① 高分子吸水树脂和高吸水树脂一样吗
一种是高分子材料,一种是普通材料
② 高效吸水颗粒AGM分子和高吸水性树脂的异同
他们两个没什么区别,吸水树脂做出来也是颗粒状的,0。1克能吸水55克左右。我试验做过,但是看文献上据说好的能做到吸水2000倍,在吸水树脂中掺杂蒙脱土应该效果会更好点。高吸水性树脂(SAP)是一种含有羟基、羧基等强亲水性基团并具有三维交联网状结构的功能高分子材料,它能通过水合作用,迅速吸收自重几十倍乃至上千倍的水而呈凝胶状,具有吸水容量大、吸水速度快、保水能力强且无毒无味等优越性能,广泛用途于农业园林、土木建筑、食品加工、石油化工及医疗卫生等领域高吸水性树脂吸水但不溶于水,也不溶于常规的有机溶剂。用不同方法合成的不同种类的吸水性树脂的结构也是千差万别。对绝大多数高吸水性树脂而言,从化学结构看,它的主链或接枝侧链上含有羧基、羟基等强亲水性官能团,这些亲水基团与水的亲合作用是其具有吸水性的最主要内因;从物理结构看,要实现其高吸水性,树脂必须是一个低交联度的三维网络。
③ 高分子吸水纸和高分子吸水树脂一样吗
吸水纸的主要成分是纤维素,纤维素是天然有机高分子化合物,纸张中的纤维素交错呈网状,其间有很多的空隙,这些空隙可以含住水分,这也是所谓的毛细效应,归根究底是因为张力的缘故。
④ 高吸水性树脂的高吸水性树脂的分类
高吸水性树脂发展很快,种类也日益增多,并且原料来源相当丰富,由于高吸水性树脂在分子结构上带有的亲水基团,或在化学结构上具有的低交联度或部分结晶结构又不尽相同,由此在赋予其高吸水性能的同时也形成了一些各自的特点。从原料来源、结构特点、性能特点、制品形态以及生产工艺等不同的角度出发,对高吸水性树脂进行分类,形成了多种多样的分类方法。 随着人们对高吸水性树脂研究的不断深入对传统的高吸水性树脂分为淀粉系列、纤维素系列和合成树脂系列的分类方法,已不能满足分类要求。因此,邹新禧教授结合自己的研究成果,提出了六大系列的分类。
淀粉系:包括接枝淀粉、羧甲基化淀粉、磷酸酯化淀粉、淀粉黄原酸盐等;
纤维素系:包括接枝纤维素、羧甲基化纤维素、羟丙基化纤维素、黄原酸化纤维索等;
合成树脂系:包括聚丙烯酸盐类、聚乙烯醇类、聚氧化烷烃类、无机聚合物类等;
蛋白质系列:包括大豆蛋白类、丝蛋白类、谷蛋白类等;
其他天然物及其衍生物系:包括果胶、藻酸、壳聚糖、肝素等;
共混物及复合物系:包括高吸水性树脂的共混、高吸水性树脂与无机物凝胶的复合物、高吸水性树脂与有机物的复合物等。 阴离子系:包括羧酸类、磺酸类、磷酸类等;
阳离子系:包括叔胺类、季胺类等;
两性离子系:包括羧酸-季胺类、磺酸-叔胺类;
非离子系:包括羟基类、酰胺基类等;
多种亲水基团系:包括羟基-羧酸类、羟基-羧酸基-酰胺基类、磺酸基-羧酸基类等。 高吸水性树脂在分子结构上具有大量的亲水性化学基团,而这些基团的亲水性很大程度上影响着高吸水性树脂的吸水保水性能,如何有效获得这些化学基团在高吸水性树脂化学结构上的组织结构,充分发挥各化学基团所在亲水点的效能,已经成为现在对高吸水性树脂研究的重点。故可以从亲水化方法进行分类。
亲水性单体的聚合(如聚丙烯酸盐、聚丙烯酰胺、丙烯酸-丙烯酰胺共聚物等);
疏水性(或亲水性差的)聚合物的羧甲基化(或羧烷基化)反应(如淀粉羧甲基化反应、纤维素羧甲基化反应、聚乙烯醇(PVA)-顺丁烯二酸酐的反应等);
疏水性(或亲水性差的)聚合物接枝聚合亲水性单体(如淀粉接枝丙烯酸盐、淀粉接枝丙烯酰胺、纤维素接枝丙烯酸盐、淀粉-丙烯酸-丙烯酰胺接枝共聚物等);
含氰基、酯基、酰胺基的高分子的水解反应(如淀粉接枝丙烯腈后水解、丙烯酸酯-醋酸乙烯酯共聚物的水解、聚丙烯酰胺的水解等)。 高吸水性树脂交联控制是控制其空间组织结构状态的重要方面,其交联点的密度大小直接影响高吸水性树脂的吸水和保水能力。因此根据交联点形成方式的不同,可进行如下分类。
交联剂进行网状化反应(如多反应官能团的交联剂水溶性的聚合物、多价金属离子交联水溶性的聚合物、用高分子交联剂对水溶性的聚合物进行交联等);
自交联网状化反应(如聚丙烯酸盐、聚丙烯酰胺等的自交联聚合反应);
放射线照射网状化反应(如聚乙烯醇、聚氧化烷烃等通过放射线照射而进行交联);
水溶性聚合物导入疏水基或结晶结构(如聚丙烯酸与含长链(C12~C20)的醇进行酯化反应得到不溶性的高吸水性聚合物等) 。 以制品形态分类,高吸水性树脂可分为粉末状、纤维状、膜片状、微球状等。
以制备方法分类,高吸水性树脂可分为合成高分子聚合交联、羧甲基化、淀粉接枝共聚、纤维素接枝共聚等。
以降解性能分类,SAP可分为非降解型(包括丙烯酸钠、甲基丙烯酸甲酯等聚合产品)、可降解型(包括淀粉、纤维素等天然高分子的接枝共聚产品)。
⑤ 高吸水性树脂与高吸油性树脂在结构上有何不同
高吸水与高抄吸油性树脂
本书是一本较系统介绍高吸收性树脂的图书。书中较详细地介绍了高吸水性树脂和高吸油性树脂的基本理论;制备的各种途径、方法与实例;各种性能指标与要求;成品的应用技术与实例以及高吸收性树脂未来的发展前景等。
⑥ 高吸水性树脂为什么能大量吸水并保水
高吸水性树脂为抄什么能大量吸水并保水
相似相溶原理.简单来说,亲水基团是极性的,会溶于极性溶剂水;亲油基团是非极性的,溶于非极性的油.
水分子间有较强的氢键,水分子既可以为生成氢键提供氢原子,又因其中氧原子上有孤对电子能接受其它分子提供的氢原子,氢键是水分子间的主要结合力.所以,凡能为生成氢键提供氢或接受氢的溶质分子,均和水“结构相似”.如ROH(醇)、RCOOH(羧酸)、R2C=O(酮)、RCONH2(酰胺)等.当然上述物质中R基团的结构与大小对在水中溶解度也有影响.如醇:R—OH,随R基团的增大,分子中非极性的部分增大,这样与水(极性分子)结构差异增大,所以在水中的溶解度也逐渐下降.
亲油往往是长链的有机基团.疏水效应起源于热容变化和熵,疏水分子表面使水变得更“像冰”,因为空穴的形成迫使水的接触.所以疏水分子簇集造成表面积减小,释放出了一些水分子,带来了有利的熵,降低了体系能量.热容变化也是一个有利因素.还有一点,水和水有强烈的作用,有机物破坏了这一作用,就迫使水更强烈的和水作用,有机物更强烈的和有机物作用.
⑦ 高吸水性树脂对蒸馏水和盐水的吸收量有何不同
高吸复水与高吸油性树脂制
本书是一本较系统介绍高吸收性树脂的图书。书中较详细地介绍了高吸水性树脂和高吸油性树脂的基本理论;制备的各种途径、方法与实例;各种性能指标与要求;成品的应用技术与实例以及高吸收性树脂未来的发展前景等。
⑧ 如何解决高吸水树脂吸水后的干爽性能
水凝胶是一种在水中能够溶胀不能并保持大量水分而又不溶解于水的亲水性交联聚合物,通过共价键、氢键或范德华力等作用相互交联构成三维网状结构,具有良好的生物相容性,多数水凝胶网络中可容纳本身重量的数倍至数百倍的水,是一种集吸水、保水、缓释与一体的高分子材料。大部分的水凝胶吸水与消溶胀过程是可逆的,当吸水到一定程度后,由于本身结构中交联骨架对水的系数一开始亲水就会使更多的水进入,就像惯性一样进入,后来慢慢的共价键就会把多余的水挤压出来达到饱和状态。吸水性
材料在水中能吸收水分的性质称为吸水性。
(1)质量吸水率Wm
(2)体积吸水率Wv
质量吸水率与体积吸水率存在下列关系。
Wv=Wm×ρo/l000
(1-12)
式中ρ。――材料在干燥状态下的表观密度,
kg/时。
材料的吸水性与材料的孔隙率和孔隙特征有关。对于细微连通孔隙,孔隙率愈大,则
吸水率愈大,闭口孔隙水分不能进去,而开口大孔虽然水分易进入,但不能存留,只能润
湿孔壁,所以吸水率仍然较小。各种材料的吸水率很不相同,差异很大,如花岗石的吸水
率只有0.
5%~0.
7%,混凝土的吸水率为2%~3%,勃土砖的吸水率达8%~20%,而
木材的吸水率可超过100%。
吸湿性
材料在潮湿空气中吸收水分的性质称为吸湿性。潮湿材料在干燥的空气中也会放出水
分,此称还湿性。材料的吸湿性用含水率表示。
Wh=(ms-mg)/mg×100%
式中Wh――材料的含水率。
高吸水性树脂是一种吸水量可达自向重量几十倍甚至几千倍的树脂。这种树脂不但吸水量大,而且保水能力强,并有很强的增稠性能,因此可广泛应用于生理卫生用品,家林园世、改造沙漠、医药土木工程、工业用品、保鲜包装材料、日用品等领域。高吸水性树脂是一种具有吸水功能的透明粉剂,本品同时含有植物生长所需的氨、磷等元素、降解后元素无残留、不污染土壤。用作土壤改良剂:将高吸水性树脂与栽培土按一定比例混合,可以改善团粒结构,提高土壤的保水性、透水性和透气性,缩小土壤昼夜温差变化,调节土壤的干湿度,减少灌溉次数,达到改良劣质土壤、抗旱保心的目的。
⑨ 高吸油树脂和高吸水树脂的问题
用于制作封隔器,控水堵漏,分段试油采油防沙等
⑩ 高吸水性树脂为什么能大量吸收和保存水分呢
高吸水性来树脂是以淀粉和丙自烯酸盐为原料制成的一种吸水性很强的聚合物,它能吸收相当于自身重量的500~1000倍的水分,而且保存水的能力也特别强,即使用力挤压,依然滴水不漏,真可称得上是位“吸水大王”。
这种树脂为什么能大量吸收和保存水分呢?原因就在于树脂中含有像藤条一样的高分子链。在吸水前,这些呈紧密固体状的高分子长链,相互缠绕卷曲,并在一部分链之间形成相互交错的网状结构;遇到水时,在网状结构中的离子由于带电荷相同,便互相排斥,结果就将高分子链充分地扩展开了。也就是说,这时的网状结构好像一个拉开的大网兜,因而可以吸收和储存大量的水分。