1. 电泳漆超滤过多会不会影响表面品质
流速
流速是指原液在膜表面上流动的线速度,是超滤膜系统中一项重要操作参数。流速较大时,不但造成能量浪费和产生过大压力降,还会加速超滤膜系统膜分裂性能的衰退。反之,如果流速较小,截留物在膜表面形成的边界层厚度增大,引起浓度极化现象,既影响了透水速率,又影响了透水质量。最佳流速是根据实验来确定的。在允许压力范围内,提高供给水量,选择最高流速,有利于中空纤维超滤膜系统膜性能的保证。
压力和压力降
中空纤维超滤膜系统膜的工作压力范围为0.1至0.6MPa,是泛指在超滤膜系统的定义域内,处理溶液通常所使用的工作压力。分离不同分子量的物质,需要选用相应截留分子量的超滤膜系统膜,则操作压力也有所不同
回收比和浓缩水排放量
在超滤膜系统中,回收比与浓缩水排放量是一对相互制约的因素。回收比是指透过水量与供给量之比率,浓缩水排放量是指未透过膜而排出的水量。因为供给水量等于浓缩水与透过水量之和,所以如果浓缩水排放量大,回收就比较小。为了保证超滤膜系统正常运行,应规定组件最小浓缩水排放量及最大回收比。
工作温度
超滤膜系统膜的透水能力随着温度升高而增大,一般水溶液其粘度随着温度而降低,从而降低了流动的阻力,相应提高了透水速率。在工程设计中应考虑工作现场供给液的实际温度。特别是季节的变化,当温度过低时应考虑温度的调节,否则随着温度的变化其透水率有可能变化幅度在50%左右,此外过高的温度将影响膜的性能。通常情况下超滤膜系统膜的工作温度应在25±5℃,需要在较高温度状态下工作则可选用耐高温膜材料及外壳材料。
2. 多糖会堵超滤膜吗
是否堵膜考虑两个方面,1、过滤孔径大小 2、过滤物质是否会粘附架桥, 多糖分子量一般内不会超过10000 现有容超滤膜截流分子量一般范围6000-50万之间(有厂家声称可做到2000、3000),如果是单纯的多糖溶于水,只要选择大于多糖分子量的过滤孔径,一般是不会堵的 其次就是考虑溶液粘度 每个厂家都会根据自己产品特性提粘度要求,一般要求不超过20
3. 超滤膜的出水越来越小,清洗效果不佳,循环流量上升,压力基本不变,就是产水不断减少,有没有人懂这个是
1.温度来对产水量的影响:如果水温自升高,水分子的活性增加,粘度降低,导致产水量增加,水温降低,产水量也减少。也就是说,水的产量会随着温度的变化而变化。
2.操作压力对产水量的影响:当压力值低于0.3 MPa时,超滤膜的产水量会随着压力的增加而增加,两者是成正比的,但一旦压力值超过这个值,产水量就不会再发生变化,主要是因为压力太高,这导致了超滤膜的透水阻力增加。
3.流速对产水量的影响:当流速过快时,产水量也会有一些小的变化,但变化不是很明显,但流速过慢会堵塞超滤膜,所以有必要很好地控制流速。
4.水浊度对产水量的影响:实践证明,随着进水浊度的增加,超滤膜的产水量会下降,当浊度达到一定程度时,会堵塞超滤膜,使其无法正常工作。
4. 超滤膜分离实验中,什么是浓度极差
随着超滤膜抄使用时间的袭增加,膜的通量会逐渐减小,浓差极化现象就是引起这种现象的原因之一,掌握其发生机理和降低这种现象发生的具体措施,对超滤膜膜分离的过程是十分重要的。
那么超滤膜浓差极化有哪些危害呢?
1.浓差极化使膜表面溶质浓度增高,引起渗透压的增大,从而减小传质驱动力。
2.当膜表面溶质浓度达到其饱和浓度时,会在膜表面形成沉积或凝胶层,增加透过阻力。
3.膜表面沉积层或凝胶层的形成会改变膜的分离特性。
4.当有机溶质在膜表面达到一定浓度时有可能对膜发生溶胀或溶解,恶化膜的性能。
5.严重的浓差极化导致结晶析出,阻塞流道,运行恶化。
5. 齿轮油过滤后粘度降低是什么原因
粘度降低了,说明齿轮油里边的添加剂成分已经减少,如果继续使用,容易油膜破专裂导致齿面磨损,属发现黏度降低以后应该尽快更换齿轮油,以免机器受伤。
更换齿轮油时候应该尽量清理齿轮箱,旧油里边混入新油,新油会很快报废,最好是淘干油以后用煤油清洗一下,然后用吸气枪吸干,加入新油以后尽快关上齿轮箱,因为齿轮油里边的添加剂有的会受到氧化的影响,导致黏度下降或者润滑效果降低。
如果是低速重载齿轮,直接用黄甘油混合部分石蜡也可以。
6. 怎样过滤特别粘稠的液体
过滤有点风险的样子,主要是这种粘稠的液体容易堵住超滤膜表面的膜孔,不利专于过滤下来的杂质清属理,最好是平板式和中心孔大的管式,比较容易能排出。过滤掉细菌是没问题的,多肽级的大分子不行。而且有个问题,就是过滤速度不会很快,粘度越高越慢,需要大量的膜面积。
7. 有没有搞膜过滤的老师,请问一下超滤膜能不能过滤比较粘稠的液体》
过滤有点风险的样子,主要是这种粘稠的液体容易堵住超滤膜表面的膜孔,不利于过滤下来的杂质清理,最好是平板式和中心孔大的管式,比较容易能排出。过滤掉细菌是没问题的,多肽级的大分子不行。而且有个问题,就是过滤速度不会很快,粘度越高越慢,需要大量的膜面积。
8. 电泳漆超滤膜使用参数是多少
流速
流速是指原液在膜表面上流动的线速度,是超滤膜系统中一项重要操作参数。流速较大时,不但造成能量浪费和产生过大压力降,还会加速超滤膜系统膜分裂性能的衰退。反之,如果流速较小,截留物在膜表面形成的边界层厚度增大,引起浓度极化现象,既影响了透水速率,又影响了透水质量。最佳流速是根据实验来确定的。在允许压力范围内,提高供给水量,选择最高流速,有利于中空纤维超滤膜系统膜性能的保证。
压力和压力降
中空纤维超滤膜系统膜的工作压力范围为0.1至0.6MPa,是泛指在超滤膜系统的定义域内,处理溶液通常所使用的工作压力。分离不同分子量的物质,需要选用相应截留分子量的超滤膜系统膜,则操作压力也有所不同
回收比和浓缩水排放量
在超滤膜系统中,回收比与浓缩水排放量是一对相互制约的因素。回收比是指透过水量与供给量之比率,浓缩水排放量是指未透过膜而排出的水量。因为供给水量等于浓缩水与透过水量之和,所以如果浓缩水排放量大,回收就比较小。为了保证超滤膜系统正常运行,应规定组件最小浓缩水排放量及最大回收比。
工作温度
超滤膜系统膜的透水能力随着温度升高而增大,一般水溶液其粘度随着温度而降低,从而降低了流动的阻力,相应提高了透水速率。在工程设计中应考虑工作现场供给液的实际温度。特别是季节的变化,当温度过低时应考虑温度的调节,否则随着温度的变化其透水率有可能变化幅度在50%左右,此外过高的温度将影响膜的性能。通常情况下超滤膜系统膜的工作温度应在25±5℃,需要在较高温度状态下工作则可选用耐高温膜材料及外壳材料。
压力的影响
进水压力影响RO和NF膜的产水通量和脱盐率,我们知道渗透是指水分子从稀溶液侧透过膜进入浓溶液侧的流动,反渗透和纳滤技术即在进水水流侧施加操作压力以克服自然渗透压。当高于渗透压的操作压力施加在浓溶液侧时,水分子自然渗透的流动方向就会被逆转,部分进水(浓溶液)通过膜成为稀溶液侧的净化产水。透过膜的水通量增加与进水压力的增加存在直线关系,增加进水压力也增加了脱盐率,但是两者间的变化关系没有线性关系,而且达到一定程度后脱盐率将不再增加。
由于RO和NF膜对进水中的溶解性盐类不可能绝对完美地截留,总有一定量的透过量,随着压力的增加,因为膜透过水的速率比传递盐分的速率快,这种透盐率的增加得到迅速地克服。但是,通过增加进水压力提高盐分的排除率有上限限制,正如图1脱盐率曲线的平坦部分所示那样,超过一定的压力值,脱盐率不再增加,某些盐分还会与水分子耦合一同透过膜。
温度的影响
膜系统产水电导对进水温度的变化非常敏感,随着水温的增加,水通量几乎线性地增大,这主要归功于透过膜的水分子的粘度下降、扩散能力增加。增加水温会导致脱盐率降低或透盐率增加,这主要是因为盐分透过膜的扩散速率会因温度的提高而加快所致。膜元件能够承受高温的能力增加了其操作范围,这对清洗操作也很重要,因为可以采用更强烈和更快的清洗程序。
盐浓度的影响
渗透压是水中所含盐分或有机物浓度和种类的函数,盐浓度增加,渗透压也增加,因此需要逆转自然渗透流动方向的进水驱动压力大小主要取决于进水中的含盐量。如果压力保持恒定,含盐量越高,通量就越低,渗透压的增加抵消了进水推动力,水通量降低,增加了透过膜的盐通量(降低了脱盐率)。
回收率的影响
通过对进水施加压力当浓溶液和稀溶液间的自然渗透流动方向被逆转时,实现反渗透过程。如果回收率增加(进水压力恒定),残留在原水中的含盐量更高,自然渗透压将不断增加直至与施加的压力相同,这将抵销进水压力的推动作用,减慢或停止反渗透过程,使渗透通量降低或甚至停止。RO
系统最大可能回收率并不一定取决于渗透压的限制,往往取决于原水中的含盐量和它们在膜面上要发生沉淀的倾向,最常见的微溶盐类是碳酸钙、硫酸钙和硅,应该采用原水化学处理方法阻止盐类因膜的浓缩过程引发的结垢。
pH 值的影响
各种反渗透和纳滤膜元件适用的pH值范围相差很大,像这样的超薄复合反渗透和纳滤膜与醋酸纤维素反渗透和纳滤膜相比,在更宽广的 pH
值范围内更稳定,因而,具有更宽的操作范围。膜脱盐率特性取决于pH值,水通量也会受到影响。
10. 过滤器,解析流体的粘度与流速有什么关系
过滤器一般分为Y型过滤器、精密过滤器和管道过滤器3种。Y型过滤器的纤维时有脱落,不能回给出一个确切的孔答径,厚度一般在3~20mm,通常有吸附作用,并有较大的承污能力;精密过滤器的纤维一般用热粘合或膜涂布而成,可以给出额定孔径,比较薄(<1 mm),吸附能力较小;管道过滤器的主要特点是质地坚硬,不易破碎,有曲折的通道和 非常高的内表面积,有一定的开孔率,能做完整性测试,常用于深级过滤,如Y型过滤器。
流体的过滤机理主要有2种,一种是基于颗粒的大小来分离,例如拦截、筛分和表面捕获等;另一种是吸附,即颗粒在化学/电荷作用下粘附在滤器上。这就要求各个药厂根据自身的实际需要来选择不同的管道过滤器。与流体的特性有关。例如,流体的粘度和化学/离 子成分,流体的粘度越大在同样的压力条件下流速越慢,流体与膜之间有较多接触,过滤效果较好;再如,流体和膜的混合/接触时间对过滤效果也有较大影响,混合/接触时间越长则过滤效果越好。此外,需要注意的是,流体的特性只影响膜对流体的吸附截留效果而不影响颗粒大小的排除。与实际操作条件有关,如颗粒的流速和过滤压力。要想取得好的过滤效果,一般选择较低的流速,流速越 低截留效果越好。