导航:首页 > 污水知识 > 造纸废水厌氧停留时间

造纸废水厌氧停留时间

发布时间:2021-01-09 14:26:16

『壹』 升流式厌氧好氧生化滤格处理造纸废水出水水质发白,正常时是清澈的

停留时间短,曝气量不够,沉降差,最好的解决办法就是增加一套“微生物一体化废水处理强化处理设备,即可解决问题。
微生物一体化污水强化处理设备简称微生物强化设备(Microbial enhanced equipment.)用MIE表示。该设备能将废水中的污染物有效去除,处理后的水质经环保机构与卫生防疫部门检测及全国近百家用户使用证明,该设备设计合理、技术先进、性能稳定、使用安全,各项技术性能居国内首位,特别适合各种废(污)水处理和微污染治理。具有以下特点:
一、自动化程度高,污水处理效果好
该设备通过程序控制、空气净化、富氧曝气、环境模拟、营养配对,使微生物在设备中进行强化、改性、驯化后,发生迅速增殖、对数增长,进而使密度达到1.8×1020 CFU/ml,这些高密度微生物通过释放进入曝气池,池中生物迅速提高到2.0×104MIE/L,将污水中的污水中的污染物分解成CO2和H2O,实现污水净化、达标排放或中水回用的目的。
二、适应范围
该设备为比较理想的废(污)水生物强化处理设备,可根据不同种类、不同性质、不同环境的污水处理需要,生成不同种群、不同菌属、不同温度的微生物,特别适合医院、城镇、小城镇、农村、工业、生活小区、石油化工、制药、造纸、食品、印染、畜禽养殖、高盐、高氨氮、有毒有害水、重金属、垃圾渗滤液等废(污)水处理。
该设备还可直接与接触氧化法、AB法、A/O法、氧化沟、SBR、曝气生物滤
池、导流曝气生物滤池等各种旧废(污)水处理工程配套,在不改变污水处理工艺或土建工程的条件下,实现污水处理的升级、改造、扩建、污泥减量、脱氮除磷、中水回用等多种用途。
该设备还可用于景观、河道、湖面、河流、咸水湖、海湾、土地等领域去除微污染,保护公共环境。
三、经济效益突出
该设备产生的是高密度优势微生物菌群,能快速噬掉污水中的污染物和淤泥,且不产生臭味,不用污泥脱水机、污泥传输机、泥饼外运车、废气处理设备和大功率的鼓风曝气设备,与传统方法比较,能耗是活性污泥法的1/8,设备投资可节省近70%,还可在浅层水池上运转,从而使污水处理池深度减浅、体积缩小,大大降低了一次投资费用和长期运行、管理费用。
四、管理方便,安全可靠
该设备产生的高密度微生物菌群通过自动释放进入废(污)水曝气池后,能迅速减少污水中的生物耗氧量(BOD)、化学需氧量(COD)和固体悬浮物(TSS),并有极强的脱氮除磷功能,还能在极短的时间内使5类水转变成3类以上,7天内消除污水中的臭味,10天内吃掉污水中50%左右的淤泥,每天降解近20%的BOD,10-15天内实现达标排放或中水回用。
采用该设备处理废(污)水无污泥膨胀之忧,也不受操作员学历、年龄等限制,管理方便、安全可靠。
五、没有二次污染,营造绿色环境
随着高密度微生物菌群数量的不断增加,污水中的生物耗氧量(BOD)也越来越少,大量的微生物因缺少BOD而失去存活能源自灭,变成二氧化碳和水,未自灭微生物还可成为鱼类和浮游生物的饵料,进而形成良性的生态处理净化过程,没有臭味、不产生污泥、无二次污染,营造绿色环境。
六、不受气候影响,完成生化处理
传统的生化法处理污水,受气候及水温变化影响较大,当温度每降低10度,微生物的酶促反应速度就降低1-2倍。气候导致微生物的活性不足,造成污水处
理效果不好,不仅威胁着北方的污水处理厂,对于南方的污水处理厂,冬天也是严峻的考验,贵州长城环保科技有限公司生产的微生物强化设备彻底解决了这一难题,该设备产生的高浓度微生物菌群释放进入曝气池后,其微生物量讯速达到2.0×104MIE/L以上,使曝气池中微生物浓度较活性污泥高出10倍,弥补了因水温低而导致微生物量不足,污水处理效果差的技术难题。
七、解决活性不足,确保水质达标
采用传统的生化方式处理高浓度、高氨氮、高盐量、有毒性、重金属废水,由于微生物在这些污水中的成活率低、数量小,致使处理后的污水出水水质差、效果不稳定、难以达标排放。微生物强化设备以独特的方式彻底解决了这一难题,该设备能将生产出的浓度高于1.8×1020CFU/ml的微生物菌群源源不断地送入曝气池,微生物量较其他污水处理高出10倍以上,强大的微生物菌群加速了对污水中污染物的降解和消化,同时,曝气供氧又显著加速了污染物被分解成CO2和H2O,硝酸盐、硫酸盐成为微生物生长的养分,使微生物又得到进一步的衍生,即使在天冷、低温、冲击负荷的条件下,或受高浓度、高氨氮、高盐量、有毒性、重金属的抑制,也无法阻止群雄逐鹿、前仆后继的微生物大军,形成对污水处理的强大阵容,进而降解和消化污水中的污染物,最终实现废水达标排放或中水回用。
八、改变微污染治理方式
传统河道治理离不开闸坝、断水、清淤等处理过程,工程投资大、工期长、淤泥量大。微生物强化设备直接安装在景观、河道、湖面、河流、咸水湖、海湾、土地等微污染源上游,从源头切断和堵住污染,并通过微生物降解污染、吃掉污泥、去除臭味、除磷脱氮等作用实现彻底治理,为微污染治理提供了可靠的设备。
九、主要 技术优势
1、快速降解BOD5、CODcr、TSS,使污水得到净化;
2、提高总氮(TN)和总磷(TP)的脱除效果和去除能力;
3、处理效率可提高达50%左右,进水负荷提高40%左右;
4、 快速应对曝气池可能发生的紧急故障情况;
5、 提高难分解污染物的生化效率;
6、有效解决污水量增加或负荷增大,而无场地改扩建的难题;
7、 有效解决丝状菌异常增殖导致污泥膨胀的问题;
8、在处理污水的同时减量污泥,达到不用清淤除泥的效果;
9、仅需几天就能消解污水中的味道,去除污水中的恶臭;
10、采用自然界或国内外选育出来的优势无害菌种,无二次污染的后顾之忧;
11、污染净化完毕后,微生物因失去存活能源而自灭,变成CO2和H2O;
12、未灭的微生物还可成为鱼类和浮游生物的饵料;
13、升级改造旧污水处理工程,较其它污水处理方法节省投资70%;
14、较其它生化处理方法,节省电能80%左右;
微生物浓度高达1.8×1020CFU/ml以上,高浓度微生物大大提高了处理效率,
1、减少了曝气池容积,节省工程投资40%;
2、解决了因气候变化、水温降低而导致微生物数量减少,进而影响污水处理效果的技术难题;
3、微生物大军前仆后继、协同作战,有效解决了高盐、高浓度、有毒、有害、化工、重金属、垃圾渗透液等抑制微生物生长、微生物难以存活的技术难题;
4、在不改动土建的条件下实现旧污水处理工程的升级改造或工程扩容;
5、在不改动污水处理工艺的前提下,有效脱除污水中的磷和氮,并提高处理后的污水出水水质,实现达标排放或中水回用效果;
6、直接用于江河、湖泊等微污染源上游,直接堵住污染源头,在有效解决微污染的同时,实现无泥排放,彻底地革新了传统河道治理离不开闸坝、断水、清淤方式,为微污染治理提供了的理想设备;
7、安装方便、应用灵活、操作简单,只用一人兼管,就能完成任务;
布局灵活、占地面积小、自动化程度高、操作管理简单、运行费用低。
十、应用领域和方式
1、新建项目
⑴、城镇、村镇、农村、住宅小区及开发区生活污水处理,宾馆、饭店、学校、商场及办公楼污水处理,车站、航空港、码头等污水处理;
⑵、医院、疗养院、医院院校、农村卫生院、医疗诊所等含菌污水处理;
⑶、化工、制药、印染、腌制、畜禽养殖、制糖、酿酒、白酒、石化、焦化、农药、味精、纸浆、毛纺、橡胶、餐饮废水处理;
2、升级、改造
⑴、升级、改造或扩建城市旧污水处理厂;
⑵、升级、改造或扩建各种大、中、小型工业废水处理厂;
⑶、升级、改造或扩建各种大、中、小型公寓、小区污水/废水处理站;
⑷、作为新建污水厂的配套,可减少占地面积,提高系统效率,特别适用于石油化工、制药、造纸、食品、印染等行业中废水处理厂的升级、改造或扩建;
⑸、升级、改造或扩建各种大、中、小型医院污水处理工程。
3、其它处理
⑴、有脱氮除磷需求的废水处理;
⑵、江河、湖泊等河道、景观治理;
⑶、湿地公园生态修复;
⑷、污水处理厂污泥减量,实现无泥外排。

『贰』 我是搞造纸污水处理的,使用荷兰帕克公司的IC厌氧处理系统中,出现跑泥现象

一般厌氧比起好氧是不容易发生污泥膨胀的,IC里沼气浓度较高,你看看是不是进水COD浓度不稳定,颗粒污泥有解体现象,测一下分层的挥发酸浓度,看看是不是挥发酸过高也可能出现这种现象

『叁』 uasb厌氧反应器容积负荷越小越好吗

废纸造纸生产废水处理设计经验总结桂 琪 (广州中环万代环境工程有限公司,广州 511430) 摘要 根据工程实践,总结了生产原料、生产纸种、造纸工艺、废水来源与污染物成分、吨纸水耗对废纸造纸生产废水水质的影响。给出了废纸造纸生产废水预处理、生化处理的建议工艺参数。分析了废纸造纸生产废水回用的水质要求、水量确定和工艺选择。 废纸造纸生产废水的处理 2. 1 预处理废纸造纸生产废水的预处理是保证系统达标的前提,预处理的主要目的:回收废水中的纤维、降低生化系统负荷。一般厂家均在车间内部对白水进行纸浆回收,在此不做赘述,本文所述的预处理主要是混合废水的厂外处理,主要包括纸浆回收、物化处理。 2. 1. 1 纸浆回收常用的纸浆回收设备有斜筛、重力自流式筛网过滤机、普通旋转过滤机、反切单向流旋转过滤机等,常用的为斜筛。建议根据试验确定水力负荷及筛网目数,在没有数据的前提下,推荐水力负荷为 10~15 m3 / (m2 ·h) ,筛网80~100 目。近年来出现多圆盘回收混合废水纤维。多圆盘原先多用于厂内白水处理,现在已有箱板纸厂家采用它回收厂外混合废水的纤维。多圆盘运行费用低、基本不需加药、回收纤维质量高、出水悬浮物含量低( SS 60 mg/ L) ,后续可以省去初沉池,具有广阔的应用前景,值得设计人员关注。 2. 1. 2 物化处理造纸废水物化预处理常用的有气浮法和沉淀法。气浮法主要为机械法和溶气法。机械法以涡凹气浮为代表,溶气气浮以普通溶气气浮和浅层气浮为代表。机械法优点为无回流,设备简单,动力消耗低;缺点是气泡大,数量有限,效率相对低,且设备维护相对复杂。传统溶气气浮因其占地面积大,投资高,新工程很少用;浅层气浮因其效率高、占地小,在溶气气浮中处于主导地位。沉淀法常用处理设施有斜管沉淀池、辐流沉淀池和平流沉淀池等。斜管沉淀池易堵塞,平流沉淀池排泥困难。造纸废水多采用结构简单、管理方便的辐流沉淀池,其表面负荷可取1~2 m3 / (m2 ·h) 。 2. 2 生化处理生化处理是废纸造纸生产废水处理的关键部分“, 厌氧+ 好氧”工艺具有耐冲击负荷、COD 去除率高、动力消耗低、运行费用低等优点,被广泛采用。厌氧处理一般采用水解酸化或完全厌氧反应器 (UASB、IC、PAFR 等) 。根据生化进水浓度的高低,选择将厌氧控制在水解酸化阶段或完全厌氧阶段,建议当生化进水CODCr > 800 mg/ L 采用完全厌氧反应器。好氧处理一般采用活性污泥法、接触氧化法或氧化塘,其中以活性污泥法应用最广。厌氧系统容积负荷可取2~15 kgCODCr / (m3 ·d) ,好氧系统污泥负荷可取0. 25~0. 6 kgCODCr / (kgML SS ·d) 。

『肆』 请问什么是处理造纸废水IC工艺IC代表什么

厌氧内循环(IC)反应器
IC_反应器的资料汇总(图文并举)

废水厌氧生物技术由于其巨大的处理能力和潜在的应用前景,一直是水处理技术研究的热点。从传统的厌氧接触工艺发展到现今广泛流行的UASB工艺,废水厌氧处理技术已日趋成熟。随着生产发展与资源、能耗、占地等因素间矛盾的进一步突出,现有的厌氧工艺又面临着严峻的挑战,尤其是如何处理生产发展带来的大量高浓度有机废水,使得研发技术经济更优化的厌氧工艺非常必要[1]。内循环厌氧处理技术(以下简称IC厌氧技术)就是在这一背景下产生的高效处理技术,它是20世纪80年代中期由荷兰PAQUES公司研发成功,并推入国际废水处理工程市场,目前已成功应用于土豆加工、啤酒、食品和柠檬酸等废水处理中[2]。实践证明,该技术去除有机物的能力远远超过普通厌氧处理技术(如UASB),而且IC反应器容积小、投资少、占地省、运行稳定,是一种值得推广的高效厌氧处理技术。
2
现有厌氧处理技术的局限性

厌氧处理是废水生物处理技术的一种方法,要提高厌氧处理速率和效率,除了要提供给微生物一个良好的生长环境外,保持反应器内高的污泥浓度和良好的传质效果也是2个关键性举措。

以厌氧接触工艺为代表的第1代厌氧反应器,污泥停留时间(SRT)和水力停留时间(HRT)大体相同,反应器内污泥浓度较低,处理效果差[3]。为了达到较好的处理效果,废水在反应器内通常要停留几天到几十天之久。

以UASB工艺为代表的第2代厌氧反应器,依靠颗粒污泥的形成和三相分离器的作用,使污泥在反应器中滞留,实现了SRT>HRT,从而提高了反应器内污泥浓度,但是反应器的传质过程并不理想。要改善传质效果,最有效的方法就是提高表面水力负荷和表面产气负荷[4]。然而高负荷产生的剧烈搅动又会使反应器内污泥处于完全膨胀状态,使原本SRT>HRT向SRT=HRT方向转变,污泥过量流失,处理效果变差。
3 IC反应器工作原理及技术优点
3.1 IC反应器工作原理
IC反应器基本构造如图1所示,它相似由2层UASB反应器串联而成。按功能划分,反应器由下而上共分为5个区:混合区、第1厌氧区、第2厌氧区、沉淀区和气液分离区。

混合区:反应器底部进水、颗粒污泥和气液分离区回流的泥水混合物有效地在此区混合。

第1厌氧区:混合区形成的泥水混合物进入该区,在高浓度污泥作用下,大部分有机物转化为沼气。混合液上升流和沼气的剧烈扰动使该反应区内污泥呈膨胀和流化状态,加强了泥水表面接触,污泥由此而保持着高的活性。随着沼气产量的增多,一部分泥水混合物被沼气提升至顶部的气液分离区。

气液分离区:被提升的混合物中的沼气在此与泥水分离并导出处理系统,泥水混合物则沿着回流管返回到最下端的混合区,与反应器底部的污泥和进水充分混合,实现了混合液的内部循环。

第2厌氧区:经第1厌氧区处理后的废水,除一部分被沼气提升外,其余的都通过三相分离器进入第2厌氧区。该区污泥浓度较低,且废水中大部分有机物已在第1厌氧区被降解,因此沼气产生量较少。沼气通过沼气管导入气液分离区,对第2厌氧区的扰动很小,这为污泥的停留提供了有利条件。

沉淀区:第2厌氧区的泥水混合物在沉淀区进行固液分离,上清液由出水管排走,沉淀的颗粒污泥返回第2厌氧区污泥床。

从IC反应器工作原理中可见,反应器通过2层三相分离器来实现SRT>HRT,获得高污泥浓度;通过大量沼气和内循环的剧烈扰动,使泥水充分接触,获得良好的传质效果。
3.2 IC工艺技术优点
IC反应器的构造及其工作原理决定了其在控制厌氧处理影响因素方面比其它反应器更具有优势。
(1)容积负荷高:IC反应器内污泥浓度高,微生物量大,且存在内循环,传质效果好,进水有机负荷可超过普通厌氧反应器的3倍以上。
(2)节省投资和占地面积:IC反应器容积负荷率高出普通UASB反应器3倍左右,其体积相当于普通反应器的1/4~1/3左右,大大降低了反应器的基建投资[5]。而且IC反应器高径比很大(一般为4~8),所以占地面积特别省,非常适合用地紧张的工矿企业。
(3)抗冲击负荷能力强:处理低浓度废水(COD=2000~3000mg/L)时,反应器内循环流量可达进水量的2~3倍;处理高浓度废水(COD=10000~15000mg/L)时,内循环流量可达进水量的10~20倍[5]。大量的循环水和进水充分混合,使原水中的有害物质得到充分稀释,大大降低了毒物对厌氧消化过程的影响。
(4)抗低温能力强:温度对厌氧消化的影响主要是对消化速率的影响。IC反应器由于含有大量的微生物,温度对厌氧消化的影响变得不再显著和严重。通常IC反应器厌氧消化可在常温条件(20~25 ℃)下进行,这样减少了消化保温的困难,节省了能量。
(5)具有缓冲pH的能力:内循环流量相当于第1厌氧区的出水回流,可利用COD转化的碱度,对pH起缓冲作用,使反应器内pH保持最佳状态,同时还可减少进水的投碱量。
(6)内部自动循环,不必外加动力:普通厌氧反应器的回流是通过外部加压实现的,而IC反应器以自身产生的沼气作为提升的动力来实现混合液内循环,不必设泵强制循环,节省了动力消耗。
(7)出水稳定性好:利用二级UASB串联分级厌氧处理,可以补偿厌氧过程中K s高产生的不利影响。Van Lier[6]在1994年证明,反应器分级会降低出水VFA浓度,延长生物停留时间,使反应进行稳定。
(8)启动周期短:IC反应器内污泥活性高,生物增殖快,为反应器快速启动提供有利条件。IC反应器启动周期一般为1~2个月,而普通UASB启动周期长达4~6个月[7]。
(9)沼气利用价值高:反应器产生的生物气纯度高,CH4为70%~80%,CO2为20%~30%,其它有机物为1%~5%,可作为燃料加以利用[8]。
4 IC处理技术应用现状及发展前景
IC处理技术从问世以来已成功应用于土豆加工、菊苣加工、啤酒、柠檬酸和造纸等废水处理中。1985年荷兰首次应用IC反应器处理土豆加工废水,容积负荷(以COD计)高达35~50kg/(m3·d),停留时间4~6 h[9];而处理同类废水的UASB反应器容积负荷仅有10~15 kg/(m3·d),停留时间长达十几到几十个小时[3]。

在啤酒废水处理工艺中,IC技术应用得较多,目前我国已有3家啤酒厂引进了此工艺。从运行结果看,IC工艺容积负荷(以COD计)可达15~30 kg/(m3·d),停留时间2~4.2 h,COD去除率ηCOD>75%[9];而UASB反应器容积负荷仅有4~7 kg/(m3·d),停留时间近10 h[3]。

对于处理高浓度和高盐度的有机废水,IC反应器也有成功的经验。位于荷兰Roosendaal的一家菊苣加工厂的废水,COD约7900mg/L,SO42-为250mg/L,Cl-为4200mg/L。采用22m高、1100m3容积的IC反应器,容积负荷(以COD计)达31 kg/(m3·d),ηCOD>80%,平均停留时间仅6.1 h[9]。

我国无锡罗氏中亚柠檬有限公司的IC厌氧处理系统自1998年12月运行以来一直都很稳定,进水COD一般在8000mg/L以上,pH5.0左右,容积负荷(以COD计)可达30 kg/(m3·d),出水COD基本在2000mg/L以下,且每千克COD产沼气0.42m3[10]。1996年IC反应器首次应用于纸浆造纸行业,并迅速获得客户欢迎,至今全世界造纸行业已建造IC反应器23个[11]。

表1列出了IC反应器和UASB反应器处理典型废水的对照结果,从表中数据可以看出,IC反应器在很大程度上解决了UASB的不足,大大提高了反应器单位容积的处理容量。
表1 IC反应器与UASB反应器处理相同废水的对比结果[1]

对比指标
反应器类型

IC
UASB

啤酒废水
土豆加工废水
啤酒废水
土豆加工废水

反应器体积(m3)
6×162
100
1400
2×1700

反应器高度(m)
20
15
6.4
5.5

水力停留时间(h)
2.1
4.0
6
30

容积负荷kg/(m3·d)
24
48
6.8
10

进水COD(mg/L)
2000
6000~8000
1700
12000

ηCOD(%)
80
85
80
95

随着生产的发展,经济高效、节能省地的厌氧反应器越来越受到水处理工作者的青睐。IC反应器的一系列技术优点及其工程成功实践,是现代厌氧反应器的一个突破,值得进一步研究开发。而且由于反应器容积小,生产、运输、安装和维修都十分方便,产业化前景也很乐观。
5 IC反应器存在的几个问题
COD容积负荷大幅度提高,使IC反应器具备很高的处理容量,同时也带来了不少新的问题:

(1)从构造上看,IC反应器内部结构比普通厌氧反应器复杂,设计施工要求高。反应器高径比大,一方面增加了进水泵的动力消耗,提高了运行费用;另一方面加快了水流上升速度,使出水中细微颗粒物比UASB多,加重了后续处理的负担[12]。另外内循环中泥水混合液的上升还易产生堵塞现象,使内循环瘫痪,处理效果变差。

(2)发酵细菌通过胞外酶作用将不溶性有机物水解成可溶性有机物,再将可溶性的大分子有机物转化成脂肪酸和醇类等,该类细菌水解过程相当缓慢[13]。IC反应器较短的水力停留时间势必影响不溶性有机物的去除效果。

(3)在厌氧反应中,有机负荷、产气量和处理程度三者之间存在着密切的联系和平衡关系。一般较高的有机负荷可获得较大的产气量,但处理程度会降低[13]。因此,IC反应器的总体去除效率相比UASB反应器来讲要低些。

(4)缺乏在IC反应器水力条件下培养活性和沉降性能良好的颗粒污泥关键技术。目前国内引进的IC反应器均采用荷兰进口的颗粒污泥接种[2],增加了工程造价。

上述问题有待在对IC厌氧处理技术内部规律进行更深入探讨的基础上,结合工程实践加以克服,使这一新技术更加完善。
http://cache..com/c?word=%B7%CF%CB%AE%3Bic%3B%B9%A4%D2%D5&url=http%3A//www%2Echinacitywater%2Eorg/bbs/viewthread%2Ephp%3Ftid%3D78401&p=9264c316d9c059b702bd9b7d0c4f&user=

阅读全文

与造纸废水厌氧停留时间相关的资料

热点内容
2019款轩辕空调滤芯怎么换 浏览:307
滤芯油怎么清洗 浏览:776
致炫空气滤芯怎么换视频 浏览:688
长安逸动plus空气滤芯是什么牌子 浏览:766
净水器pcb多少以下 浏览:749
Vc可以把污水变清水吗 浏览:378
柏繁电气反渗透水泵 浏览:177
plc回原指令用什么原点 浏览:786
布隆过滤器hash 浏览:459
饮水机有水壶怎么加水 浏览:932
三山区滨江污水处理厂怎么走 浏览:338
面馆排污水的处理器怎么收费 浏览:732
饮水机换水矿泉水怎么换 浏览:321
空擦池不能过滤胶体 浏览:173
十代雅阁马勒的油性滤芯怎么样 浏览:96
朗怡净水器怎么拆卸 浏览:218
家用过滤器反渗透棒怎么清洗 浏览:798
白云边污水处理工艺流程 浏览:278
脸盆材质树脂 浏览:598
酚醛树脂水润滑轴承 浏览:460