导航:首页 > 耗材问题 > 酚醛树脂研究方向

酚醛树脂研究方向

发布时间:2021-03-18 03:07:43

『壹』 酚醛的行业状况

1986年,我国酚醛树脂及塑料的生产厂家在原化工部的指导下成立了全国酚醛树脂及塑料行业协作组(以下简称协作组)。协作组在原化工部行业指导司和全国合成树脂与塑料工业信息总站的具体指导下,情报、信息、标准、统计、技术交流等各项工作开展顺利,直到1997年山东济南会议。在我国由计划经济向市场经济转变过程中,原有的主要为国有和集体性质的老企业忙于转制等工作,而以民营和外资为主的新企业不断涌现,协作组于济南会议后基本停止了工作,本行业的期刊《酚醛通讯》也停刊了。因此,要分析研究近几年国内酚醛塑料的进展动态,特别是生产经营方向的动态,是比较困难的,可查到的离目前最近的有关国内生产经营方面的文献[1]是1998年的。
华东地区,尤其是产量较大的厂家集中在江苏、浙江、福建、上海四省市。据不完全估计,2001年国内40个厂家的酚醛塑料的产量为180kt左右,其中注塑料占30%左右;2002年的产量基本与2001年持平。根据海关统计,2001年国内出口酚醛树脂及塑料19.631kt,创汇1552万美元;而进口79.542 kt,用汇9640万美元。如果计算一下平均每吨单价,出口产品为791美元/t,进口产品为1212美元/t。可以看出,高性能酚醛树脂及塑料在国内的需求量,而出口产品大多是通用级的酚醛树脂及塑料。

『贰』 哪些高校或研究所的研究方向是偏聚合物基复合材料的

合材料基体即复合材料中作为连续相的材料,分为聚合物基体,金属基体,无机非金属基体。
作用:基体材料起到粘结作用,均衡载荷,分散载荷,保护纤维的作用。
复合材料分为两相,另一项为分散相,称为增强材料。
简介:复合材料按照基体材料可分为金属基复合材料、无机非金属基复合材料和聚合物基复合材料这三大类。
1.金属基复合材料在使用金属基复合材料时,不同领域要求迥异。
举例来说,航天、航空领域对比强度、比模量、尺寸稳定性有严格的要求,因此会选择密度小的轻金属合金作为基体。
而高性能发动机使用的复合材料不仅需要具备高比强度、比模量,还对其耐高温、耐氧化性能提出了要求,一般使用钛基、镍基合金以及金属间化合物做基体材料。
普通汽车发动机对材料的耐热、耐磨、导热性能、高温强度有一定的考量,同时又要求成本低,适合批量生产,通常用铝合金材料做基体。
而工业集成电路基板和散热元件,必须具有高导热、低膨胀特性,一般使用铜、铝等仅是作为基体。
如果想要增强金属基复合材料的强度,添加连续纤维增强材料可以有效达到这个目的。
因为纤维作为增强材料,它的强度和模量都要高于金属基体。
而在以颗粒、晶须、短纤维为增强材料的非连续增强金属基复合材料中,增强材料的强度和模量均要低于金属基体。
选择增强材料时,还必须充分考虑其与金属基体的相容性,尤其是化学相容性。
保证在金属基复合材料高温成型过程中,增强材料不会与基体发生化学反应,而影响复合材料的物理化学功能。
当复合材料中含多种物质的时候,这一点就显得更加重要。
2.无机非金属基复合材料无机非金属基复合材料的基体材料主要包括水泥、石膏和水玻璃等。
以应用最广泛的水泥材料为例,水泥材料是多孔体系,这一特征不仅会影响基体本身的性能,也会影响纤维与基体的界面粘接。
纤维与水泥的弹性模量比不大,应力的传递效应远不如纤维增强树脂。
水泥基材的断裂延伸率较低,在受到强力拉伸时,水泥基体会先于纤维发生开裂。
水泥基材中含有粉末或颗粒状的物料,与纤维成点接触,因此纤维的掺量受到很大的限制。
水泥基材呈碱性,对金属纤维可起到一定的保护作用,但对大多数矿物纤维不利。
3.聚合物基复合材料作为基体材料的复合物包括不饱和聚酯树脂、环氧树脂、酚醛树脂及各种热塑性聚合物,这也是一种非常重要的复合材料。
在聚合物基复合材料中添加纤维增强材料,可以起到增加强度的作用,所用的纤维种类有玻璃纤维、碳纤维、有机纤维和其他纤维等。
玻璃纤维具有很高的拉伸强度,而且防火、防霉、防蛀、耐高温,电绝缘性能也非常出色。
其化学稳定性良好,除了HF、浓碱、浓磷酸外,与其他所有化学药品和有机溶剂都不会发生化学反应。
但玻璃纤维也有缺点,那就是具有脆性、不耐磨、对人的皮肤有刺激性等。
碳纤维具有良好的耐高低温性能,其比重在1.5到2之间,热膨胀系数有各向异性的特点,导热有方向性,比电阻与纤维类型有关。
化学性质较为稳定,除了能被强氧化剂氧化以外,与一般酸碱均不会发生反应,还具有耐油、抗辐射、吸收有毒气体和减速中子等性能。
有机纤维具有很高的拉伸强度以及弹性模量,它的密度小,热稳定性高,热膨胀系数各向异性,有良好的耐介质性能,但容易被各种酸碱腐蚀,耐水性不好。

『叁』 酚醛塑料的简介


酚醛塑料俗称电木粉,于1872年发明,1909年投入工业生产,是世界上历史最悠久的塑料,以酚醛树脂为基材的塑料的总称,最重要的热固性塑料的一类 。一般可分为非层压酚醛塑料和层压酚醛塑料两类。非层压酚醛塑料又可分为铸塑酚醛塑料和压制酚醛塑料。广泛用作电绝缘材料、家具零件、日用品、工艺品等。此外,还有主要作耐酸用的石棉酚醛塑料、作绝缘用的涂胶纸、涂胶布、作绝热隔音用的酚醛泡沫塑料和蜂窝塑料等 。
基本信息
酚醛塑料: 以酚醛树脂为基材的塑料。
比重:1.5-2.0 g/cm3
成型收缩率:0.5-1.0%
成型温度:150-170℃
物料性能:酚醛塑料是一种硬而脆的热固性塑料,俗称电木粉。机械强度高,坚韧耐磨,尺寸稳定,耐腐蚀,电绝缘性能优异。 适于制作电器、仪表的绝缘机构件,可在湿热条件下使用
成型性能:
1.成型性较好,但收缩及方向性一般比氨基塑料大,并含有水分挥发物。成型前应预热,成型过程中应排气,不预热则应提高模温和成型压力。
2.模温对流动性影响较大,一般超过160℃时,流动性会迅速下降。
3.硬化速度一般比氨基塑料慢,硬化时放出的热量大。大型厚壁塑件的内部温度易过高,容易发生硬化不均和过热。

『肆』 树脂涂料的发展、前景和市场

人类生产和使用涂料已有悠久的历史。一般可分为天然成膜物质的使用、涂料工业的形成和合成树脂涂料的生产三个发展阶段。西班牙阿米塔米拉洞窟的绘画、法国拉斯科洞穴的岩壁绘画和中国仰韶文化时期残陶片上的漆绘花纹等大量考古资料证实,公元前5000年新石器时代,人们就使用野兽的油脂、草类和树木的汁液以及天然颜料等配制原始涂饰物质,用羽毛、树枝等进行绘画。

起点 1855年,英国人A.帕克斯取得了用硝酸纤维素(硝化棉)制造涂料的专利权,建立了第一个生产合成树脂涂料的工厂。1909年,美国化学家L.H.贝克兰试制成功醇溶酚醛树脂。随后,德国人K.阿尔贝特研究成功松香改性的油溶性酚醛树脂涂料。第一次世界大战后,为了打开过剩的硝酸纤维素的销路,适应汽车生产发展的需要,找到了醋酸丁酯、醋酸乙酯等良好溶剂,开发了空气喷涂的施工方法。1925年硝酸纤维素涂料的生产达到高潮。与此同时,酚醛树脂涂料也广泛应用于木器家具行业。在色漆生产中,轮碾机被逐步淘汰,球磨机、三辊机等机械研磨设备在涂料工业中推广应用。

突破 1927年,美国通用电气公司的R.H.基恩尔突破了植物油醇解技术,发明了用干性油脂肪酸制备醇酸树脂的工艺,醇酸树脂涂料迅速发展为涂料品种的主流,摆脱了以干性油和天然树脂混合炼制涂料的传统方法,开创了涂料工业的新纪元。到1940年,三聚氰胺-甲醛树脂与醇酸树脂配合制漆,进一步扩大了醇酸树脂涂料的应用范围,发展成为装饰性涂料的主要品种,广泛用于工业涂装。

大发展年代 第二次世界大战结束后,合成树脂涂料品种发展很快。美、英、荷(壳牌公司)、瑞士(汽巴公司)在40年代后期首先生产环氧树脂,为发展新型防腐蚀涂料和工业底漆提供了新的原料。50年代初,性能广泛的聚氨酯涂料在联邦德国法本拜耳公司投入工业化生产。1950年,美国杜邦公司开发了丙烯酸树脂涂料,逐渐成为汽车涂料的主要品种,并扩展到轻工、建筑等部门。第二次世界大战后,丁苯胶乳过剩,美国积极研究用丁苯胶乳制水乳胶涂料。20世纪50~60年代,又开发了聚醋酸乙烯酯胶乳和丙烯酸酯胶乳涂料,这些都是建筑涂料的最大品种。1952年联邦德国克纳萨克·格里赛恩公司发明了乙烯类树脂热塑粉末涂料。壳牌化学公司开发了环氧粉末涂料。美国福特汽车公司1961年开发了电沉积涂料,并实现工业化生产。此外,1968年联邦德国法本拜耳公司首先在市场出售光固化木器漆。乳胶涂料、水溶性涂料、粉末涂料和光固化涂料,使涂料产品中的有机溶剂用量大幅度下降,甚至不使用有机溶剂,开辟了低污染涂料的新领域。随着电子技术和航天技术的发展,以有机硅树脂为主的元素有机树脂涂料,在50~60年代发展迅速,在耐高温涂料领域占据重要地位。这一时期开发并实现工业化生产的还有杂环树脂涂料、橡胶类涂料、乙烯基树脂涂料、聚酯涂料、无机高分子涂料等品种。

随着合成树脂涂料的发展,逐步采用了大型的树脂反应釜(见釜式反应器),研磨工序逐步采用高效的研磨设备,如高速分散机和砂磨机得到推广使用,取代了40~50年代的三辊磨。

为配合合成树脂涂料的推广应用,涂装技术也发生了根本性变化。20世纪50年代,高压无空气喷涂在造船工业和钢铁桥梁建筑中推广,大大提高了涂装的工作效率。静电喷涂是60年代发展起来的,它适用于大规模流水线涂装,促进了粉末涂料的进一步推广。电沉积涂装技术是60年代适应于水溶性涂料的出现而发展的,尤其在超过滤技术解决了电沉积涂装的废水问题后,进一步扩大了应用领域

新阶段 1973年以来,由于石油危机的冲击,涂料工业向节省资源、能源,减少污染、有利于生态平衡和提高经济效益的方向发展。高固体涂料、水型涂料和粉末涂料的开发,低能耗固化品种如辐射固化涂料的开发,是其具体表现。1976年,美国匹兹堡平板玻璃工业公司研制的新型电沉积涂料──阴极电沉积涂料,提高了汽车车身的防腐蚀能力,得到迅速推广。70年代开发了有机-无机聚合物乳液,应用于建筑涂料等领域。功能性涂料(见涂料)成为70年代涂料工业的研究课题,并推出了一系列新品种。80年代各种建筑涂料发展很快。电子计算机已在涂料生产和测试、管理中使用。机器人(机械手)已广泛应用于特殊场合或危险场合代替人工进行涂装。这一阶段有如下特点:①以现代的科学理论为指导,有目的地进行研究开发工作,加快了发展的进程,例如:现代化学的理论应用在涂料工业中,涂料助剂得到广泛推广使用,从而使涂料工业的产品性能和生产效率都有了大幅度提高。②利用共聚、改性和混合方法,使具备特色的合成树脂品种日益增多,提高了涂料的性能,且使功能性涂料品种日益增多。③对涂料质量的测试,已从测定表面现象转向测定涂料内在质量的趋势,例如更加重视测定合成树脂的分子量与分子量分布以了解合成树脂的质量,用扫描电镜观察涂膜的微观结构等指导产品的生产。

『伍』 什么物质可以溶解塑料

http://www.bondch.com/lunwen/yuanqing/12.htm

废聚苯乙烯泡沫塑料再生胶粘剂的研究

鲍春阳

(黑龙江省石油化学研究院,黑龙江 哈尔滨 150040)
摘要:聚苯乙烯泡沫塑料由于其质轻、坚固、吸震、低吸潮、易成型及良好的耐水性、绝热性、价格低等特点,被广泛地应用于包装、保温、防水、隔热、减震等领域。PS大都是一次性使用,废弃在自然界中既不能腐烂转化,又不能自行降解而消失,这样既浪费了宝贵的不可再生资源,又造成了严重的环境污染。本论文就是以节约资源、保护环境,变废为宝为目的,研究了以废PS为主要原材料,经改性剂改性,制备两种低毒性、低成本、性能好的胶粘剂。其中一种是以环氧树脂及甲苯二异氰酸酯作为改性剂的溶剂型多功能胶粘剂,可用于金属、陶瓷、玻璃、木材等的粘接,拉伸剪切强度大于4.7MPa;另外一种是以丙烯酸丁脂和醋酸乙烯脂的混合单体作为改性剂的接枝共聚乳液型胶粘剂,其性能优于市售的乳白胶,压缩剪切强度高达10.4MPa,价格仅为乳白胶的70%。
关键词:废聚苯乙烯泡沫塑料;改性剂;胶粘剂
1 引 言
1.1 国内外现状
聚苯乙烯泡沫塑料(Expanded Polystyrene,简称EPS)是现代塑料工业发展中的新型材料,它的生产自1951年西德巴斯夫公司发明可挥发性聚苯乙烯珠粒发泡成型法,到七十年代美国发明一步成型法以来得到了迅速的发展。1985年我国相继从美国、日本引进五套聚苯乙烯泡沫生产装置,促进了我国塑料工业的发展。聚苯乙烯泡沫塑料是当今世界上应用最广泛的塑料之一,由于它具有良好的耐水性、绝热性、绝缘性、低吸湿性以及较强的抗震强度,及其质轻、坚固、易成型、价格低等特点,被广泛地应用于包装、保温、防水、隔热、减震、装璜、餐饮业等领域,渗透入国民经济的各个部门。据统计,近十年
来,我国聚苯乙烯塑料年平均消费量增长10%。1990年已达21.7万吨,随着电子仪表、家用电器工业的迅速发展及西部大开发的推进,EPS的用量会越来越大[1],预计到2005年,我国将需要聚苯乙烯泡沫塑料120万吨。聚苯乙烯泡沫塑料大部份都是一次性使用,数以百万吨的白色垃圾散于自然界中,既不能腐烂转化,又不能自行降解而消失,这样,一方面造成严重的环境污染,另一方面也是宝贵的不可再生资源的浪费。如何合理地、有效地回收利用废弃聚苯乙烯泡沫塑料已引起包括我国在内的世界各国科研工作者的普遍重视。从七十年代开始,日本、西欧和美国就相继对塑料废料进行工业化处理,到九十年代,综合利用废旧塑料的技术已趋于成熟,产业化高达80%,截止到1999年,美国塑料废弃物回收率达50%,英国达80%,日本达49%,意大利不仅回收本国的塑料垃圾,还从欧洲其它国家进口废旧塑料进行再生利用。我国从80年代末期开始起步研究废弃塑料的回收再利用技术,进入九十年代以后,研究开始活跃起来,技术产业化率还很低,每年大约仅有15%的废弃塑料得到回收[2],其余大都被掩埋。聚苯乙烯泡沫的密度很小,只有0.02-0.04g/cm3,因此,体积非常庞大,会占用大面积土地,而且当泡沫塑料进入土壤以后,基本上不会被微生物降解,使土壤中的空气、水分、养分等不能正常的循环交换,而且它还会逐渐释放出一些有害物质,从而影响到生态系统的正常循环,使掩埋处及其周围方圆面积内的土地土质变差,造成悲剧[3]。
1.2 聚苯乙烯泡沫塑料的回收利用
有关聚苯乙烯泡沫塑料的回收利用已先后出现了不少专利和研究报道,其应用技术主要集中在以下几个方面[4-9]:
1.用于制造轻质建筑材料。用可发性聚苯乙烯的预发泡颗粒或以破碎成小块的聚苯乙烯泡沫废弃物为主体补加不同的填料,使用不同的粘结剂制成各种轻质的建筑材料。比如,用碎木丝为填料,以水泥为粘结剂,加水混合,然后模塑成各种形状的轻质水泥隔板,或制成人造木材;内衬铁丝支架制成的轻质泡沫板可以做为墙板、台面,或装饰板;用膨胀珍珠岩做填料能制成屋顶隔热板;以泥土为粘接剂兼填料,与聚苯乙烯泡沫颗粒等量均匀混合并压制成型,干燥后煅烧,可制成供高层建筑用的轻质大砌块,或地下渗排废水的透水管;以废尼龙丝为填料可制成轻质抗弯浇铸材料等等。这种回收方法工艺简单,可回收量大,投资小,是一种较好的回收利用方式,唯一不足就是产品的技术附加值较小。
2.用于制造通用型苯聚乙烯。将聚苯乙烯泡沫废弃物经高温消泡冷却后,机械破碎,挤塑成条,再切粒制成通用型聚苯乙烯。这种方法的主要问题是再生料的外观可能是由于废弃泡沫破碎前未洗净以及在烘焙挤塑过程中局部温度过高等原因而呈棕色,失去了新聚苯乙烯无色透明的特点。其抗冲击性能也较差,只能用做一些低值塑料零件,很难与一般塑料如聚乙烯、聚丙烯、聚氯乙烯制品媲美。
3.用于再制可发性聚苯乙烯。用废弃PS泡沫循环再制EPS或再模制泡沫制品,应该说是废PS泡沫最合理的利用方向。因为废聚苯乙烯泡沫材料除表面受环境污染略变质外,内部还保持着原有聚苯乙烯泡沫的性能,这就为多次利用创造了条件。只有这样,重新模塑或制造EPS才能最好地发挥聚苯乙烯泡沫的多方面优良特性。利用废聚苯乙烯泡沫制造EPS或再模塑有下列几种方法:第一,溶解聚合法。将废烙泡沫材料溶解于苯乙烯单体中,加入分散剂使PS的苯乙烯溶液成珠粒状悬浮在水中,加热使其聚合,然后加发泡剂,继续聚合制成珠粒发泡料。本方法的优点是利用废PS代替了部分苯乙烯,可使成本降低,缺点是要消耗苯乙烯单体,同时也受到PS表面清洁度不稳定对引发剂活性的影响,很难制得均匀一致的产品。第二,球化再发泡法。是将通用型的聚苯乙烯切成圆柱形粒料,悬浮在分散剂的水溶液中,加热使圆柱体熔融球化,再降温加压加发泡剂,冷却后经过滤、洗涤和低温干燥制成EPS珠粒[10],本方法的关键在于原料的质量,否则难以保证新制EPS的质量。第三,珠粒破碎再模塑法。是在液体介质中选用合适的软化剂,表面活性剂和消泡剂,将大块废PS泡沫选择性地破碎到直径4-8mm的球形珠粒,加发泡剂后再模塑成泡沫制品。本法工艺简单,消耗的附加材料少,模制成品的各项物理性能与原废料接近,而且投资小,效益大,值得推广。
4.溴化改性制备阻燃剂。聚苯乙烯分子中含有苯环结构,苯环上的氢原子可被亲电试剂取代。有人将回收的聚苯乙烯泡沫塑料清洗干燥后溶于二氯甲烷溶液中,在三氯化铝催化下,与液溴发生亲电取代反应而制得阻燃剂溴化聚苯乙烯。含溴量可高达6%。可作为聚氯乙烯、ABS、聚丙烯等塑料制品的阻燃。与其它有机阻燃剂相比,溴化聚苯乙烯用量低,阻燃效果好,燃烧过程中不释放二(口恶)英等有毒致癌物质,特别是与三氧化二锑并用,其协同阻燃效果更好,是一种性能良好的阻燃剂。用该工艺制备的溴化聚苯乙烯,性能可以与商品溴化聚苯乙烯阻燃剂相媲美,而且成本低[11]。但因为阻燃剂本身的用量就不是很大,因此此法不能满足大量废PS的回收工作。
5.热分解技术。一方面,可裂解制造苯乙烯单体,即把废聚苯乙烯泡沫塑料在加热条件下,选择合适的催化剂使其裂解生成苯乙烯单体。在苯乙烯供应比较紧张的情况下,利用聚苯乙烯泡沫废弃物解聚制造苯乙烯,以满足市场的需要,是一条合理的利用途径。美国、法国、和日本等也进行过大量实验,但未见有工业化的报导。解聚制造苯乙烯主要问题是苯乙烯的转化率比较低,在较好的情况下也不过70%左右,一般仅在40%左右,转化率低,不仅影响生产成本,而且留下的残渣还给裂解设备的清洗和连续运转造成困难[12]。另一方面,可裂解制油。将泡沫塑料隔绝空气加热或在水汽下加热分解可得到低分子量烃的混合物,再用催化剂分解重整,可得不含硫的汽油馏份和煤油馏份及部分气体。1kg塑料可得11油品,其余主要是残炭[13]。日本在这方面研究较多,我国在这方面也取得一定成效,现在正在进行产业化。
6.燃烧回收能源。由于聚苯乙烯泡沫的主要成份是碳和氢,它可以燃烧且总热值(大约是4600kJ/kg),大于标准煤(大约2600kJ/kg)和燃料油(大约4400kJ/kg)。因此经焚烧处理利用其燃烧热也是一条有效途径。这种方法,被许多资金雄厚、设备先进的发达国家采用。比如日本刚管公司用废塑料代替焦炭做炼铁的燃料和还原剂;法国一空调公司开发一种用废塑料焚烧产生的热量生产蒸汽的新工艺,蒸汽可供给生产之用,这样可节约能源。但就我国情况看,焚烧法还较其它方法落后。塑料燃烧时发热量大,普通炉子易烧坏而且不易燃烧完全,要专门设计燃烧炉,设备维修费用较大,同时燃烧产生的气体易造成二次污染,还要进行处理。
7.接枝改性制备涂料。涂料的制备均由基料添加颜料经搅拌研磨而成。基料为成膜物,聚苯乙烯泡沫由有机高分子组成,经溶剂溶解以后可以作为涂料的基料,其耐水性和绝缘性良好。但用PS作基料制备的涂料附着力和成膜性很差,只要将其进行改性处理并添加适量的交联剂,增塑剂,以改善其成膜性能及膜层质量,这样就可以制成各类涂料。比如,李良波等将废聚苯乙烯泡沫塑料粉碎后溶于二甲苯中,加入引发剂,在一定温度下滴入丙烯酸进行接枝改性反应,得组份甲;将石油沥青溶于二甲苯,得组份乙;将水、乳化剂以及助剂混合均匀得份丙;将上述三种成份在乳化釜中进行共乳化,制得防水涂料。丙烯酸分子在聚苯乙烯的分子链上的接枝,不仅增强了涂膜的附着力,而且提高了乳液的稳定性。制得的涂料具有良好的耐热性、低温柔韧性和粘接强度。另外,用柔性的丙稀酸丁酯接枝在刚性的聚苯乙烯分子链上,可提高聚苯乙烯的柔韧性和附着力,与适当助剂配合,可制成性能良好的防腐涂料[14]。
1.3 聚苯乙烯泡沫改性胶粘剂的进展
胶粘剂在国民经济各部门中都有重大作用。无论是航天、航空还是建筑、装璜都离不开胶粘剂。全世界胶粘剂的总产量在七十年代中期已接近500万吨,近年来大约以每年增长30万吨的速渡继续增长。在全部胶粘剂产品中,建筑用胶粘剂约占25%-35%。随着我国国民经济的迅猛发展,建筑用胶存在很大缺口,用废PS制备胶粘剂满足市场对质优价廉胶粘剂的需求,是一举两得的事情。我国科研工作者从80年代末起步从事这方面的研究,到九十年代末取得了一些成绩。但研究空间仍很大。因此这是一个很好的研究方向,也是废PS再生利用的最佳方向。
聚苯乙烯是一种无定型的线性非极性物质,它的分子中含有苯环,刚性大而柔性小,它在极性物质表面上粘接力很弱,用它直接制得的胶粘剂强度不够而且胶层又硬又脆,因此需要在苯乙烯链节上引入极性和柔性基团,以增加柔顺性提高粘接强度,这样才能得到粘结力和附着力都很好的胶粘剂。利用废聚苯乙烯泡沫制备胶粘剂的关键技术是改性剂的选择。据文献报道[15-35],有以下几种改性剂:

1.邻苯二甲酸酯改性。胡光军利用增塑剂邻苯二甲酸二丁酯对聚苯乙烯泡沫塑料进行改性,溶剂为丙酮,用氧化镁做填料,制得的胶粘剂可用于粘接扬声器回路,粘接成本降低约百分之七十;王秀岩将废聚苯乙烯泡沫塑料粉碎后加入创新一号溶剂中溶解后加入邻苯二甲酸二辛酯和香精,可制成不干胶,这种不干胶粘接效果好,可以重复使用,可用于各种标签,商标及纸制品的粘接。
2.异氰酸酯改性。雷阎盈等研究了异氰酸酯改性PS制胶粘剂:PS溶于甲苯、丙酮和乙酸乙酯混合溶剂中,溶解完全后加入异氰酸酯反应一段时间后,再加入填料氧化锌可制得固含量约30%的胶粘剂,该胶粘剂粘度为0.5-1 Pa.s,剪切强度为3.4MPa,不均匀剥离强度为1.2 KN/m,该胶可用于木材、纸制品、日用塑料、地毯背衬的粘接。
3.酚醛树脂改性。酚醛树脂分子结构中含有羟基,是聚苯乙烯泡沫塑料的优良改性剂。陆友玲等将聚苯乙烯泡沫塑料熔于甲苯、乙酸乙酯、丙酮和三氯甲烷混合溶剂中,充分搅拌后加入酚醛树脂进行反应,制得乳白色PS改性胶粘剂。该胶粘剂的剪切强度为3.47MPa,不均匀剥离强度为14.8KN/m,可用于木材和日用品的粘接。商金明等研究表明,当酚醛树脂与聚苯乙烯泡沫塑料用量相等时,它的粘接强度接近于酚醛树脂胶粘剂。为了增加胶粘剂固化以后的韧性和对被粘物的粘接强度,可添加少量高分子交联剂作为改性剂,这样胶粘剂固化后在被粘接物表面形成一网状分子层。李键等选择了异氰酸酯和酚醛树脂两种含强极性基团的改性剂对废聚苯乙烯泡沫塑料进行改性取得了良好的效果。将废聚苯乙烯泡沫塑料溶解在甲苯、丙酮、氯仿、乙酸乙酯的混合溶剂中,完全溶解以后分离机械杂质,加入适当比例的交联剂甲苯二异氰酸酯和酚醛树脂,然后加填料制得粘稠状红色粘合剂,这种粘合剂的剪切强度可达3.72 MPa,不均匀扯离强度17.10KN/m。该胶粘剂可代替乳白胶用于木材粘接,效果良好,同时对塑料以及多孔物质也有较好的粘接性能。
4.松香树脂改性。曲俊杰等研究了松香树脂改性废聚苯乙烯泡沫塑料制备胶粘剂。选用二甲苯为溶剂,所制得的胶粘剂可粘接瓷板、马赛克和塑料地板等。陈震等研究了松香用量对PS改性胶粘剂性能的影响,同时考察了各种溶剂对PS改性胶粘剂粘接强度的影响。研究结果表明添加少量松香时有利于提高粘接强度,但由于松香中菲环易于解离,随着松香用量增加,粘接强度反而降低;在所有溶剂中聚苯乙烯与乙酸乙酯混合改性后粘接强度最大。
5.苯乙烯-丁二烯-苯乙稀(SBS)嵌段共聚物改性。苯乙烯-丁二烯-苯乙烯嵌段共聚物中的苯乙烯嵌段与聚苯乙烯的结构相似,相容性好,因此用SBS嵌段共聚物作PS改性剂,可以提高胶粘剂的剥离强度,降低胶层的硬度和脆性。包其富选择乙酸乙酯、120号汽油、甲苯、松节油为混合溶剂,以SBS嵌段共聚物为改性剂,松香树脂为增粘剂,制得胶粘剂剪切强度达4.43 MPa,不均匀剥离强度为1.4KN/m。该胶粘剂可用木材、瓷砖等材料的粘接,既可代替聚醋酸乙烯酯乳白胶用于家具和玩具的粘接,也可替代氯丁胶用于木材的封边。
6.马来酸酐改性。孟跃中等将废聚苯乙烯泡沫塑料溶于有机溶剂中,加入引发剂、顺丁烯二酸酐进行接枝反应,然后与聚乙烯醇的水溶液在乳化装置内乳化,制得PS改性白胶,剪切强度在3.92MPa以上,成本仅为聚醋酸乙烯酯乳液的三分之一,而且生产工艺简单,生产周期短。
7.聚乙烯醇缩醛改性。石生勋采用甲苯、70号汽油做混合溶剂,将废聚苯乙烯泡沫塑料溶解以后,加入聚乙烯醇缩醛进行改性,得到白色稠状的胶粘剂,这种粘剂最大特点是使用温度宽,-40-40℃均可使用,且剪切强度一直保持在8.7 MPa,而市售的白乳胶只能在0-40℃之间保持9.0MPa的强度。
8.聚乙烯醇改性。陈恩德用二甲苯将聚苯乙烯泡沫塑料完全溶解以后加入聚乙烯醇进行改性,可制得医用密封胶,这种医用密封胶不与福尔马林发生反应,且耐热、耐寒、不漏水。
9.活性单体接枝改性。废聚苯乙烯与活性单体接枝共聚,可在苯乙烯链节上接枝活性基团,从而利用废聚苯乙烯泡沫塑料制取性能良好的胶粘剂。有专利报道,100份PS溶于芳烃、氯代烃混合溶剂中成为胶液,加活化剂氯化亚铜,引发剂过氧化苯甲酸丁酯,升温到90-120℃,加入20-30份丙烯腈、丙烯醇单体,接枝反应2小时,使聚苯乙烯接枝上极性基团从而改变PS的性质,然后加入石棉粉或硅酸钙,形成一种耐水性好、粘接力强的白色稠状胶粘剂。其耐水性和剪切强度分别是聚醋酸乙烯酯乳白胶的10倍和3倍以上,该PS胶粘剂可作为木材、家具和日常生活用胶,也可用于粘接水泥制品、地板、壁纸及各种织物。在聚苯乙烯大分子上接枝丙烯腈、丙烯醇,能明显提高其粘接性,但加入的单体比例甚高,这样成本也就较高,而且丙烯腈单体的毒性也非常大,给生产带来一定的困难。因此很难推广应用。陈开来等研究了羧酸酯单体接技于苯乙烯链节上,成功地制得了建筑内装饰耐水胶粘剂。将废聚苯乙烯泡沫塑料溶于甲乙两种有机溶剂中制成胶液,在引发剂的作用下,与不饱和单体发生接枝共聚反应,在聚苯乙烯大分子链上接枝上极性基团,加入增粘树脂,可制得棕色的胶液,剪切强度在4.4-4.7MPa,且其耐火性远远优于同类产品,浸水后强度能达到4.5 MPa,这样制取的耐水胶可用于墙纸、瓷砖、拼花、地板的粘接。以1:1入掺入水泥中,施工性能较佳,且不影响粘接地板、瓷砖的性能。在上述的这些改性剂中,还没有用环氧树脂做改性剂的报道,环氧树脂常被称作“万能胶”,对各种金属和大部分非金属材料都有良好的粘接性能,广泛用于飞机、导弹、汽车、建筑、电子电器和木材加工等工业部门,而且环氧树脂胶具有工艺性能好、胶接强度高、收缩率小、耐介质性能优良、电绝缘性能良好等优点[43]。它的分子中也含有极性基团,如果能用它来改性PS胶液,应该会得到性能优良的改性PS胶。另一方面,环氧树脂胶粘剂一般比较脆,因此加一种既能改善PS脆性,又可改善环氧树脂脆性的增韧剂,就可解决这一问题。我最后选择异氰酸酯达到了满意的结果。既提高了粘接强度又缩短了固化时间,还能节省溶剂降低成本。此外,我还偿试了在乳白胶配方的基础上,大幅降低配方中单体的用量,用PS代替聚合单体,添加增塑剂,制得性能优于乳白胶的木材用胶粘剂。大大降低了市售乳白胶的成本,同时达到了废物利用的目的。
2 PS改性胶粘剂的研制
2.1 溶剂型PS改性胶粘剂的研制
2.1.1 仪器及药品 仪器:恒温水浴;电动搅拌器;NDJ-1型旋转粘度计;Instron 4467、4505通用材料试验机;鼓风烘箱;SC-7型气相色谱仪(氢焰鉴定器)。药品:聚苯乙烯泡沫塑料;环氧树脂(E-51);甲苯二异氰酸酯;偶氮二异丁氰;乙酸乙酯;甲苯;滑石粉;胺类固化剂。
2.1.2 实验原理
聚苯乙烯是一种无定型线性非极性物质,其分子中含有苯环,刚性大而柔性小。在极性物质表面上粘接力很弱,用聚苯乙烯直接制得的胶粘剂强度不够而且胶层又脆又硬。因此,需要在PS胶液中加入改性剂进行改性处理,在苯乙烯链节上引入极性基团,以增加柔顺性,提高粘接强度。我选择了环氧树脂(E-51)及甲苯二异氰酸酯作为改性剂。在引发剂偶氮二异丁氰的作用下,甲苯二异氰酸酯先和聚苯乙烯发生反应。反应式如下:

(2)链自由基与甲苯2、4-二异氰酸酯进行交联反应

(R代表苯甲基)

然后加人环氧树脂,环氧树脂的结构中含有-OH,异氰酸酯可与环氧树脂中的-OH发生反应,反应通式如下:

这样,异氰酸酯就先后使PS、环氧树脂得到改性,并使二者产生部分交联。
2.1.3 胶粘剂的配制
将反应容器放在恒温水浴中,安装好搅拌棒,加入100份混合溶剂(乙酸乙酯:甲苯=4:1),分批加入50份洗净干燥的废聚苯乙烯泡沫碎料,边加边开
动搅拌,待全部溶解以后,逐渐升温至70℃,加入0.5份引发剂偶氮二异丁腈,3份甲苯2、4-二异氰酸酯,于中速搅拌下反应大约1-1.5小时,再加0.5
份甲苯2、4-二异氰酸酯,降温至50℃,加入10份环氧树脂(6101),继续反应1小时,降温后加入10份填料,可制得微黄色粘稠胶液,此胶液用时需加入固化剂。
2.1.4 胶粘剂各项指标的测试方法
不挥发物含量按GB/T2793-95方法进行测定,粘度按GB/T2794-95方法进行测定,拉伸剪切强度按GB7124方法进行测定,胶粘剂中有害物质限量按GB18583-2001方法进行测定。
2.2 乳液型PS改性胶粘剂的研制
2.2.1 仪器及药品
仪器:电动搅拌机;电热套;四口烧瓶;球形回流冷凝管;温度计;滴液漏斗;Instron 4467、4505通用材料试验机;鼓风烘箱;SC-7型气相色谱仪;红外光谱仪。
药品:聚苯乙烯泡沫塑料;丙烯酸丁酯;醋酸乙烯酯;邻苯二甲酸二辛酯;乙酸乙酯;甲苯;引发剂过硫酸铵;混合乳化剂(十二烷基硫酸钠:OP-10=
1:2)
2.2.2 水剂PS改性胶的制备
于四口烧瓶中加入50份混合溶剂(乙酸乙酯:甲苯:4:1),分批于搅拌下加入40份洗净晾干粉碎的废聚苯乙烯泡沫,逐渐升温到40℃,待完全溶解成透明粘稠液体后,加入1份复合乳化剂,搅拌乳化30min,加入40份水(蒸馏水或去离子水)及4份混合单体(丙烯酸丁酯:酯酸乙烯酯=1:1),升温到60℃,加大搅拌速度,再乳化30-40min,滴加部分引发剂(过硫酸铵10%溶液);反应时,有热量放出,温度开始自动升高,此时,加热使温度达到75℃,逐滴加入12份混合单体与80份水组成的溶液,在加入混合单体水溶液的过程中,每隔一段时间加入一部分引发剂(引发剂总量为1份),反应温度应控制在75-85℃之间,全部加完以后(大约需1.5-2h),把剩余引发剂全部加入,升温到90℃保温,待回收的溶剂达到加入量的80-85%时停止加热,然后,冷却到50℃,加入两份增塑剂邻苯二甲酸二辛酯,搅拌均匀后,调节PH值到7左右,冷却到室温,得到白色粘稠液体。
2.2.3 PS改性乳液胶粘剂各项性能指标的测试方法
胶粘剂不挥发物含量按GB/T2793-95方法进行测定,胶粘剂旋转粘度按GB/T2794-95方法进行测定,压缩剪切强度按HG/T2727附录B方法进行测定,灰份、PH值按GB11175方法进行测定,胶粘剂中有害物质限量按GB18583-2001方法进行测定。
3 结果与讨论
3.1 溶剂型PS改性胶粘剂的结果与讨论

3.1.1 所制得PS改性胶粘剂的各项技术性能见表1

3.1.2溶剂的选择
聚苯乙烯泡沫塑料溶解于芳烃(如苯,甲苯,二甲苯等),氯代烃(如三氯甲烷,三氯乙烯),羧酸酯(如乙酸乙酯,乙酸丁酯),酮(如丙酮,丁酮)等大部
分有机溶剂中。选择合适的溶剂溶解泡沫塑料,主要从以下几个方面考虑:首先,所选择的溶剂要对聚苯乙烯及新加入的改性剂有良好的溶解能力,对添料有良好的分散性能;其次,溶剂的性质最好对胶粘剂的性质有一定的改善作用;第三,所选用的溶剂要低毒,价廉,易得,安全。综合考虑以上各因素,用乙酸乙酯或甲苯作溶剂比较适合。但又考虑到混合溶剂的溶解性较单一溶剂要好,并且由于沸点、挥发度、极性不同,通过改变混合比例,可以调节胶粘剂
的干燥时间,满足不同场合的需要,因此,选择了乙酸乙酯和甲苯二者混合作为聚苯乙烯泡沫塑料的溶剂,这两种溶剂的物理化学参数见表2。

聚苯乙烯的溶解度参数为9.11

3.1.3 溶剂比的选择
采用乙酸乙酯与甲苯作为混合溶剂,乙酸乙酯含极性基团,对胶粘剂性能的改善有较大帮助,它沸点低,挥发快;甲苯是非极性物质,沸点高,挥发较
慢,两者比例不同定会影响着改性PS胶的干燥速度和粘附力,所以有必要选择一个较为合适的溶剂比。

从图中可以看出,随着溶剂比的增大,也就是乙酸乙酯的比例上升时,改性液的剪切强度增大,到溶剂比为4:1此后,又有所下降。其原因可能是由于
乙酸乙酯的极性较大,一方面对赐有改性作用,另一方面,能与被粘材料的表面形成分子间的相互作用力,因此,提高了剪切强度;而且它挥发的较快,正
好满足了环氧树脂固化以后残留溶剂少,而提高剪切强度的要求。因此,它比例增大而胶液强度上升。但乙酸乙酯比例太大时,由于它沸点低,挥发快,当
胶接边缘固化以后,内部的溶剂有可能长期处于液态或半固态,影响粘接效果而使剪切强度略有下降。

3.1.4 改性剂甲苯二异氰酸酯用量对胶粘剂剪切强度的影响
甲苯二异氰酸酯是一种强极性物质,其改性效果极为明显,只需极少量就可以明显改善胶粘剂的性能,其不仅对聚苯乙烯有较好的改性作用,而且对环氧树脂也有很好的改性作用。在废聚苯乙烯改性反应中,改性剂TDI作用有两个:一是在聚苯乙烯大分子中引入极性基团,使聚苯乙烯大分子链产生交联,二是与环氧树脂发生反应,改性环氧树脂,并使环氧树脂与聚苯乙烯两者产生部分交联。改性剂TDI的用量直接影响着改性PS胶的性质,如果改性剂用量少,则聚苯乙烯分子链上含极性基团少,交联度不够,韧性不足,且环氧树脂也不能很好的被改性,胶层较脆;如果用量太多,又使物质交联过度,甚至形成网状体型结构,降低了剪切强度,实验表明,改性剂用量为2.0%时,改性效果较好。如图2

3.1.5 环氧树脂的选择及其用量对PS改性胶粘剂性质的影响
环氧树脂常被称作“万能胶”,对各种金属和大部分非金属材料都有良好的粘接性能,广泛用于飞机、导弹、汽车、建筑、电子电器和木材加工等工业部门,而且环氧树脂胶具有工艺性能好,胶接强度高,收缩率小,耐介质性能优良,电绝缘性能良好等优点。在PS胶改性剂中,有酚醛树脂,松香树脂,邻苯二甲酸酯等,还没有人偿试用环氧树脂来改性PS。因环氧树脂中也有极性基团,应该对PS有良好的改性作用。因此,我偿试了用环氧树脂来改性PS。但单独用环氧改性PS效果不好,胶层易脱膜,粘接强度不太大,且胶层较脆,这可能是由于两者刚性都较大的因素造成的。我又在两者中加入第三种改性剂,选用异氰酸酯获得成功。环氧树脂的用量对胶液性质也有影响,用量太小,强度不高,但用量稍大时,剪切强度反而下降,这可能是由于PS改性胶粘剂是溶剂型胶粘剂,而环氧树脂固化后,有一部分溶剂仍残留在胶层中,影响了胶粘剂的性能,这种影响随环氧树脂的加入量增大而更加明显。况且,加入量太大成本也很高。环氧树脂用量与胶粘剂性能的关系见表3

3.1.6 反应温度对PS改性胶粘剂剪切强度的影响
首先,引发剂的分解需要能量,其次,PS的交联反应也需要能量,因此,

家里溶解这东西 如果简单
就不会有白色污染一说。
所以如果你真的有心要去溶解 可以参考上面的资料
要家里常用的 知识不够 不好意思

『陆』 酚醛树脂液粘度大的随温度变化的趋势与粘度小的酚醛树脂液随温度变化的趋势相比,哪个比较大

粘度大的变化大

『柒』 聚酯树脂 乙烯基树脂 环氧树脂 酚醛树脂 的区别

兄台,你这个命题太大了,建议你找本书好好看看。
从分子结构来说,专
聚酯树脂主要由二元酸和属二元醇缩聚得到的,因分子结构中含有酯键,所以称为聚酯树脂。应用时主要用其两端的活性基团,羧基、羟基居多。固化反应时也是以缩聚为主,会产生水等小分子挥发物。
乙烯基树脂是指分子结构中含有-C=C-乙烯基结构的树脂。其侧链上可以通过化学反应接上不同的基团。应用时,主要靠双键开环反应形成交联固化。没有小分子副产物,也可以紫外光引发固化。当然,侧链上如果有其他活性基团,比如环氧基,那么这些基团在条件合适时也会反应的。
环氧树脂是指分子结构中含有环氧基的树脂。由于环氧基三元环,很不稳定,所以表现出很高的化学活性。环氧树脂固化反应也没有小分子副产物,固化收缩率小,电性能好,粘接效果好。
酚醛树脂是指用酚类(苯酚、邻甲酚)同醛类(甲醛)缩聚得到的树脂。含有酚羟基,能再进一步进行缩聚反应。缩聚反应有小分子副产物。

『捌』 酚醛树脂胶为什么分次加甲醛

甲醛主要存在于脲醛树脂为主的粘胶剂中,家具使用的的板材主要包括密度板、刨花板、胶合板等人造板材。制造这种板材的过程简单来说就是将木材处理成木屑,再加入粘合剂,通过高温挤压等方式,将木屑加工成板材。而甲醛就存在于粘合剂中。
把尿素和甲醛混合在一起,在酸或者碱催化下聚合,传统工艺会加入 1.5 倍到 2 倍量的甲醛以保证产品的品位。因为脲醛树脂粘度大,所以反应完之后会有大量的没反应的甲醛混在整个体系里面,就是造成装修甲醛危害的游离甲醛。
你可能有这样的疑问:甲醛危害那么大,不用脲醛树脂胶不就行了?用其他的代替一下不行吗?这也是现在绿色化学和化工行业针对装修中甲醛污染问题努力的方向——脲醛树脂胶的替代品,但是目前还没有太好的结果。

1、最关键的原因,脲醛树脂的生产成本十分廉价。
不仅仅是原料——尿素和甲醛,这两种基础化工产品都相当廉价,并且脲醛树脂已经形成了成熟的产业链。而且传统行业惯性也是很大的问题,一但认准了某种生产工艺,想在短时间内实现转向难度较大。别的产品想和脲醛树脂竞争,从成本上就非常困难,新产品和脲醛树脂比起来成本上高出数十倍甚至上百倍。

2、其次甲醛作为胶粘剂的性能还不错。
最传统的三种含醛树脂:脲醛树脂、酚醛树脂和三聚氰胺 - 甲醛树脂,而这里面脲醛树脂的颜色是最浅的(酚醛树脂固化后颜色比较深,颜色浅这一点对装修用胶粘剂来说很重要),而且没有固化的脲醛树脂可以和水比较好的混合,固化速度快,而且还有不错的粘接强度。研发新的游离甲醛含量更低的脲醛树脂生产工艺也是目前较为现实的一条路,虽然成果不少,但还是没有能从根本上撼动脲醛树脂在胶粘剂中的地位。

『玖』 酚醛树脂pm9630成型温度

酚醛树脂和塑料的主要原材料来源较广,生产工艺和设备不太复杂,产品耐热性好、机械强度高、电绝缘性和耐高温蠕变性优良、价格低廉,成型加工性好,特别是具有良好阻燃性、很少产生有害气体,因而可在复合材料、胶粘剂、涂料、纤维和泡沫塑料多个领域广泛应用,在航空航天及其他尖端技术领域的应用尤其引人注目。近年国外酚醛树脂工业不断推进技术进步,取得了15项突出的技术成果,促进市场规模大幅提升,去年消费量达到了52万吨以上、增长4%左右。技术进步在其中起了重要作用,专家称“15优”引导国外酚醛树脂进展。酚醛塑料因其优良的耐热性、电性能,和强度以及较好的性价比,在全球电子电器产品和炊具、轻工等配件中发展迅速,发展了一系列酚醛工程塑料,在航空、汽车、建筑等多领域与金属及热塑性工程塑料相竞争。世界酚醛树脂工业以美国和日本最为发达,无论现代化建设还是开拓新应用领域,这2个国家都始终走在前列,主导世界酚醛树脂及塑料工业的潮流。目前在全球酚醛模塑料消费量中,美国占12%、欧洲占16%、亚洲占65%、其它占7%,日本占了亚洲的主要份额,美日产量分别高达10万吨、25万吨,而技术方面的成果也多为其研发。

功能化、精细化成为主要发展方向,改变酚醛树脂的结构特别是,与其他高聚物共混,开发复合材料实现高性能化,尤其是可挠性、耐热性、阻燃性方面,己成为国外诸多厂家的关注焦点,在基础研究方面酚醛树脂固化机理所形成复合物的结构形态,以及工艺控制方面的研究也将继续深入。近年酚醛树脂工业取得15项重要成果,日本占5项:一是日本住友电木(SumitomoBakelite)公司,生产出玻纤增强酚醛模塑料PM9600系列,其中有高强度类PM9630耐热,尺寸稳定类PM9610、高冲击类PM9680、耐磨耗类PM9670等,因具有优良的热刚性而大量用于汽车滑轮中的PM-3050,其拉伸强度90MPa、弹性模量13500MPa、弯曲强度200MPa、弯曲弹性模量12200MPa、压缩强度260MPa、缺口冲击强度5.2kJ/m2、密度1.64g/cm3、成型收缩率0.25%、线膨胀系数3.O×10-5,新开发的PM-9245相比电痕化指数(CTI)达到225V。二是日本松下电工(MatsushitaEectricWorkLtd.)公司,大量开发用于换向器的酚醛模塑料(MA-COM),它具有高旋转耐破坏强度、高绝缘性能、高温下尺寸稳定性(片间段差的极小化等)优点,有CN4404,CN6449,CN6641等品种,其中CN6641是用50%玻璃纤维增强,其密度1.70~1.80g/cm3、吸水率0.05~0.20%、拉伸强度59~98MPa、弯曲强度98~147MPa、压缩强度196~245MPa、缺口冲击强度3.9~5.9kJ/m2、负荷弯曲温度180~220℃、燃烧性(UL94)V-O级,并通过破坏旋转数40000r/min的强度试验;日本住友电木公司开发的用于换向器的,酚醛模塑料牌号有PM6440、PM6431、PM6432等;日本日立化成公司(HitachiChemicalCo.Ltd)开发的换向器酚醛模塑料牌号有CPJ7000系列,CP690系列等。

三是日本住友电木公司工业树脂研究所,发明了新型合成催化剂制造酚醛树脂的方法,采用膦酸[R-P(OH)2]代替原来的盐酸或草酸,应用树脂相与催化剂相2个界面,并找出最佳反应条件、反应过程稳定,主要优点是取消原有的脱酚和回收酚工序,树脂料化率从原来的50~90%提高到接近100%,既提高了树脂质量(游离酚很低),和经济效益又解决了环保问题,是21世纪酚醛树脂生产的创新技术。据中国酚醛树脂网(

专家介绍,四是日本大阪轻工业研究所长谷川喜一等,研究了多种途径提高酚醛塑料的耐温阻燃性能,其中有开发酚三嗪(PT)树脂,它是由氰化卤与酚醇反应生成的氰酸酯树脂再进一步交联而成,具有双马来酰胺的高温性能(Tg>300℃)和酚醛树脂的阻燃性能,以及环氧树脂的加工工艺性能。五是日本树脂工业会的野间口兼政、英国复合材料成型协会(CPA)的KenL.Forsdyke等,全面研究了各种酚醛复合材料的开发与应用,牌号为“PHENCLAD”的PF复合材料,其密度1.4~1.5g/cm3、拉伸强度100~150MPa、弯曲强度150~200MPa、热传导率54.63~65.56W/m•k、耐温度指数>420℃,发烟量试验(BS6853)Catl。

酚醛树脂这一古老材料正以复合材料形式蓬勃发展,随着人们对材料难燃性、低烟、低毒性能、耐热性要求的重视,其应用范围也正在不断扩大,用各种改性酚醛树脂,配合玻纤、碳纤维、陶瓷纤维、聚芳酰胺纤维各种基体制成的复合材料,用途日趋广泛。而美国的成果主要有5个方面:一是在美国召开的世界汽车工程年会上,介绍了该国酚醛玻纤增强塑料RX865M,在汽车止推轴承和转矩变换器的成功应用。二是在美国长滩召开的第48届国际尖端材料技术协会(SAMPE)年会上,美国TexasA&Muniversity的J.H.Koo教授等,发表用纳米材料改性酚醛树脂,研制成功耐火箭烧蚀的新型复合材料,它以美国BordenChemical公司的SC-1008酚醛树脂(质量分数60~64%,用异丙醇作溶剂),固化温度140℃,Tg110℃=(DMTA),密度1.28,纳米有机蒙脱土(MMT)、纳米粘土、纳米碳纤维(CNFs)、多形齐聚物(POSSR)等制成的复合材料。经x射线衍射和电子显微镜测定其性能,己优于原先使用MX-4926材料,成功用作火箭排气口垫块和其它耐烧蚀部件,能承受极端温度1000~4000℃和可承受大于1000m/s速度,对材料粒子极端苛刻的热冲击,在美国宇航工业中作出卓越贡献。

三是在美国第13届国际模塑料会议,和美国第49届热固性塑料年会上,介绍和展示了用气体辅助注射新工艺加工的各类热固性塑料件。气体辅助注射成型是依靠熔体内的层流使气体,在零件内形成气泡,在通过熔体流动表面时不破裂,气体辅助成型主要是应用于大的或厚壁的零件,其制件有大型冰箱把手、电脑鼠标件以及各类长柄金属蒸锅及烤炉手柄,电器、汽车零部件等具有厚截面的酚醛塑料制品。气体辅助成型甚至能解决小零件成型过程中的收缩、变形等表面问题。由于成型后的零件是空心的,因此还具有隔音效果,可应用于阀门盖或其它引擎罩。用气体注射钻孔,对减轻产品重量、缩短模塑周期、降低生产成本都有明显的效果,以1个76.2cm的厨房用手柄为例一般用3min成型,而气体辅助只需要用45s,同时可节省材料40%,再如一个标准的盥洗室座需要7min的成型时间,而气体辅助能使它在1min内成型为2.54mm壁厚的成品。四是美国复合材料技术公司(ACT),研制的“TUFFCLAD”复合材料是以酚醛泡沫为芯材,同时表面覆盖几层浸过酚醛树脂的玻纤织物,一起通过拉挤成型得到的全酚醛夹心板,已用作飞机内饰夹芯板壁和冷藏集装箱箱体等。五是是美国最大的预制整体模塑料(BMC)生产商,BMC公司宣布推出酚醛基模塑料,新的BMC-X-Cel针对耐高温用途,如汽车盖下零件和排气部件,以及油箱、仪表等而设计,据称玻纤填充酚醛BMC在220℃性能保持在85%以上,300℃性能保持60%以上,材料在149~188℃固化约1min,根据使用性能要求还需要在177℃后烘烤20~120min。

其它国家酚醛树脂领域主要技术成果,有:一是比利时VyncolitNV,作为全球著名生产热固性塑料的公司,年销售额5.5亿美元,近年相继重组兼并美国Fiberit公司、Rogers公司,重点开发的X600、X6000系列,都是玻纤增强高性能酚醛复合材料,广泛用于汽车配件、各类叶轮、水泵外壳、燃料输送泵、换向器、盘式制动活塞等,酚醛玻纤注塑料已大量,用于德国宝马轿车系列整套进气导管,以及转子和外壳件等17个部件。二是西班牙M.A.Espinoss教授,通过改变酚类化合物伯胺类化合物的结构,以获得多种结构不同、反应活性不同的苯并嗯嗪,以其为基体制作制动材料,具有优良耐高温摩擦系数和热恢复性。三是加拿大Lee教授对甲阶(reso1)和乙阶(no-volac)2种类型的酚醛树脂,在F/P不同物质的量比和不同条件下的反应过程、固化机理、活化能,用C13-NBR核磁共振、示差扫描量热法、热失重分析(TGA)等法进行了详细研究。四是英国朴次茅斯的圣玛利医院,最近兴建一条连接2座建筑的35m走廊,墙壁和屋顶全由英国BP公司防火酚醛泡沫作芯材,复合酚醛玻璃钢板制成,保障了病人和医务工作者安全。五是德国GiraGiersiepen股份有限公司,将玻纤增强酚醛模塑料用于雷达各种罩下部件、刹车系统、燃料管、动力火车,这种材料满足了制件对耐热性、耐化学性、尺寸稳定性,及温度急剧变化时对抗蠕变性严格要求,也是用于机车油线和油泵、排气装置、真空泵、可压缩零件和法兰方面的合适材料。

阅读全文

与酚醛树脂研究方向相关的资料

热点内容
饮水机投币器怎么修复 浏览:620
焦油废水隔油池怎么设计 浏览:15
污水厂调试葡萄糖投加量确定 浏览:772
饮水机的水烧不开是什么原因 浏览:234
不锈钢水槽水垢处理 浏览:826
蒸馏应该注意哪些事项 浏览:193
家里人抽烟需要什么净化器 浏览:594
zobo正牌过滤烟嘴多少钱 浏览:801
西安室外雨污水管道单价 浏览:864
进口提升器哪个好 浏览:375
edi内阻的计算 浏览:933
小型饮水机最便宜的多少钱 浏览:362
110厘米宽的污水管多少钱1米 浏览:742
160污水管接口能承受多少压力 浏览:527
陕西农村县镇污水处理 浏览:189
污水处理厂补充碳源可以用哪些 浏览:948
污水处理排放等级水类等级 浏览:332
陕西有哪些污水处理厂 浏览:202
超滤膜车间要反冲洗水 浏览:804
饮水机过滤有什么作用 浏览:255