Ⅰ 谁能详细的介绍一下AO污水工艺,谢谢啦
详细?还是来要正确理解源?
AO,A代表厌氧,O代表好氧。
根据不同的用途分为脱氮工艺和除磷工艺。两种都可以叫AO(细分AnO和ApO)。
1.脱氮情况是:O池好氧状态氨氮在硝化菌的作用下转化为硝态氮,O池混合液回流到A池,在A池缺氧状态下,硝态氮在反硝化菌的作用下转化为氮气。
2.除磷的情况是:主要作用菌类为聚磷菌,聚磷菌在厌氧状态下释放P,好氧状态下吸收磷,最后在好氧池排泥时将P排除系统外。
PS:如果说AO是用来处理高浓度有机废水,我就只能呵呵了。
Ⅱ 如何处理高浓度氨氮污水
氨氮废水处理技术有:高效ZU脱氮菌技术、氨氮循环吹脱回收工艺、厌氧氨氧化技术。
①高效ZU脱氮菌技术:
一般的生物脱氮技术采用A/O、SBR、生物活性炭等工艺对水质水量稳定的低浓度氨氮废水具有良好的效果,但当废水中COD、氨氮和TN含量高时,微生物代谢活性显著降低。对于高COD、高TN的化工废水,利用新型短程硝化技术结合传统成熟的A/O工艺可迅速有效地降解目标污染物,获得比传统工艺更经济、更有效的处理结果。高效生物脱氮技术的难点是高效脱氮菌的培养。其需经历三个过程,首先是从自然生境中获得高效脱氮菌菌源;其次是富集高效脱氮菌培养物,从中分离高效脱氮菌株;最后是复配高效脱氮菌剂,并以目标废水为基质驯化高效脱氮菌群。近年来,我公司联合浙江大学展开了大量研究,经过脱氮群落的结构分析、功能试验和反复筛选,获得了高效ZU脱氮菌,并在相关废水处理工程(氨氮最高达1000mg/L)得到应用,取得了理想的效果,出水氨氮稳定达标(15mg/L以下)。
特点:1、环境友好,最终产物为N2,无二次污染。
2、成本低,不需要投加吸附剂或其他化学药剂,尤为适合改造工程。
3、系统稳定,高效ZU脱氮菌具有很强的耐受性和适应性。
4、高效ZU脱氮菌生长增殖性好,一次投加,长期有效。
②厌氧氨氧化技术:
厌氧氨氧化是指在厌氧条件下,厌氧氨氧化菌直接以NH4+为电子供体,以NO2¯为电子受体,将NH4+、NO2¯转变成N2的生物氧化过程。传统生物法脱氮技术通过硝化/反硝化方式去除废水中的氨氮,其对废水氨氮浓度具有一定要求,同时氨氮的硝化消耗大量的氧气,需求动力费用较高,生物脱氮过程需求一定的碳氮比,外加碳源增加了废水处理设施的运行费用。厌氧氨氧化利用独特的生物机体以亚硝酸盐作为电子供体把氨氮转化为N2,最大限度的实现了N的循环厌氧硝化,对于高氨氮低COD的污水由于硝酸盐的部分氧化,大大节省了能源。
特点:1、依托浙江大学科研成果,国际领先的厌氧氨氧化技术。
2、无需外加碳源,节约运行成本。
3、只需将部分氨氧化成NO2¯,节约了供氧所需的动力消耗。
③氨氮循环吹脱回收工艺
高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用。
我司结合多年的工程经验,针对高浓度氨氮废水处理难度大、处理能耗高、投资较大的情况,开发出一种新型氨吹脱资源化利用的新技术-两级循环吹氨回收技术。新技术采用创新性工艺流程设计高效脱氨技术及设备、节能降耗技术和设备,适用于多种工况的氨氮废水处理技术。不仅有很好的环境效益,而且具有一定的经济效益。
本工艺采用双塔循环吹脱,填料塔吸收吹脱出的氨气,可根据工艺要求,回收氨水或者硫酸铵。处理后废水可排放或进入后续生化系统。
技术特点:双塔循环脱氨更彻底(相较单塔),去除率高;回收硫酸铵或者氨水,循环经济利用,避免二次污染;工艺简单,操作方便,运行稳定
仅供参考 欢迎采纳 希望帮到你
Ⅲ A2O工艺中厌氧缺氧好氧的水力停留时间比处于什么范围时可以兼顾脱氮除磷效果呢
一般兼顾会导致两头不讨好。
除磷靠排泥,脱氮靠缺氧反硝化,和你的回流比有关系,停留时间足够就成
Ⅳ 利用好氧和厌氧组合来进行生物脱氮和除磷的原理 利用好氧和厌氧组合来进行生物脱
(一)生物脱氮机理概述
污水生物脱氮的基本原理是在好氧条件下通过硝化反应先将氨氮氧化为硝酸盐,再通过缺氧条件下(溶解氧不存在或浓度很低)的反硝化反应将硝酸盐异化还原成气态氮从水中除去。因此所有的生物脱氮工艺都包含缺氧段(池)和好氧段(池)。
生物脱氮的反应过程是:
1、氨化与硝化
在未经处理的新鲜废水中,含氮化合物存在的主要形式有:
①有机氮:如蛋白质、氨基酸、尿素、胺类化合物、硝基化合物等;
②氨态氮(NH3、NH4+),一般以前者为主。
含氮化合物在微生物作用下,相继产生下列反应:
(1)氨化反应
有机氮化合物,在氨化菌的作用下,分解、转化为氨态氮,这一过程称之为“氨化反应”。
(2)硝化反应
在硝化菌的作用下,氨态氮进一步分解氧化,就此分两个阶段进行,首先在硝化菌的作用下,使氨(NH4)转化为亚硝酸氨,反应式为
NH4++3/2O2 NO2-+H2O——2H+-ΔF (ΔF=278.42KJ)
继之,亚硝酸氨在硝酸菌的作用下,进一步转化为硝酸氨,其反应式为:
NO2-+1/2O2 NO3--ΔF (ΔF=72.27KJ)
硝化反应的总反应式为:
NH4++2O2 NO3-+H2O+2H+-ΔF (ΔF=351KJ)
2、反硝化反应
反硝化反应是指硝酸氮(NO3-N)和亚硝酸氮(NO2-N)在反硝化菌的作用下,被还原为气态氮(N2)的过程。
反硝化菌是属于异养型兼性厌氧菌的细菌。在厌氧菌(缺氧)条件下,以硝酸氮(NO3-N)为电子受体,以有机物(有机碳)为电子供体。在反硝化过程中,硝酸氮通过反硝化菌的代谢活动,可能有两种转化途径,一种途径是同化反硝化(合成),最终形成有机氮化合物,成为菌体的组成部分,另一种途径是异化反硝化(分解),最终产物是气态氮。
(二)生物除磷机理概述
在常规二级生物处理系统中, 磷作为活性污泥微生物正常生长所需求的元素也成为生物污泥的组分, 从而引起磷的去除, 活性污泥含磷量一般为干重的1.5%—2.3%, 通过剩余污泥的排放仅能获得10%-30%的除磷效果。
在污水生物除磷工艺中, 通过厌氧段和好氧段的交替操作, 利用活性污泥的超量磷吸收现象, 使细胞含磷量相当高的细菌群体能在处理系统的基质竞争中取得优势, 剩余污泥的含磷量可达到3%-7%, 进入剩余污泥的总磷量增大, 处理出水的磷浓度明显降低。
生物除磷的反应过程如下:
1、厌氧区
发酵作用:在没有溶解氧和硝态氧存在的厌氧状态下,兼性细菌将溶解性BOD转化为VFAS(低分子发酵产物);
生物贮磷菌(或称除磷菌)获得VFA:这些细菌吸收厌氧区产生的或来自原污水的VFA,并将其运送到细胞内,同化成胞内碳能源存贮物(PHB/PHV),所需的能量来源于聚磷的水解以及细胞内糖的酵解,并导致磷酸盐的释放。
2、好氧区
磷的吸收:细菌以聚磷的形式存贮超出生长需求的磷量,通过PHB/PHV的氧化代谢产生能量,用于磷的吸收和聚磷的合成,能量以聚磷酸高能键的形式捕积存贮,磷酸盐从液相去除;
全成新的贮磷菌细胞,产生富磷污泥,在某些条件下,贮磷菌合成和存贮细胞内糖。
3、除磷系统
剩余污泥排放:通过剩余污泥排放,将磷从系统中除去。
好氧吸收磷的前提条件是混合液必须经过磷的厌氧释放,在有效释放过程中,磷的厌氧释放可使微生物的好氧吸磷能力大大提高。好氧吸磷速度的不同是由厌氧放磷速度不同引起的。厌氧段放磷速度大,磷释放量大,合成的PHB就多,那么在好氧段时由于分解PHB而合成的聚酸盐速度就较大,所以表现出来的好氧吸磷速度也就大;磷吸收对磷释放也有影响,磷吸收完成得越彻底、聚磷量越大,相应厌氧状态下磷的有效释放也越有保证。
磷的有效释放与Sbs(溶解性可快速生物降解COD)直接相关,Sbs量大小对磷的去除有决定性的影响。A、B、C类分别表示低分子有机酸、中长链脂肪酸和其余类可生物降解的高分子酸类。城市污水的Sbs由SA、SB和SC的磷释放与SA相近,可算作SA。SA可近似地用污水中的低分子量有机酸表示,SB则由Sbs减支SA求得。
SB需酸化成SA才能诱发磷的释放,因此酸化过程是总过程的速率限制步骤,混合液中磷的厌氧释放速度可表达成:
DP/dt = KPKPAX+(KmSn/KSB+SB)K’PX
如果所选定的停留时间内都是有效释放的话,则好氧条件下的磷吸收能力为: Pn=KuΔP
式中 Pu——吸磷能力,mgP/L进水;
Ku——单位有效释磷产生的吸磷能力,mgP/mgP;
ΔP——厌氧释灰磷量mgP/L进水。
考虑到厌氧区中存在无效释放,因此ΔP取值应适当降低,此时乘安全系数Sfp=0.8~1.0。
Ⅳ A2/O工艺的工艺特征
该工艺各反应器单元功能及工艺特征如下:
1)厌氧反应器:原污水及从沉回淀池排出的含答磷回流污泥同步进入该反应器,其主要功能是释放磷,同时对部分有机物进行氨化;
2)缺氧反应器:污水经厌氧反应器进入该反应器,其首要功能是脱氮,硝态氮是通过内循环由好氧反应器送来的,循环的混合液量较大,一般为2Q(Q——原污水量);
3)好氧反应器——曝气池:混合液由缺氧反应器进入该反应器,其功能是多重的,去除BOD、硝化和吸收磷都是在该反应器内进行的,这三项反应都是重要的,混合液中含有NO3-N,污泥中含有过剩的磷,而污水中的BOD(或COD)则得到去除,流量为2Q的混合液从这里回流到缺氧反应器;
4)沉淀池:其功能是泥水分离,污泥的一部分回流厌氧反应器,上清液作为处理水排放。
Ⅵ 厌氧氨氧化细菌脱氮技术有何可探讨的问题
我暂时想到的有:
1. anammox(厌氧氨氧化菌)在某些极端环境下的效果,例如低温,高盐或高磷酸盐的环境;
2. anammox和uasb除cod的结合,如果解决有机物对anammox的影响;
3. 可利用硝酸氮(NO3-)的anammox细菌;
4. 单反应器自养厌氧除氮,即canon,demon或oland那一类工艺的研究
Ⅶ 请问水处理中厌氧池脱氮除磷的原理,比如污水中的氨氮是通过怎样的反应去除的,反应的方程式是什么
1、生物脱氮
反硝化细菌在缺氧条件下,还原硝酸盐,释放出分子态氮()或一氧化二氮(N2O)的过程。微生物和植物吸收利用硝酸盐有两种完全不同的用途,一是利用其中的氮作为氮源,称为同化性硝酸还原作用:NO3-→NH4+→有机态氮。许多细菌、放线菌和霉菌能利用硝酸盐做为氮素营养。另一用途是利用NO2-和NO3-为呼吸作用的最终电子受体,把硝酸还原成氮(N2),称为反硝化作用或脱氮作用:NO3-→NO2-→N2↑。能进行反硝化作用的只有少数细菌,这个生理群称为反硝化菌。大部分反硝化细菌是异养菌,例如脱氮小球菌、反硝化假单胞菌等,它们以有机物为氮源和能源,进行无氧呼吸,其生化过程可用下式表示:
C6H12O6+12NO3-→6H2O+6CO2+12NO2-+能量
CH3COOH+8NO3-→6H2O+10CO2+4N2+8OH-+能量
少数反硝化细菌为自养菌,如脱氮硫杆菌,它们氧化硫或硝酸盐获得能量,同化二氧化碳,以硝酸盐为呼吸作用的最终电子受体。可进行以下反应:
5S+6KNO3+2H2O→3N2+K2SO4+4KHSO4
反硝化作用使硝酸盐还原成氮气,从而降低了土壤中氮素营养的含量,对农业生产不利。农业上常进行中耕松土,以防止反硝化作用。反硝化作用是氮素循环中不可缺少的环节,可使土壤中因淋溶而流入河流、海洋中的NO3-减少,消除因硝酸积累对生物的毒害作用。
2.生物除磷
1)生物除磷只要由一类统称为聚磷菌的微生物完成,由于聚磷菌能在厌氧状态下同化发酵产物,使得聚磷菌在生物除磷系统中具备了竞争的优势。
2)在厌氧状态下,兼性菌将溶解性有机物转化成挥发性脂肪酸;聚磷菌把细胞内聚磷水解为正酸盐,并从中获得能量,吸收污水中的易讲解的COD,同化成细胞内碳能源存贮物聚β-羟基丁酸或β-羟基戊酸等
3)在好氧或缺氧条件下,聚磷菌以分子氧或化合态氧作为电子受体,氧化代谢内贮物质PHB或PHV等,并产生能量,过量地从无水中摄取磷酸盐,能量以高能物质ATP的形式存贮,其中一部分有转化为聚磷,作为能量贮于胞内,通过剩余污泥的排放实现高效生物除磷目的
Ⅷ 污水处理工艺中厌氧池和脱氮池及氧化池之间加了个缓冲池,有什么用
1. 厌氧池带出抄的絮状污泥,是被厌氧池淘汰出来的污泥,应该作为剩余污泥处理掉;其一:因为它的性质与好氧菌的性质完全不同,带到好氧池会扰乱好样系统的生态平衡,其二:这种絮状污泥本身就是有机物,是会加重好氧系统的有机负荷。
2. 不会堵塞曝气系统,也不会在短期内致好氧菌死亡。
Ⅸ 聚磷菌在好氧过度吸收磷 厌氧释放磷 这就是A2O 脱氮除磷的方式
你这问题问的挺专业,实际上最近这两天我也一直在考虑着问题,首先我建议你有时间看看可持续污水废物处理技术,这本书对脱氮除磷有一定的研究。
其次我谈谈我个人对你问的问题的一点看法,不一定成熟,但是也代表个人的一点思考。
实际上,目前对于除磷的原理研究依旧不是很明确,甚至具体是哪一种细菌起的作用仍然不清楚,通常情况都是以菌群作为研究对象,我们叫他聚磷菌PAOs。
一般来说,生物都有自己的独特性状,但是作为生物都有统一的一面,那就是过度繁殖的特性,生物利用数量上的优势,压倒别的生物,达到繁衍的目的,同理微生物也不例外。在一些特定情况下,微生物在数量上取得竞争的优势,达到抑制其他生物生长的目的。
同理聚磷菌也拥有这样的特性,他们表现出来的形状也是为了自身的繁殖。而且在磷酸盐浓度降低的情况下,会抑制聚磷菌的生长,也就是为什么聚磷菌需要调试才能正常运行。
这一过程主要就是几样物质,VFA(挥发性脂肪酸),PHA(聚羟基脂肪酸),PO(磷酸盐),PP(多聚磷酸盐)
厌氧条件下,PAOs吸收VFA转化为PHA,这一过程PP高能键断裂为这一过程释放能量,同时释放出磷酸盐,而磷酸盐浓度升高,恰恰是我们说的能够利于PAOs生长繁殖
好氧条件下,正好与其相反,吸收Po形成PP,而此时的能源则是PHA,如厌氧过程所说,PP是吸收PO所需要的能量物质,也就等于是为下一次代谢周期做准备,与此同时,PAOs分裂生成新的细胞,但是由于,PO含量降低,将会限制它的生存繁殖,所以必须通过人为过程使PO含量升高,完成一个完整的周期。如果不进行循环,聚磷菌是无法完成完整的生命周期的。
我说的可能有点乱,但是总结起来就是:
1生物性状使然
2磷酸盐含量对其有抑制作用
以我的水平只能为你说这么多,希望你自己体会。
Ⅹ 厌氧池的DO在0.2---0.5.缺氧池的反而在0.2以下,在不考虑脱氮的情况下厌氧和缺氧倒过来对除磷有没有影响
有影响的这个就相当于AAO与倒置AAO 的区别,效果不一样,倒置AAO除磷效果要比AAO好,希望对你有帮助!