行业可持续发展的瓶颈。环氧树脂废水的主要污染物包括老化树脂、环氧氯丙烷、挥发酚、甲苯、二甲苯、氯化钠和氢氧化钠等。国内主要采用稀释生化或蒸发脱盐与生化组合工艺处理该类废水。稀释生化法不仅消耗大量淡水资源,还增加了废水的排放体积,不符合国家的污染减排政策。而蒸发脱盐与生化组合工艺中的蒸发单元设备投资和运行成本都很高,且蒸发析出的盐往往带有一些有机污染物,不能作为一般的工业盐使用,可能被视为危险固体废物,必须委托有资质的单位进行无害化处置,费用非常高。希望能够帮助到您。
工业污水处理方式太多太多,第一工业污水中污染物极其复杂,处理难度较大。如果只想用内一种固定的处理办容法,基本上是处理不达标的。针对工业污水处理方法,智迪环保建议你采用多种方式组合的处理技术。例如:酸碱污水
采用
酸碱中和+生物处理的工艺、
含油污水采用气浮法+生物处理+沉淀法
重金属离子污水采用
絮凝沉淀+生物处理+活性碳吸附
,总之工业污水处理办法原则就是:针对性处理,多种组合方式处理。
㈣ 酚醛树脂废水,电镀废水处理的处理方法工艺
微电解技术是目前处理高浓度、难降解有机废水的一种理想工艺、又称内电回解。它是在无需外接电答源的情况下自身产生1.2伏电位差对废水进行电解处理能达到降解有机污染的目的。当系统通水后设备内会形成无数的微电池系统构成磁场产生电位差。铁在酸性条件下释放铁离子生成新生态Fe2+。Fe2+具有氧化--还原的作用、能与废水中的许多组分发生氧化还原反;⑴将六价铬还原为三价铬;⑵将汞离子还原为单质贡;⑶将硝基还原为氨基;⑷将偶氮废水的有色基团或助色基团氧化--还原;达到降解脱色作用;提高了废水的可生化性。生成的Fe2+加减调PH值进一步产生Fe3+;Fe3+是一种很好的絮凝剂。它们的水合物具有较强的吸附-絮凝作用、Fe3+在减的作用下进一步产生氢氧化亚铁和氢氧化铁胶体絮凝剂。它们的吸附能力远远高于那些外加化学药剂水解得到的絮凝剂;分散在水污中的悬浮物、、有毒物、金属离子及有极大分子能被吸附-絮凝沉淀。其工作原理:电化学、氧化—还原、物理吸附及絮凝--沉淀的共同作用对废水进行处理。
其它数据以及产品图片可以查看参考资料内容
㈤ 离子树脂在废水处理过程中的工作原理是什么
离子交换树脂在废水处理过程中的工作原理主要是用来吸附及脱附,下面就介绍一下工艺的运用。
吸附原理
漂莱特树脂在实际应用过程中,废水中的有毒有机物质通过吸附树脂(吸附剂)床时,吸附剂和溶质分子之间产生了范德瓦尔引力,溶质分子被吸附在吸附剂表面(一般吸附剂比表面积越高,吸附量越大)。当吸附剂分子与溶质分子能形成氢键时,则可大大提高吸附选择性,有利于溶质分子同水溶液的分离,从而使有毒有机废水得到净化。
脱附原理:
被吸附的溶质选用适当的方式即可完全洗脱,英国离子交换树脂可重复利用。溶液经大孔树脂固定床吸附,吸附流出液有些可直接达标排放,有些稍加调节pH值即可达标排放,有些经深度处理方可达标排放,有的还可作为洗涤水加以重复利用。吸附达饱和的树脂用脱附剂脱附,低浓度脱附液可在下一批次继续作为脱附剂使用,高浓度脱附液可回用到生产工段,或者直接回收产品加以综合利用,实现污染物的资源化。
因此,选用比表面积高、孔径适中、孔分布窄、机械强度高的漂莱特软化树脂可提高树脂的吸附、脱附能力,适当调节树脂极性的大小,使吸附剂和溶质分子之间人为的产生氢键作用,可大大提高树脂的吸附选择性和树脂固定床吸附工艺的效率。
~~~~~~~~~有问题可以追问!
㈥ 求大孔吸附树脂处理废水工艺流程
通过静态吸附和动态吸附相结合的方法得出H-103大孔吸附树脂处理苯甲酸废水的最适合的工艺条件。结果在苯甲酸浓度3000mg/L、温度室温18℃~20℃时,最佳吸附条件是动态吸附流速7BV/h;最佳洗脱条件乙醇用量为80mL。静态吸附后,苯甲酸的浓度去除率为78·7%,动态吸附后浓度去除率为99·98%,树脂的反复使用性能良好。结论用H-103大孔吸附树脂处理苯甲酸废水效果良好。
㈦ 吸附树脂处理废水有那些优势
优势主要有以下几抄点:
1)树脂选择性好,处理精度高,能针对某种成分进行选择性吸附,实现物质分离的同时完成资源化回收;
2)运行能耗低,根据吸附物质性质选择使用酸、碱、溶剂、蒸汽的再生工艺;
3)产品稳定好,使用寿命长,吸附树脂结构稳定,耐酸、碱、耐高温,可在多种环境下稳定运行。
㈧ 酚醛树脂生产过程中产生废水最佳处理方法,处理废水成本低投资少的方法
含有少量的游离酚等废水,含有少量的甲醛等废气,只通过收集处理,没问题。
㈨ 不饱和树脂产生的废水怎样处理
燃烧掉,好多企业都在这么做