导航:首页 > 污水知识 > 煤灰渣场废水挥发酚

煤灰渣场废水挥发酚

发布时间:2025-05-15 00:39:13

㈠ 鎺掓薄绋庡緛鏀舵爣鍑嗗強璁$畻鏂规硶

娉曞緥瀹㈣傦細

琛屾斂鎬ф敹璐归」鐩锛氭帓姹¤垂鏀惰垂渚濇嵁锛氬浗瀹跺彂灞曡″垝濮斿憳浼氥佽储鏀块儴銆佸浗瀹剁幆澧冧繚鎶ゆ诲眬銆佸浗瀹剁粡娴庤锤鏄撳斿憳浼氱31鍙蜂护(鑷2003骞7鏈1鏃ヨ捣鏂借)涓銆佹薄姘存帓姹¤垂寰佹敹鏍囧噯鍙婅$畻鏂规硶(涓)姹℃按鎺掓薄璐规寜鎺掓薄鑰呮帓鏀炬薄鏌撶墿鐨勭嶇被銆佹暟閲忎互姹℃煋褰撻噺璁″緛锛屾瘡涓姹℃煋褰撻噺寰佹敹鏍囧噯涓0.7鍏冦(浜)瀵规瘡涓鎺掓斁鍙e緛鏀舵薄姘存帓姹¤垂鐨勬薄鏌撶墿绉嶇被鏁帮紝浠ユ薄鏌撳綋閲忔暟浠庡氬埌灏戠殑椤哄簭锛屾渶澶氫笉瓒呰繃3椤广傚叾涓锛岃秴杩囧浗瀹舵垨鍦版柟瑙勫畾鐨勬薄鏌撶墿鎺掓斁鏍囧噯鐨勶紝鎸夌収鎺掓斁姹℃煋鐗╃殑绉嶇被銆佹暟閲忓拰鏈鍔炴硶瑙勫畾鐨勬敹璐规爣鍑嗚″緛姹℃按鎺掓薄璐圭殑鏀惰垂棰濆姞涓鍊嶅緛鏀惰秴鏍囧噯鎺掓薄璐广傚逛簬鍐峰嵈姘淬佺熆浜曟按绛夋帓鏀炬薄鏌撶墿鐨勬薄鏌撳綋閲忔暟璁$畻锛屽簲鎵i櫎杩涙按鐨勬湰搴曞笺(涓)姘存薄鏌撶墿姹℃煋褰撻噺鏁拌$畻1銆佷竴鑸姹℃煋鐗╃殑姹℃煋褰撻噺鏁拌$畻鏌愭薄鏌撶墿鐨勬薄鏌撳綋閲忔暟=璇ユ薄鏌撶墿鐨勬帓鏀鹃噺(鍗冨厠)梅璇ユ薄鏌撶墿鐨勬薄鏌撳綋閲忓(鍗冨厠)涓鑸姹℃煋鐗╃殑姹℃煋褰撻噺鍊艰佽〃1鍜岃〃2銆2銆丳H鍊笺佸ぇ鑲犺弻缇ゆ暟銆佷綑姘閲忕殑姹℃煋褰撻噺鏁拌$畻鏌愭薄鏌撶墿鐨勬薄鏌撳綋閲忔暟=姹℃按鎺掓斁閲(鍚)梅璇ユ薄鏌撶墿鐨勬薄鏌撳綋閲忓(鍚)3銆佽壊搴︾殑姹℃煋褰撻噺鏁拌$畻鑹插害鐨勬薄鏌撳綋閲忔暟=姹℃按鐨勬帓鏀鹃噺(鍚)脳鑹插害瓒呮爣鍊嶆暟梅鑹插害鐨勬薄鏌撳綋閲忓(鍚路鍊)PH鍊笺佽壊搴︺佸ぇ鑲犺弻缇ゆ暟銆佷綑姘閲忕殑姹℃煋褰撻噺鍊艰佽〃3銆侾H鍊笺佽壊搴︺佸ぇ鑲犺弻缇ゆ暟銆佷綑姘閲忎笉鍔犲嶆敹璐广4銆佺界暅鍏绘畺涓氥佸皬鍨嬩紒涓氬拰绗涓変骇涓氱殑姹℃煋褰撻噺鏁拌$畻姹℃煋褰撻噺鏁=姹℃煋鎺掓斁鐗瑰緛鍊济锋薄鏌撳綋閲忓肩界暅鍏绘畺涓氥佸皬鍨嬩紒涓氬拰绗涓変骇涓氱殑姹℃煋褰撻噺鍊艰佽〃4銆(鍥)鎺掓薄璐硅$畻1銆佹薄姘存帓姹¤垂鏀惰垂棰=0.7鍏兠楀墠3椤规薄鏌撶墿鐨勬薄鏌撳綋閲忎箣鍜2銆佸硅秴杩囧浗瀹舵垨鑰呭湴鏂硅勫畾鎺掓斁鏍囧噯鐨勬薄鏌撶墿锛屽簲鍦ㄨョ嶆薄鏌撶墿鎺掓薄璐规敹璐归濆熀纭涓婂姞1鍊嶅緛鏀惰秴鏍囧噯鎺掓薄璐广傝〃1绗涓绫绘按姹℃煋鐗╂薄鏌撳綋閲忓兼薄鏌撶墿姹℃煋褰撻噺鍊(鍗冨厠)1.鎬绘睘0.00052.鎬婚晧0.0053.鎬婚摤0.044.鍏浠烽摤0.025.鎬荤牱0.026.鎬婚搮0.0257.鎬婚晬0.0258.鑻骞(a)鑺0.00000039.鎬婚搷0.0110.鎬婚摱0.02琛2绗浜岀被姘存薄鏌撶墿姹℃煋褰撻噺鍊11.鎮娴鐗(SS)412.鐢熷寲闇姘х墿(BOD5)0.513.鍖栧﹂渶姘х墿(COD)114.鎬绘湁鏈虹⒊(TOC)0.4915.鐭虫补绫0.116.鍔ㄦ嶇墿娌0.1617.鎸ュ彂閰0.0818.鎬绘鞍鍖栫墿0.0519.纭鍖栫墿0.12520.姘ㄦ爱0.821.姘熷寲鐗0.522.鐢查啗0.12523.鑻鑳虹被0.224.纭濆熀鑻绫0.225.闃寸诲瓙琛ㄩ潰娲绘у墏(LAS)0.226.鎬婚摐0.127.鎬婚攲0.228.鎬婚敯0.229.褰╄壊鏄惧奖鍓(CD-2)0.230.鎬荤70.2531.鍏冪礌纾(浠P璁)0.0532.鏈夋満纾峰啘鑽(浠P璁)0.0533.涔愭灉0.0534.鐢插熀瀵圭~纾0.0535.椹鎷夌~纾0.0536.瀵圭~纾0.0537.浜旀隘閰氬強浜旀隘閰氶挔(浠ヤ簲姘閰氳)0.2538.涓夋隘鐢茬兎0.0439.鍙鍚搁檮鏈夋満鍗ゅ寲鐗(AOX)(浠C1璁)0.2540.鍥涙隘鍖栫⒊0.0441.涓夋隘涔欑儻0.0442.鍥涙隘涔欑儻0.0443.鑻0.0244.鐢茶嫰0.0245.涔欒嫰0.0246.閭烩斾簩鐢茶嫰0.0247.瀵光斾簩鐢茶嫰0.0248.闂粹斾簩鐢茶嫰0.0249.姘鑻0.0250.閭讳簩姘鑻0.0251.瀵逛簩姘鑻0.0252.瀵圭濆熀姘鑻0.0253.2.4鈥斾簩纭濆熀姘鑻0.0254.鑻閰0.0255.闂粹旂敳閰0.0256.2.4鈥斾簩姘閰0.0257.2.4.6鈥斾笁姘閰0.0258.閭昏嫰浜岀敳閰镐簩涓佽剛0.0259.閭昏嫰浜岀敳閰镐簩杈涜剛0.0260.涓欑儻鏅0.12561.鎬荤煶瑗0.02璇存槑锛1.绗涓銆佷簩绫绘薄鏌撶墿鐨勫垎绫讳緷鎹涓恒婃薄姘寸患鍚堟帓鏀炬爣鍑嗐(GB8978鈥1996)銆2.鍚屼竴鎺掓斁鍙d腑鐨勫寲瀛﹂渶姘ч噺(COD)銆佺敓鍖栭渶姘х墿(BOD5)鍜屾绘湁鏈虹⒊(TOC)锛屽彧寰佹敹涓椤广傝〃3PH鍊笺佽壊搴︺佸ぇ鑲犺弻缇ゆ暟銆佷綑姘閲忔薄鏌撳綋閲忓笺佹薄鏌撶墿姹℃煋褰撻噺鍊1.PH鍊1)0-1锛13-140.06鍚ㄦ薄姘2)1-2锛12-130.125鍚ㄦ薄姘3)2-3锛11-120.25鍚ㄦ薄姘4)3-4锛10-110.5鍚ㄦ薄姘5)4-5锛9-101鍚ㄦ薄姘6)5-6锛5鍚ㄦ薄姘2.鑹插害5鍚ㄦ按路鍊3.澶ц偁鑿岀兢鏁(瓒呮爣)3.3鍚ㄦ薄姘4.浣欐隘閲(鐢ㄦ隘娑堟瘨鐨勫尰闄㈠簾姘)3.3鍚ㄦ薄姘磋存槑锛1銆佸ぇ鑲犺弻缇ゆ暟鍜屾讳綑姘鍙寰佹敹涓椤广2銆丳H5-6鎸囧ぇ浜庣瓑浜5锛屽皬浜6;PH9-10鎸囧ぇ浜9锛屽皬浜庣瓑浜10锛屽叾浣欑被鎺ㄣ傝〃4绂界暅鍏绘畺涓氥佸皬鍨嬩紒涓氬拰绗涓変骇涓氱殑姹℃煋褰撻噺鍊肩被鍨嬫薄鏌撳綋閲忓肩界暅鍏绘畺鍦1.鐗0.1澶2.鐚1澶3.楦°侀腑绛夊剁30缇4.灏忓瀷浼佷笟1.8鍚ㄦ薄姘5.楗椋熷ū涔愭湇鍔′笟0.5鍚ㄦ薄姘6.鍖婚櫌娑堟瘨0.14搴2.8鍚ㄦ薄姘翠笉娑堟瘨0.07搴1.4鍚ㄦ薄姘磋存槑锛1銆佹湰琛ㄤ粎閫傜敤浜庤$畻鏃犳硶杩涜屽疄闄呯洃娴嬫垨鐗╂枡琛$畻鐨勭界暅鍏绘畺涓氥佸皬鍨嬩紒涓氬拰绗涓変骇涓氱瓑灏忓瀷鎺掓薄鑰呯殑姹℃煋褰撻噺鏁般2銆佷粎瀵瑰瓨鏍忚勬ā澶т簬50澶寸墰銆500澶寸尓銆5000缇介浮銆侀腑绛夌殑绂界暅鍏绘畺鍦烘敹璐广3銆佸尰闄㈢梾搴婃暟澶т簬20寮犵殑鎸夋湰琛ㄨ$畻姹℃煋褰撻噺銆備簩銆佸簾姘旀帓姹¤垂寰佹敹鏍囧噯鍙婅$畻鏂规硶(涓)搴熸皵鎺掓薄璐规寜鎺掓薄鑰呮帓鏀炬薄鏌撶墿鐨勭嶇被銆佹暟閲忎互姹℃煋褰撻噺璁$畻寰佹敹锛屾瘡涓姹℃煋褰撻噺寰佹敹鏍囧噯涓0.6鍏冦傚叾涓锛屼簩姘у寲纭鎺掓薄璐癸紝绗涓骞存瘡涓姹℃煋褰撻噺寰佹敹鏍囧噯涓0.2鍏冿紝绗浜屽勾(2004骞7鏈1鏃ヨ捣)姣忎竴姹℃煋褰撻噺寰佹敹鏍囧噯涓0.4鍏冿紝绗涓夊勾(2005骞7鏈1鏃ヨ捣)杈惧埌涓庡叾瀹冨ぇ姘旀薄鏌撶墿鐩稿悓鐨勫緛鏀舵爣鍑嗭紝鍗虫瘡涓姹℃煋褰撻噺寰佹敹鏍囧噯涓0.6鍏冦傛爱姘у寲鐗╁湪2004骞7鏈1鏃ュ墠涓嶆敹璐癸紝2004骞7鏈1鏃ヨ捣鎸夋瘡涓姹℃煋褰撻噺0.6鍏冩敹璐广(浜)鍖椾含甯備簩姘у寲纭鎺掓薄璐逛粛鎸夌粡鍥藉姟闄㈠悓鎰忥紝1999骞村浗瀹惰″旀壒鍑嗙殑鏀惰垂鏍囧噯鎵ц岋紝鍗抽珮纭鐓ゆ瘡鍏鏂や簩姘у寲纭鎺掓薄璐1.2鍏冿紝浣庣~鐓ゆ瘡鍏鏂や簩姘у寲纭鎺掓薄璐0.50鍏冦2005骞7鏈1鏃ヨ捣锛屼綆纭鐓や簩姘у寲纭鎺掓薄璐规爣鍑嗕负姣忎竴姹℃煋褰撻噺0.6鍏冦傛湰鍔炴硶瀹炴柦鍓嶄袱骞达紝鏉宸炪侀儜宸炲拰鍚夋灄涓変釜鍩庡競鐨勪簩姘у寲纭鎺掓薄璐规爣鍑嗭紝鎸夊綋鍦颁汉姘戞斂搴滄壒鍑嗙殑鎬婚噺鎺掓薄鏀惰垂鏍囧噯鎵ц岋紝鍗虫澀宸炪佸悏鏋椾簩涓鍩庡競鐨勪簩姘у寲纭鎺掓薄璐规爣鍑嗕负姣忎竴姹℃煋褰撻噺0.6鍏冿紝閮戝窞甯備簩姘у寲纭鎺掓薄璐规爣鍑嗕负姣忎竴姹℃煋褰撻噺0.5鍏冦2005骞7鏈1鏃ヨ捣锛屼笁涓鍩庡競鐨勪簩姘у寲纭鎺掓薄璐规爣鍑嗗潎鎸夋湰鍔炴硶瑙勫畾鎵ц屻(涓)瀵规瘡涓鎺掓斁鍙e緛鏀跺簾姘旀帓姹¤垂鐨勬薄鏌撶墿绉嶇被鏁帮紝浠ユ薄鏌撳綋閲忔暟浠庡氬埌灏戠殑椤哄簭锛屾渶澶氫笉瓒呰繃3椤广(鍥)澶ф皵姹℃煋鐗╂薄鏌撳綋閲忔暟璁$畻鏌愭薄鏌撶墿鐨勬薄鏌撳綋閲忔暟=璇ユ薄鏌撶墿鐨勬帓鏀鹃噺(鍗冨厠)梅璇ユ薄鏌撶墿鐨勬薄鏌撳綋閲忓(鍗冨厠)澶ф皵姹℃煋鐗╂薄鏌撳綋閲忓艰佽〃5(浜)鎺掓薄璐硅$畻搴熸皵鎺掓薄璐瑰緛鏀堕=0.6鍏兠楀墠3椤规薄鏌撶墿鐨勬薄鏌撳綋閲忔暟涔嬪拰澶ф皵姹℃煋鐗╂薄鏌撳綋閲忓兼薄鏌撶墿姹℃煋褰撻噺鍊(鍗冨厠)1.浜屾哀鍖栫~0.952.姘姘у寲鐗0.953.涓姘у寲纰16.74.姘姘0.345.姘鍖栨阿10.756.姘熷寲鐗0.877.姘板寲姘0.0058.纭閰搁浘0.69.閾閰哥墿0.000710.姹炲強鍏跺寲鍚堢墿0.000111.涓鑸鎬х矇灏412.鐭虫夊皹0.5313.鐜荤拑妫夊皹2.1314.纰抽粦灏0.5915.閾呭強鍏跺寲鍚堢墿0.0216.闀夊強鍏跺寲鍚堢墿0.0317.閾嶅強鍏跺寲鍚堢墿0.000418.闀嶅強鍏跺寲鍚堢墿0.1319.閿″強鍏跺寲鍚堢墿0.2720.鐑熷皹2.1821.鑻0.0522.鐢茶嫰0.1823.浜岀敳鑻0.2724.鑻骞(a)鑺0.00000225.鐢查啗0.0926.涔欓啗0.4527.涓欑儻閱0.0628.鐢查唶0.6729.閰氱被0.3530.娌ラ潚鐑0.1931.鑻鑳虹被0.2132.姘鑻绫0.7233.纭濆熀鑻0.1734.涓欑儻姘0.2235.姘涔欑儻0.5536.鍏夋皵0.0437.纭鍖栨阿0.2938.姘9.0939.涓夌敳鑳0.3240.鐢茬~閱0.0441.鐢茬~閱0.2842.浜岀敳浜岀~0.2843.鑻涔欑儻2544.浜岀~鍖栫⒊20(鍏)瀵归毦浠ョ洃娴嬬殑鐑熷皹锛屽彲鎸夋灄鏍兼浖榛戝害寰佹敹鎺掓薄璐广傛瘡鍚ㄧ噧鏂欑殑寰佹敹鏍囧噯涓猴細1绾1鍏冦2绾3鍏冦3绾5鍏冦4绾10鍏冦5绾20鍏冦備笁銆佸浐浣撳簾鐗╁強鍗遍櫓搴熺墿鎺掓薄璐瑰緛鏀舵爣鍑(涓)瀵规棤涓撶敤璐瀛樻垨澶勭疆璁炬柦鍜屼笓鐢ㄨ串瀛樻垨澶勭疆璁炬柦杈句笉鍒扮幆澧冧繚鎶ゆ爣鍑(鍗虫棤闃叉笚婕忋侀槻鎵鏁c侀槻娴佸け璁炬柦)鎺掓斁鐨勫伐涓氬浐浣撳簾鐗╋紝涓娆℃у緛鏀跺浐浣撳簾鐗╂帓姹¤垂銆傛瘡鍚ㄥ浐浣撳簾鐗╃殑寰佹敹鏍囧噯涓:鍐剁偧娓25鍏冦佺矇鐓ょ伆30鍏冦佺倝娓25鍏冦佺叅鐭哥煶5鍏冦佸熬鐭15鍏冦佸叾浠栨福(鍚鍗婂浐鎬併佹恫鎬佸簾鐗)25鍏冦(浜)瀵逛互濉鍩嬫柟寮忓勭疆鍗遍櫓搴熺墿涓嶇﹀悎鍥藉舵湁鍏宠勫畾鐨勶紝鍗遍櫓搴熺墿鎺掓薄璐瑰緛鏀舵爣鍑嗕负姣忔℃瘡鍚1000鍏冦傚嵄闄╁簾鐗╂槸鎸囧垪鍏ュ浗瀹跺嵄闄╁簾鐗╃洰褰曟垨鑰呮牴鎹鍥藉惰勫畾鐨勫嵄闄╁簾鐗╅壌鍒鏍囧噯鍜岄壌鍒鏂规硶璁ゅ畾鐨勫叿鏈夊嵄闄╃壒寰佺殑搴熺墿銆傚洓銆佸櫔澹拌秴鏍囨帓姹¤垂寰佹敹鏍囧噯瀵规帓姹¤呬骇鐢熺幆澧冨櫔澹帮紝瓒呰繃鍥藉惰勫畾鐨勭幆澧冨櫔澹版帓鏀炬爣鍑嗭紝涓斿共鎵颁粬浜烘e父鐢熸椿銆佸伐浣滃拰瀛︿範鐨勶紝鎸夌収瓒呮爣鐨勫垎璐濇暟寰佹敹鍣澹拌秴鏍囨帓姹¤垂锛屽緛鏀舵爣鍑嗚佽〃6銆傝〃6鍣澹拌秴鏍囨帓姹¤垂寰佹敹鏍囧噯瓒呮爣鍒嗚礉鏁12345678鏀惰垂鏍囧噯(鍏/鏈)350440550700880110014001760瓒呮爣鍒嗚礉鏁910111213141516鍙16浠ヤ笂鏀惰垂鏍囧噯(鍏/鏈)璇存槑锛1.涓涓鍗曚綅杈圭晫涓婃湁澶氬勫櫔澹拌秴鏍囷紝寰佹敹棰濆簲鏍规嵁鏈楂樹竴澶勮秴鏍囧0绾ц$畻锛屽綋娌胯竟鐣岄暱搴﹁秴杩100绫虫湁浜屽勫強浜屽勪互涓婂櫔澹拌秴鏍囷紝鍒欏姞1鍊嶅緛鏀躲2.涓涓鍗曚綅鑻ユ湁涓嶅悓鍦扮偣鐨勪綔涓氬満鎵锛屾敹璐瑰簲鍒嗗埆璁$畻銆佸悎骞跺緛鏀躲3.鏄笺佸滃潎瓒呮爣鐨勭幆澧冨櫔澹帮紝寰佹敹閲戦濇寜鏈鏍囧噯鏄笺佸滃垎鍒璁$畻锛岀疮璁″緛鏀躲4.澹版簮涓涓鏈堝唴瓒呮爣涓嶈冻鍗佷簲澶╃殑锛屽櫔澹拌秴鏍囨帓姹¤垂鍑忓崐寰佹敹銆5.澶滈棿棰戠箒绐佸彂鍜屽滈棿鍋剁劧绐佸彂鍘傜晫瓒呮爣鍣澹版帓姹¤垂锛屾寜绛夋晥澹扮骇鍜屽嘲鍊煎櫔澹颁袱绉嶆寚鏍囦腑瓒呮爣鍒嗚礉鍊奸珮鐨勪竴椤硅$畻鎺掓薄璐广6.涓涓宸ュ湴鍚屼竴鏂藉伐鍗曚綅澶氫釜寤虹瓚鏂藉伐闃舵靛悓鏃惰繘琛屾椂锛屾寜鍣澹伴檺鍊兼渶楂樼殑鏂藉伐闃舵佃℃敹瓒呮爣鍣澹版帓姹¤垂銆7.鏈鏍囧噯浠ユ瘡鍒嗚礉涓鸿″緛鍗曚綅锛屼笉瓒充竴鍒嗚礉鐨勬寜鍥涜垗浜斿叆鍘熷垯璁$畻銆8.瀵瑰啘姘戣嚜寤轰綇瀹呬笉寰楀緛鏀跺櫔澹拌秴鏍囨帓姹¤垂銆

㈡ 空气、水、大地的污染是怎么造成的

一般两个方面的原因:
人为的污染:人们生产生活排放的过量废水废气固体废物进入环境,使环境自我调节能力尽失造成污染

自然本身的污染:例如火山爆发,闪电造成的火灾,排出废气
如今的污染多数是人为造成的

㈢ 焦化废水深度处理研究现状

焦化废水主要是焦化厂在煤气化、液化、炼焦过程中所产生的废水,此种废水中含有大量的有毒、难降解的有机物是一种较难处理的有机废水。目前主要采用以下方法对焦化废水进行处理:首先利用常规方法对废水进行预处理、然后利用生化方法对预处理废水进行二次处理。
但是,经过上述过程处理后的焦化废水外排水中的氰化物、COD及氨氮含量仍然无法达标。针对焦化废水组成复杂、难于处理、经传统方法处理后无法达标排放这种状况,综合了近几年来国内外有关焦化废水处理方面的大量的研究成果,系统地介绍了焦化废水深度处理过程中所应用的物化方法、氧化方法、膜处理三大类方法的优缺点,列举了当前几种焦化废水回用实例及不足,并指出了焦化废水处理技术今后的发展方向。
焦化废水主要是指在煤炼焦、煤气净化、化工产品回收和化工产品精制过程中产生的废水。由于受原煤性质、产品回收、生产工艺等多种因素的影响,导致废水成分异常复杂。焦化废水中所含有机物主要以酚类化合物为主,其含量达到有机物总量的一半以上,剩余有机化合物主要为含硫、氧、氮的杂环有机化合物以及多环芳香族有机化合物等。
焦化废水以其排放量大、成分复杂、处理困难等特点使焦化废水极难再循环利用或者达标排放。因此,降低焦化废水中的污染物浓度,提高废水的循环利用率是亟待解决的问题。
随着人们环保意识的加强和国家对环保问题的重视,中国环境保护部于2012年6月颁布了《炼焦化学工业污染物排放标准》(GB16171-2012),该标准除对废水中主要污染物给出了更为严格的排放标准,而且在原标准基础上增加了苯、苯并芘、多环芳烃以及总氮等化合物的排放指标,该标准同时也对单位产品的排水量做了更为严格的要求,开发研究新型、高效能、低成本的废水处理技术以及对现有技术进行优化改进提高废水处理效果使其能够达标排放是目前亟待解决的问题。
多年以来,虽然前人已做了大量关于焦化废水处理的基础研究工作,但是由于焦化废水排放量大,水中污染物种类多且有些污染物难于生物降解而使得焦化废水处理至今为止仍未有突破性的研究进展。因此研究并开发一种高效能、低成本、处理效果好的废水处理技术以及对现有技术进行优化改进是今后焦化废水处理研究的重点。
本文对废水深度处理过程中所应用的物化方法、氧化方法、膜处理三大类方法进行了分析对比,并列举了当前几种焦化废水回用实例及不足,同时指出了今后焦化废水处理技术的发展方向。
1 焦化废水深度处理技术
1.1 物理化学法
1.1.1 混凝沉淀法
混凝沉淀法是利用电中和原理对焦化废水进行处理,具体处理过程如下:将混凝剂在一定条件下定量投入到焦化废水中,废水中的带电物质与混凝剂发生电中和形成大颗粒胶团,而后经过进一步的沉淀使焦化废水得以净化处理。
卢建杭、王红斌等开发出了针对上海宝钢集团下属焦化厂焦化废水专用的混凝剂——M180,用于处理上海宝钢焦化厂 A/O 生化池出水,通过实验发现在 pH 值为 6.0~6.5、混凝剂投加量为 300mg/L时,专用混凝剂对焦化废水的 COD、色度、CN等指标有良好的处理效果,并且在实验过程中还发现进水水质的波动对专用混凝剂处理效能的影响很小。
周静和李素芹研制出了一种新型的复合絮凝剂——PFASSB,并将其与 PFS、PAC 和 PFAC 进行对比研究,考察了 PFS、PAC、PFAC 以及新型新型絮凝剂 PFASSB 对焦化废水 COD、浊度等的处理效果。
通过实验结果发现,在相同的条件下新型复合絮凝剂对焦化废水的处理效果明显优于 PAC、PFS和 PFAC,并且新型絮凝剂的用量明显比其他絮凝剂的用量低;当废水 PH 为 8,新型絮凝剂投加量在 10 mg/L 时,经过絮凝处理后的出水 SS<70 mg/L,CODcr<150 mg/L。
郑义、张琢等研究对比了硫酸铝、聚合硫酸铁和聚丙烯酰胺对焦化厂生化池出水的处理效果,并将其组合搭配,考察了它们联合处理焦化废水的能力。通过实验发现,将聚合硫酸铁与聚丙烯酰胺组合处理焦化废水,处理效果明显优于各混凝剂单独使用时的处理效果;当 pH 为 5,投加量为聚合硫酸铁 40 mg/L、聚丙烯酰胺 6 mg/L 时,组合混凝剂对焦化废水处理效果最佳,此时处理后废水出水色度为 70 倍,COD 为 68 mg/L,去除率分别达到了73.08%、62.22%。
通过以上分析发现,混凝沉淀法对焦化废水色度,COD 等指标的去除效果较好,处理后的焦化废水可实现达标排放。但是,使用混凝沉淀法对焦化废水进行深度处理的过程中会产生大量的固体沉渣,而且这种固体沉淀物较难处理会对环境造成新的污染,并且采用混凝沉淀的方法处理焦化废水需要对沉淀池入水以及出水调节 pH 值,而且混凝剂需要人工投加操作较为复杂,经过处理后的废水只能外排无法实现达标回用。
1.1.2 吸附法
吸附法处理焦化废水主要是利用吸附剂为比表面积较大的多孔类物质,对大分子有机物、油类物质、以及部分固体悬浮物等污染物具有良好的吸附性能,吸附剂在对焦化废水吸附处理后经过沉淀得以分离。
周静、李素芹等采用粉煤灰作为吸附剂,对焦化废水生化出水中的氨氮进行深度处理,通过实验对药剂投加量、pH 值、吸附时间三个主要影响因素进行了考察。实验结果表明:当废水 pH 为 5,粉煤灰投加量为 150 g/L、生石灰投加量为 2.5 g/L,吸附时间为 1 h 时,焦化废水中的氨氮含量由 77.67 mg/L降到了 25 mg/L 以下,氨氮去除率达到 70%以上。
王红梅、郑振晖利用改性膨润土对焦化废水生化出水进行深度处理。通过实验结果发现:当焦化废水 pH 在8.0~10.0,改性膨润土投加量为 1 200~1 500 mg/L 时,焦化废水脱色率达到 65%以上,氰化物、CODcr的去除率也分别达到了31%和26.5%。
孙宝东、马雁林对南京钢铁联合有限公司的两座焦化废水处理站进行技术改进,通过在原处理站基础上增加活性炭过滤装置,并对原有的操作方法进行改进。通过活性炭过滤装置改进后,南京钢铁联合有限公司焦化废水处理站出水由原来的国家二级标准提升到了国家一级排放标准,并且通过改进操作方法使废水处理站的运行成本得以降低,活性炭的使用寿命得以延长。
李茂、韩永忠等采用树脂吸附和 Fenton 氧化的组合工艺处理高浓度的焦化废水。通过实验发现:当吸附树脂与 Fenton 试剂在最佳的工作条件下时,焦化废水中酚类有机化合物去除率几乎可达100%,COD 的去除率达到 74.82%,并且经过树脂吸附和Fenton氧化的组合工艺处理过的高浓度焦化废水可生化性也有很大的提高。
张昌鸣等利用粉煤灰作为吸附剂对山西焦化集团有限公司下属焦化厂的焦化废水生化出水进行深度处理。当粉煤灰用量为 17.47 g/L 时,焦化废水处理效果较好,除氨氮含量偏高外废水中 COD、色度、油、硫化物、氰化物、挥发酚等污染物含量均达到国家排放标准。吸附后的粉煤灰可以烧砖或筑路进行再利用。采用粉煤灰吸附处理焦化废水,体现了以废治废的环保理念。
以活性炭作为吸附剂对焦化废水进行深度处理,废水处理效果较好,处理后的废水可达标排放,但是由于活性炭价格较高再生困难使得废水处理成本较高,目前绝大多数企业以弃之不用。而以粉煤灰作为吸附剂对焦化废水进行深度处理,处理效果较好,吸附后的粉煤灰仍可进行烧砖筑路等再利用对其品质不会产生影响,并且利用粉煤灰作为吸附剂处理焦化废实现了废物再利用符合当前国家绿色化工循环利用的政策。
1.1.3 化学沉淀法
采用化学沉淀的方法不仅使废水中氨氮含量达到了国家的排放标准,同时也间接的提高了废水的可生化性。但是,目前化学沉淀的方法处理焦化废水的研究较少,技术还不成熟无法实现工业化
应用。
1.2 氧化法
1.2.1 Fenton 氧化法
Fenton 试剂通过将焦化废水中难降解大分子有机物氧化分解成小分子有机物,降低了焦化废水的COD 值和色度,同时在一定程度上提高了焦化废水的可生化性,使焦化废水得到较好的处理。
1.2.2 臭氧氧化法
臭氧分子中的氧原子具有强烈的亲电子或亲质子性以及极强的氧化活性,臭氧可将焦化废水中的大分子有机物等物质氧化分解。臭氧氧化技术具有氧化能力强、反应速度快、处理效率高、不受温度影响、不产生污泥等特点。
2 结 论
近年来,随着国家对环保问题的的日益重视以及国民环保意识的不断提高,废水的排放标准也变得更为严格。各国学者经过不断的探索研究出了一些新的焦化废水处理技术,如:电化学氧化技术、光催化氧化技术、膜技术等。
这些技术对焦化废水中的污染物处理的较为彻底且不会产生二次污染,但是这些技术投资成本和运行成本较高并且很多仍处于理论研究和实验室研究阶段,较难实现大规模工业化应用。因此在深人研究焦化废水先进处理技术的同时,我们也应该充分发掘现有技术的优点,对现有技术进行优化改良提高其处理效能。
通过以上分析可以发现粉煤灰吸附效果较好且符合国家以废治废的环保节能政策,并且膜技术也已在部分工厂中应用并取得了较好的效果,采用粉煤灰吸附预先对焦化废水进行预处理除去废水中大部分有机物减轻膜过滤的负担提高其使用寿命降低处理成本,将粉煤灰吸附技术与膜技术协同作用处理焦化废水应是今后焦化废水处理回用的研究重点。

更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

㈣ 齐齐哈尔市地下水水质评价与污染预警

一、研究区概况

(一)自然地理与社会经济概况

研究区位于松嫩平原西部齐齐哈尔市内,嫩江东侧,北临富裕县,东接林甸和杜尔伯特蒙古族自治县,南部是泰来县。研究区地理坐标:东经123°53′~124°15′,北纬47°10 ′~47°24′,东西长27.39 km,南北宽26.32 km,总面积为720.9 km2,海拔高度一般在200~500 m 之间。地形以平原为主,地势呈马蹄型,东南两侧高、中间低,由北向南逐渐降低。齐齐哈尔市属寒温带大陆性季风气候,南部属温暖干旱农业气候区,中部属温和半干旱农业气候区,北部属温凉半湿润农业气候区。年平均气温在0.7~4.2℃之间,南北相差3.5℃左右。年降水量在400~550 mm 之间,年平均无霜期122~151 d。齐齐哈尔地区土壤主要有暗棕壤、黑土、黑钙土、草甸土、沼泽土、草甸碱土、砂土。齐齐哈尔市大部分土壤具有热量高、透性好、质地轻的特点。

齐齐哈尔市是以重型机械、冶金工业为主体的东北地区老工业基地之一,是黑龙江省第二大城市,具有包括化工、轻工、纺织、建材、食品、电子、医药等门类齐全的工业体系,是黑龙江省西部地区的政治、经济、科技、文化教育、商贸中心和重要的交通枢纽,全市辖7个区、1个市、8个县,人口561.1×104人(市区143.9×104人)。

(二)水文地质概况

齐齐哈尔市位于嫩江低平原,地貌上跨越冲积倾斜平原、冲积-河谷平原、冲积-湖积低平原3个地貌单元。水文地质条件较为复杂,地层由巨厚的白垩纪、新近纪陆相碎屑岩沉积物和第四纪砂、砂砾石为主的松散堆积物组成。

研究区第四系松散堆积物较厚,一般160~190 m。在40~60 m处普遍存在一层弱透水的亚粘土或亚砂土层,厚度一般小于7 m,将区内含水层分隔成水力特征有明显差异的上部潜水和下部承压水。上部潜水含水层厚度24.3~43.0 m,含水介质以砂砾石为主,次为中粗砂、中细砂,夹数层亚粘土、亚砂土透镜体,水位埋深2~5 m,水量丰富,单井涌水量大于2000 m3/d。下部承压水含水层较厚,中更新统含水层厚度一般70~85 m,含水介质为含砾中粗砂、砂砾石,下更新统含水层厚度一般20~50 m,含水介质为含砾中粗砂、中细砂。水位埋深3~5 m,水量较丰富,北部单井涌水量大于2000 m3/d,南部及东南部单井涌水量1200~2000 m3/d。

潜水主要补给来源为大气降水渗入补给、河水渗入补给、侧向径流补给及灌溉水回渗补给,主要排泄方式是人工开采、蒸发、越流补给承压水。承压水的主要补给来源为上部潜水的越流补给、侧向径流补给,主要排泄方式为人工开采和侧向径流排泄。

区内第四系潜水和承压水均为中性低矿化重碳酸型淡水。pH 值一般在6.6~8.36之间;TDS潜水为230~800 mg/L,承压水为140~380 mg/L;总硬度:潜水120~500 mg/L,承压水90~170 mg/L;水化学类型两者基本相同,均以HCO3-Ca、HCO3-Ca—Na、HCO3-Na—Ca型为主,其次为HCO3-Ca—Mg型水。由于潜水已经受到比较严重的污染,水化学类型变得比较复杂,在中心城区-大民屯-榆树屯一带形成了一种以含大量硝酸盐和氯化物为特征的污染水化学类型。另外,受原生环境影响,含水层中普遍有淤泥质亚粘土夹层,其淤泥质中有机质分解,形成还原环境,使介质中高价铁、锰还原成低价铁、锰,因此,地下水中铁、锰含量普遍较高,但含量年变化不大。

(三)地下水水质监测数据

本次研究水质监测数据主要来源于齐齐哈尔市地质环境监测站设置的地下水动态长观井1998~2002年枯水期的水质分析结果,水质监测点共31个,其中潜水14个、承压水17个(表13—14、表13—15)。监测的项目主要有pH、总硬度、氨氮、硝酸盐、亚硝酸盐、砷、汞、铬、铅、氟、镉、铁、锰、硫酸盐、氟化物、铜、锌、碘化物等。齐齐哈尔市地下水水质评价与污染预警系统,实现了对这些监测数据的增加、修改、删除、查询等基本管理功能,见图13—7。

表13—14 齐齐哈尔市地下水潜水水质监测资料统计表

表13—15 齐齐哈尔市地下水承压水水质监测资料统计表

(四)研究区空间信息

空间信息包括研究区地理底图、岩性分布图、地下水水质预警参数分区图、水源地及污染源分布图和土地利用现状图(见图13—8~图13—10)。

图13—7 齐齐哈尔地区地下水水质监测数据管理

图13—8 研究区空间信息界面

图13—9 研究区地形示意图

原比例尺1:50000

图13—10 研究区包气带岩性分布示意图

原比例尺1∶50000

二、齐齐哈尔市地下水水质评价

采用国家标准、模糊综合评判、BP神经网络三种方法分别对每年的潜水和承压水进行评价。评价结果既有数据表格,也有等值线和等值面图。如图13—11是2002年潜水采用BP神经网络评价方法得到的评价结果表格,图13—12是1998年潜水采用国家标准综合评价得到的等值线图。

图13—11 2002年潜水BP神经网络评价结果

图13—12 1998年潜水国家标准综合评价等值线示意图

评价结果表明,齐齐哈尔市地下水水质具有以下特点:

(1)区内超标组分有:氨氮、硝酸盐、亚硝酸盐、砷、总硬度、氯化物、硫酸盐、铁、锰。

(2)“三氮”污染严重,14个潜水监测点中氨氮超标的有10个,最高含量2.35 mg/L(100号点2000年),超水质标准的8倍;硝酸盐超标的有7个,最高含量444.12 mg/L(228号点2002年),超水质标准的4倍;亚硝酸盐超标的有12个,最高含量1.680 mg/L(2号点2002年),超水质标准的24.6倍。

(3)局部地方总硬度超标(15、27、228号点),最高含量1043.67 mg/L(228号点2002年);局部地方砷超标(2、27、183号点),最高含量0.079 mg/L(27号点2001年)。

(4)区内地下水中铁、锰含量普遍较高,这主要是受原生环境控制,区内含水层中多有淤泥质亚粘土夹层,其淤泥质中有机质分解,形成还原环境,使介质中高价铁、锰还原成低价铁、锰物质,因此,地下水中铁、锰含量普遍较高,但历年变化不大。

三、齐齐哈尔市地下水水质预测

利用系统提供的灰色模型GM(1,1)和时间序列分析两种预测模型,可以对全部井的水质同时进行预测,也可以根据年份、点号、水期、水层等条件对特定井的水质进行预测。其中灰色模型GM(1,1)适合于对水质进行中短期预测,见图13—13。时间序列分析适合于对水质进行中长期预测,利用时间序列分析进行预测之前,除了要选择预测的点号,水期及含水层之外,还要为预测设置相应的权值。权值的设定范围理论上为0~1,但在应用中权值的设定应根据客观具体情况。如果相临年份之间的数据差异比较大时,设置较大的权值;反之,设置较小的权值。一般权值大小不宜超过0.3,见图13—14。

四、齐齐哈尔地区地下水污染风险评价

(一)含水层固有脆弱性评价

将含水层固有脆弱性评价的7个评价因子数据进行处理,绘成7张图件。

图13—13 灰色预测结果

图13—14 时间序列分析预测结果

(1)含水层埋深D

含水层埋深信息主要来自钻孔数据,利用克里金插值后得到含水层埋深空间分布图,然后按照评价标准表13—2重新分类。齐齐哈尔地区潜水含水层埋深一般在2~5 m,含水层埋深分级见图13—15。

(2)净补给量R

净补给量=降水入渗系数×多年平均有效降雨量(mm),齐齐哈尔地区的多年平均有效降雨量为419.9 mm,入渗系数按大小分为五个区,自西向东依次为0.30、0.05、0.23、0.18、0.07。将计算结果按照评价标准重新分类后得到净补给量分级图,见图13—16。

图13—15 含水层埋深分级示意图

图13—16 净补给量分级示意图

(3)含水层介质类型A

齐齐哈尔地区含水层岩性主要为砂砾石、细砂夹砾石、细砂、含砾中粗砂、含砾中细砂、含砾粗砂、中砂、粉细砂及含砾中砂土,其对应的特征值见表13—16。含水层介质类型分级见图13—17。

表13—16 含水层介质类型特征值

(4)土壤介质类型S

齐齐哈尔地区土壤介质类型主要有砂、亚砂土、亚粘土、黄土状亚粘土、杂填土。其对应的特征值见表13—17。含水层介质类型分级见图13—18。

表13—17 土壤介质类型分级标准

图13—17 含水层介质类型分级示意图

图13—18 土壤介质类型分级示意图

(5)地形坡度T

地形坡度是由高程点高程通过空间分析中的表面分析而计算出的坡度图,齐齐哈尔地区坡度分级见图13—19。

(6)包气带介质类型J

齐齐哈尔地区包气带介质类型主要有砂、亚砂土、黄土状亚粘土、亚粘土。其对应的特征值见表13—18。包气带介质类型分级见图13—20。

表13—18 包气带介质类型特征值

图13—19 地形坡度分级示意图

图13—20 包气带介质类型分级示意图

(7)含水层渗透系数C

含水层渗透系数划分为四个区,其分级标准参考表13—2,级别与脆弱性结论的对应关系见表13—19,分级见图13—21。

表13—19 级别与脆弱性结论的对应关系

将得到的各评价指标的分类图按下列公式加权叠加,得出齐齐哈尔地区含水层固有脆弱性分区图,见图13—22。

图13—21 含水层渗透系数分级示意图

图13—22 齐齐哈尔地区含水层固有脆弱性分区示意图

(二)污染源荷载风险评价

齐齐哈尔市污染源荷载风险评价是以2000年的资料进行的,该市2000年污染物排放总量为33 044.39 t,其中化学需氧量21 149.77 t,悬浮物11 576.81 t,石油类223.31 t,挥发酚59.46 t,氰化物103.39 t,六价铬2.04 t,砷7.30 t,硫化物15.05 t。主要排污区是龙沙区。

市区化肥农药使用情况(1999年),化肥施用量13 750 t,其中氮肥7563 t、钾肥2275 t、磷肥953 t、复合肥2959 t、农药使用量295 t。

工业固体废物与城市垃圾:固体废物主要集中在铁锋区和龙沙区。“九五”工业固体废物共15种,1335.58×104t,其中以粉煤灰、炉渣、冶炼废渣、危险废物、尾矿为主,计950.41×104t,占总量的71.31%。2000年各种固体废物如下:危险废物3.3206×104t,冶炼废渣9.30×104t,粉煤灰125.04×104t,炉渣54.01×104t,煤矸石0.01×104t,其他68.63×104t,合计260.31×104t。

2000年固体废物利用情况:危险废物2.68×104t,冶炼废渣7.58×104t,粉煤灰74.83×104t,炉渣53.85×104t,其他64.46×104t,合计203.41×104t。

“九五”末期,危险废物的数量由初期的8.878×104t下降到3.3206×104t,综合利用量2.68× 104t,利用率为80.71%,处置量0.6403×104t,处置率为99.99%,排放量0.000226×104t,仅占总量的0.0068%。危险废物的产生主要分布在富拉尔基、龙沙和碾子山区的机械电气、电子设备制造业和其他行业。区域分布高度集中,富拉尔基区占危险废物总量的99.86%。

2000年生活垃圾产生量71×104t,其中填埋处理21.7×104t,一般处理14.2×104t,简易处理35.1×104t。齐齐哈尔市废水排放量见表13—20。

表13—20 齐齐哈尔市废水排放量(单位:104t)

齐齐哈尔北三区(铁锋区、龙沙区、建华区)共有红星、黎明、向阳生活垃圾处理厂三座,南山垃圾堆放场一座。其中黎明垃圾处理厂和南山垃圾堆放场占地面积大于30 000 m2,红星垃圾处理厂占地面积40 000 m2(3个池子)。向阳垃圾处理厂占地面积20 000 m2。红星、黎明、向阳三座垃圾无害化处理厂的卫生填埋区共计6个,总建筑面积121900 m2,容积1 463 000 m3。从2000年5月12日起红星、黎明、向阳三座无害化处理厂陆续建成投入使用,日处理生活垃圾800 t,到目前为止共处理中心城区生活垃圾近100×104t、吸排垃圾渗滤液12.5×104t、建筑垃圾150 000 m3。2003年10月1日医疗废物集中处置项目正式开工建设,建成投入使用后,中心城区医疗废物将实行无害化集中处置。

齐齐哈尔市城市氧化塘始建于1970年,位于市中心区域西南17.5 km的旧江套处,氧化塘西侧靠嫩江左岸,尾部和嫩江接通。全部工程由明渠、氧化-储存塘、闸门、抽水泵站等构筑物组成,明渠全长6 km,渠与塘首结合部设泵站一座,塘首至塘尾泄水闸门全长9.3 km。

氧化塘北起新立屯黄沙滩,南至昂昂溪区大五福玛,占旧河道面积8 km2,平均水面约5.6 km2,丰水期近7 km2。它承担着城区60×104人口的城市混合污水的自理净化。齐齐哈尔氧化塘建塘初期日接纳污水10×104m3,经1986年改建,日接纳污水达25×104m3。1998年受嫩江大洪水破坏,1999年修复清淤后,日接纳污水能力达46×104m3。因此齐齐哈尔地区主要的污染源为红星、黎明、向阳生活垃圾处理厂、工人屯工业固体废弃物堆放场以及氧化塘和排污渠。系统运行后,得到的齐齐哈尔地区污染源荷载风险见图13—23。

(三)污染危害性评价

根据齐齐哈尔土地利用现状图,将居民所在地的地下水视为饮用,菜地、水田、农田等区域的地下水视为非饮用,其余地区为不使用。系统得到的齐齐哈尔地区污染危害性见图13—24。

(四)污染风险评价

将含水层固有脆弱性、污染源荷载风险、污染危害性评价结束后,将三者综合考虑叠加,得到齐齐哈尔地区污染风险图,具体评价方法见表13—10,通过计算机运算,评价结果见图13—25。其中“0”表示低风险,“1”表示中等风险,“2”表示高污染风险。

图13—23 齐齐哈尔地区污染源荷载风险示意图

图13—24 齐齐哈尔地区污染危害性示意图

五、齐齐哈尔地下水污染预警

地下水污染预警综合考虑了地下水水质现状、地下水水质变化趋势、地下水污染风险三方面的因素,共有45种可能出现的状态,通过计算机的分析计算可以确定不同的状态。预警的结果用警度来表达,“0”表示“无警”;“1”~“4”依次为“轻度预警”、“中度预警”、“重度预警”和“巨度预警”,结果表示地下水的污染的威胁程度越来越严重。

(一)单项预警

通过地下水水质评价发现,齐齐哈尔地区地下水中的氨氮、硝酸盐、亚硝酸盐、砷、总硬度、铁、锰超标现象比较严重,其中铁、锰主要受原生环境控制,历年变化不大。因此对于水质单因子预警可对氨氮、硝酸盐、砷进行预警。

以砷为例,首先从数据库中提取评价因子的浓度值,其次根据国家标准(GB/T14848—93)进行观测井中该因子的水质现状评价,通过空间插值得到该因子在研究区的空间分布图作为水质现状结果,见图13—26。然后利用Daniel的Spearman秩相关系数法分析观测井中该因子浓度多年变化趋势,空间插值后得到变化趋势分布图,见图13—27;最后由现状分布图、变化趋势图,污染风险图经计算机系统分析计算后获得预警结果图,见图13—28。

图13—25 齐齐哈尔地区污染风险示意图

图13—26 齐齐哈尔地区砷现状分布示意图

图13—27 齐齐哈尔地区砷变化趋势示意图

图13—28 齐齐哈尔地区砷污染预警结果示意图

研究区大部分区域砷浓度不超标,但西南部有三个观测井砷浓度达到五类水标准,而且多年监测结果表明有进一步恶化的趋势,因此该区域属于巨警区,污染十分严重。另外市区附近砷浓度符合三类水标准,历年无明显变化趋势,但污染风险高,因此该区域属于重警区,需重点关注。

氨氮、硝酸盐污染预警结果见图13—29,氨氮污染面积较小,硝酸盐污染十分严重,部分区域总硬度属于重警。

图13—29 齐齐哈尔地区氨氮、硝酸盐污染预警结果示意图

(二)综合预警

图13—30是齐齐哈尔地区地下水水质现状图,由图可以看出,研究区东部浅层地下水水质为三类水,研究区西部浅层地下水水质为四类水,已无法饮用。通过分析各监测井的水质污染综合指数变化趋势,顾甸车站附近的27号监测井的水质有所好转,位于查哈诺村的41号监测井的水质呈恶化趋势,其余监测井的水质无明显变化,见图13—31。图13—32为齐齐哈尔地区地下水污染预警图,由于该地区浅层地下水普遍已经遭受了污染,地下水中三氮的浓度达到了四类或五类水的标准,所以计算结果受地下水的现状影响较大,在市区及附近以重度、巨度预警为主。在市区东部预警以轻度、中度为主。

图13—30 齐齐哈尔地区地下水水质现状示意图

图13—31 齐齐哈尔地区地下水水质变化趋势分布示意图

图13—32 齐齐哈尔地区地下水污染预警结果示意图

实际上,地下水污染预警系统应该用于地下水未污染的地区,以起到预防污染的作用。而在齐齐哈尔地下水普遍遭受不同程度污染的地区,使用污染预警系统的作用和意义受到限制,发挥不出预警作用。

(三)齐齐哈尔地下水污染原因及防治措施

1.地下水污染原因

齐齐哈尔地区第四系潜水受到较严重的污染,主要污染原因有以下几点:

(1)地下水污染预警的巨警、重警区大部分靠近氧化塘、嫩江和劳动湖,地下水动态监测资料证实嫩江和劳动湖常年补给地下水,被污染塘、江、湖水直接渗透污染了第四系潜水。

(2)区内含水层埋深一般小于4.5 m,包气带岩性多为亚粘土、亚砂土和粉细砂,区内工业渗坑、井、生活污水井遍布,每年有11 720 t工业废水和生活污水通过渗坑、渗井渗入地下,造成了地下水污染。

(3)近郊区菜田和农业区长期大量施用农药、化肥,据统计每年使用化肥达17 531 t、农药178 t,这些化肥、农药灌溉水或雨水下渗污染地下水。

(4)工业废渣、生活垃圾等固体废物的堆放和土地填埋是地下水的重要的点污染源,据统计区内每年排放工业废渣186×104t,生活垃圾63 t。这些废渣和垃圾未经无害化处理,大多无防渗措施,在大气降水的淋滤作用下,可产生大量的含多种污染物质的渗滤液,这些渗滤液向下通过包气带可直接渗入含水层中,是造成第四系潜水污染的重要途径。

2.地下水污染防治措施

(1)严禁工业废水超标排放,提高氧化塘和排污染渠道的防渗标准,防止污水渗入地下。

(2)加速城市排水设施建设,完善排水系统,逐步取消城市生活污水渗井和简易厕所,严禁采用渗坑(井)的形式排放工业废水。

(3)加快城市垃圾处理厂建设,提倡科学种田,合理施肥(可增加施肥次数,减少每次的施肥量),适量灌溉。

(4)搞好城市绿化,不仅可美化环境、调节气候,还能吸收土壤中的氨氮,减少对地下水的污染。

㈤ 小清河沿岸土壤地球化学环境研究

一、小清河流域元素地球化学特征

小清河源于济南诸泉,西起睦里庄,东注莱州湾,干流全长237 km,流域面积10 336 km2。小清河流域是山东省的重要经济发展区,有工业重镇淄博市及新兴工业城市广饶和胜利油田,工业门类齐全,乡镇企业星罗棋布;农作物种类繁多,不但有小麦、玉米和棉花各类,而且有享誉国内的黄河、明水大米、章丘大葱和寿光蔬菜,闻名全国的北方第一个吨粮县市——桓台即位于工区的中南部。但是,自20世纪70年代以来,随着流域内济南、淄博及齐鲁石化等城市和工矿企业的迅速发展,工业废水和生活污水排放量逐年增加,全流域污水排放量占小清河年平均径流入海量的2/3还要多,致使小清河水环境恶化,水体污染严重,水体的污染使得许多地方农灌水质超标情况严重。由于农业用水匮乏,污水灌溉面积不断扩大,污水灌溉使得土壤中Gr、Pb、Cu等重金属和有机污染物的积蓄量成倍增加,致使土壤环境质量严重下降,污灌区农畜产品质量下降,据统计全省主要污灌区粮食作物重金属超标率达25%。近几十年来,沿河污染区癌症、肝病和胎儿畸形的发病率明显增高。

因此,开展小清河沿岸土壤环境质量研究,查清小清河沿岸土壤环境污染状况,进行土壤环境质量评价,并提出土壤改良的对策和措施,对提高研究区农产品质量和保障人民身体健康有着十分重要的意义。

研究区西起济南市,东到渤海入海口;北起曲堤—高青县城—纯化镇一线,南到邹平—桓台。辖济南、淄博、东营、潍坊和滨州五地市的章丘、济阳、邹平、高青、博兴、桓台、广饶和寿光8县市。

(一)小清河流域元素地球化学含量特征

1.小清河沿岸土壤元素统计特征

小清河沿岸土壤元素含量分布见表3-17,在25 项分析元素和指标中,大多数剔出离群值前后算数均值差异较小,仅Cr、Hg、Mo、Se和S 5项均值差异较大,Cr由81.21×10 -6变为72.44×10 -6,Hg 由52.8×10 -9变为29.6×10 -9,Mo 由0.657×10 -6变为0.589×10 -6,Se由0.25×10 -6变为0.20×10 -6,S由0.083%变为0.027%。

就变异系数来看,25项指标中有20项指标变异系数在0.5以内,数据离散程度较高的元素或指标有 S、Hg、Cr、Se、Zn,其变异系数原始值为5.74、2.03、0.79、0.69、0.64,剔出离群值后这5 项指标的变异系数分别为0.30、0.35、0.11、0.25、0.16,均<0.4。

表3-17 小清河流域表层土壤组分地球化学含量特征参数表

就元素背景值的分布来看,区内土壤背景中As、Hg、Mo、SiO2、Al2 O3、TFe2 O3、K2 O等元素基本接近黄河下游流域,Na2 O、P、B元素略低,而Cd、Co、Cr、Cu、F、Mn、Ni、Pb、V、Zn、N、S、Se、CaO、Mg则略高于黄河下游流域土壤;小清河沿岸土壤中Co、Mn、Mo、Pb、Na2 O元素明显低于山东省土壤均值,其中Mo仅为山东省土壤的0.1倍,As、B、Cd、Cr、F、Hg、Ni、Zn、Se、TFe2 O3、MgO、CaO等元素均高于山东省土壤均值,其中CaO、Mg0、Cd元素分别是山东省土壤的2.56、1.78、1.79倍,而Cu、Al2 O3、K2 O则与山东省土壤均值基本相当;小清河沿岸土壤中As、Hg、Mo、Se、Pb、Zn元素明显低于我国土壤均值,其中Hg、Mo仅为我国土壤的0.46、0.3倍,Cd、Cr、F、Cu、Ni、MgO、CaO、Na2 O则高于我国土壤平均值,其中MgO、CaO分别是我国土壤的1.84、2.88倍,其余元素基本接近我国土壤平均值。

2.小清河上、中、下游土壤元素分布特征

将小清河上游、中游和下游不同地段的表层土壤元素含量统计资料进行对比(图3-31),可以发现上游土壤元素中,F、Mn、Al2 O3、S、MgO、K2 O背景值低于中游和下游土壤背景值,SiO2和Na2 O在上游土壤背景值中最高,而其他元素高于下游土壤元素背景值而低于中游土壤元素背景值。中游土壤中As、B、Cu、Cd、Cr、Co、F、Hg、Mn、Ni、Pb、Zn、Se等元素背景值均高于上、下游土壤元素背景值,其中Cd、Hg、Se分别为下游土壤背景值的1.3、1.6 和1.4 倍,而SiO2和Na2 O则低于上、下游土壤背景值。

图3-31 小清河上、中、下游土壤元素背景值图

3.小清河南岸、北岸土壤元素分布特征

对比小清河南、北两岸土壤元素背景值统计,有如下规律,见图3-32,南岸土壤中Hg、P、Pb、N、SiO2和Na2 O背景值略高于北岸土壤元素背景值,其中Hg是北岸土壤背景值的1.2倍;As、B、Cd、Cr、F、Mn、Ni、Pb、Zn、Se等元素及氧化物均低于北岸土壤元素背景值,其中 As、S、CaO 分别为北岸土壤背景值的 0.86、0.88 和0.81倍。

图3-32 小清河南岸、北岸土壤元素背景值图

(二)元素剖面特征

1.小清河沿岸水平土壤剖面元素的分布特征

分别在历城区、博兴县和王道3处垂直小清河方向布置3条水平剖面,通过对3条剖面的数据统计表明,元素含量在不同土壤剖面的分布差异较大,在同一土壤剖面的小清河两岸也存在显著差异,见表3-18。

表3-18 小清河沿岸土壤水平剖面元素含量统计表

续表

1)历城剖面南从王舍人镇开始,北到刘家集,居民点较密集。此剖面南岸土壤主要分布潮褐土,而北岸以潮土和盐化潮土为主。统计表明:南岸土壤元素As、Cr、F、Hg、Ni含量明显比北岸高,而Cd、Cu、Se、P则低于北岸,其余元素含量水平较为接近。但重金属元素的含量均高于小清河土壤背景值,可能对土壤环境造成一定程度的污染,这与人类活动的影响有关。

2)博兴剖面南从起凤镇北到博兴县城西的西伏村,南岸土壤以湿潮土亚类为主,北岸以潮土为主。统计表明:重金属元素As、Cd、Cr、Cu、Hg、Pb、Zn在北岸土壤的分布明显高于南岸,而有益元素B、Mo、Se、N、S、CaO的含量则南岸明显高于北岸。

3)王道剖面南起卧铺镇北到广北农场,土壤类型为盐化潮土。北岸土壤元素含量水平明显比南岸低,其中北岸土壤重金属元素As、Cd、Cr、Cu、Hg、Ni、Pb、Zn含量明显低于小清河背景值含量,南岸则略高。

2.小清河沿岸垂直土壤剖面元素的分布特征

1)历城垂直土壤剖面元素的分布。野外发现剖面土壤质地上层基本为砂质粘土,60 cm以下为粘土。深部有铁锈出现。随深度增加,有机质含量降低,土壤元素也表现出规律性变化(图3-33)。土壤主成分SiO2、MgO、K2 O、CaO、Na2 O 随深度变化不大,推断原始沉积物组成比较稳定,沉积韵律分层不明显。表层土壤中N、P、Cr、Hg、S、Se、Cd、Pb等元素含量异常高,并在地表至80(100)cm深度段剧烈下降,尤其是N、P、Se、S、Hg元素。认为人类生产活动对土壤的影响作用较大,推测影响深度100 cm。TFe2 O3、Al2 O3、Mn、B、V、Co等元素含量随深度的增加而增加,并在土壤深部富集,原因土可能为壤表层成酸性,在表生作用下元素以离子化合物的形式向土壤底层迁移,从而造成元素在底部较为富集。As、F、Ni、Cu、Zn、Mo等元素含量随深度的增加变化不明显。

2)博兴土壤垂直剖面元素的分布特征。野外发现剖面上土壤质地无明显变化,均为粘土。随深度的增加,多种元素均表现出了规律性的变化(图3-34)。土壤主成分SiO2、Na2 O随深度增加略有变化,在0~100 cm深度段较为稳定,而从100 cm处随深度增加而增加;TFe2 O3、Al2 O3、MgO、K2 O及V、Co、Mn(与TFe2 O3、Al2 O3呈极显著相关)等元素则相反,在100 cm处随深度的增加而降低。虽然成壤作用能引起表层土的粘土化、矿物组成的垂向变化,但矿物组成的这种截然变化显然与原始沉积组成的关系更为密切。As、Cd、Cr、Hg、Ni、F、Cu、Pb、Zn、N、P、S、Se等元素随深度的增加而降低,而且在土壤表层异常富集,并在地表至60 cm深度段内急剧下降,尤其是N、P、Hg元素。这种分布除了与原始沉积组成分层有关,还与土壤质地、有机质含量制约下的表生活化迁移、吸附沉淀再分配作用有关。其中N、P、Hg、S等呈强烈表土富集特征,这显然与污染有关。C、B、Mo等元素随深度的增加变化不明显。

图3-33 小清河沿岸土壤历城剖面元素分布图

3)王道土壤垂直剖面元素的分布特征。土壤类型以盐化潮土为主。野外发现剖面上土壤质地以粘土、砂粘土为主,土质较疏松。元素含量随深度的呈现明显的规律性(图3-35):土壤主成分SiO2、Na2O含量随深度增加而增加,TFe2O3、Al2O3、K2O、MgO等在土壤表层富集,自60cm急剧下降后趋于背景值,这可能与土壤粘/砂组成、有机质变含量化有关。As、Cd、Cr、F、Hg、Ni、Cu、Pb、Zn、Mn、N、P、Se、S等元素在地表至60cm深度段富集,自60cm急剧下降后趋于背景值,尤其是N、P、S、Cu、Pb、Zn元素。这种分布一方*与土壤原始沉积组成有关,另一方*表生作用下引起的N、P、S、Cu、Pb、Zn等元素的强烈富集特征显然受到了污染的影响。As元素在地表至130cm急剧下降后明显回增,可能与经历了淋漓作用而使As向下迁移有关。CaO自地表至60cm逐渐增加,中部富集,从60cm至深部急剧下降,这可能与矿物磷肥使用有关。B、Mo等元素自地表至深部无明显变化。

图3-34 小清河沿岸土壤博兴剖面元素分布图

图3-35 小清河沿岸土壤王道剖面元素分布图

(三)土壤元素的组合特征

1.聚类分析

聚类分析是一种多元统计方法,主要用于辨认具有相似性的事物,并根据彼此不同的特性加以“聚类”,使同一类的事物具有高度的相同性。用聚类分析对背景值进行元素分类,能比较自然和客观地描述多样本元素背景值之间的差异和联系。聚类分析方法的原理是通过多样本间的相似性程度,将元素(或样本)进行分类,使得类内所有元素之间具有较密切的关系,而各类之间的相互关系相对比较疏远。通常采用某些指标来表示多样本土壤地球化学特征的相似程度,依据指标主要是各地球化学特征间的相关系数。从中选出符合农业地质解释的聚类分析成果。通过对小清河沿岸表层土壤元素聚类分析谱系图(相关系数、欧式距离),见图3-36,25种元素存在以下元素组合:

图3-36 小清河沿岸表层土壤元素聚类分析相关系数谱系图

1)TFe2 O3、Al2 O3、Co、Ni、V;

2)Cd、Zn、Mo、Pb、Se;

3)F、Mn、As;

4)SiO2、Na2 O;

5)N、P;

6)Hg、P、Cr;

7)S。

2.因子分析

因子分析是对大量地质观测数据进行分析和做出较为合理解释的一种多变量统计分析方法,它能够通过数据方法将许多变量彼此间具有的错综复杂的关系体现出来。对小清河沿岸土壤选用了反映农业地质背景特征的25个元素进行因子分析。根据特征根的特征根百分比(方差贡献)和累计百分比。计算结果显示前4 个特征值方差贡献百分比达71.187%,取前4个特征值已经能够提取原始数据变化的70%以上的信息,已足以说明问题。

计算初始因子载荷矩阵,并采用方差极大进行正交旋转使因子载荷矩阵结构简化,表3-19 为旋转后的因子载荷矩阵。由表可见:和第一主因子呈正相关的元素为As、Co、F、Mn、Ni、V、Al2 O3、TFe2 O3、K2 O,而 Na2 O 呈负相关;和第二主因子呈正相关的元素有Cd、Cu、Hg、Mo、Pb、Zn、Se;和第三主因子成正相关的元素为S、CaO,呈负相关的元素SiO2;和第四主因子呈正相关的元素为N、P,呈负相关的元素是Cr。

表3-19 小清河沿岸表层土壤旋转后因子载荷矩阵表

由主因子得分图(图3-37)分析,主因子1代表的金属元素的组合特征在小清河中段表现突出,该段属于博兴和高青县辖区,此外在济南周边也出现了高值区分布。主因子2代表的Cd、Cu、Hg、Mo、Pb、Zn、Se元素是表层土壤质量的重要辨别指标,此因子在济南市地区表现突出,说明城市人为污染对于这些离子在土壤中的富集影响较大。因子3表示S、SiO2、CaO元素的组合可以认为是土壤地质因素的表征,其分布与小清河沿岸内土壤类型的分布较为吻合。主因子4 表示的是N、P元素的组合,该因子在小清河中段农业发达地区表现突出,说明农业活动对于这些元素的分布具有一定的影响。

图3-37 小清河沿岸主因子得分图

二、小清河流域环境污染现状

小清河流域为山东省重要的工业集中区,包括有济南市、济宁市和淄博市等省内重要的大型工业城市,主要污染源有化肥厂、塑料厂、钢铁厂、炼油厂、重型机械厂、制药厂和发电厂等。近几年,随着乡镇企业的迅速崛起,小型厂矿企业林立,种类繁多,遍布于主要县城和乡镇。由于工业三废排放治理不好,给环境带来了严重污染和危害。

区内污染源包括:污水废水、固体废弃物、城市垃圾和医疗垃圾,以及化肥农药等。大的企业主要有山东化工厂、济南裕兴化工总厂、济南元首针织公司、山大第二附属医院、齐鲁制药厂、黄台发电厂、济南大易造纸三厂和济南化纤总公司等数十家。

区内污废水主要来自城市生活污水和工业废水。废水中主要污染物为氯化物、硫酸盐、化学需氧量、氟化物、挥发酚、氨氮、氰化物、As、Pb、Cr、Cd、Hg。根据已有资料将工区内几家重点工业污染源 COD(化学需氧量)排放量统计于表3-20 中。

表3-20 区内重点工业污染源COD 排放量统计表

注:资料来源为济南市环保局《济南市水污染防治规划》。

目前研究区内产渣最多且相对集中的污染物主要是冶炼废渣,粉煤灰、炉渣、煤矸石和尾矿。以济南为例,固体废弃物处置工作是固体废弃物管理的薄弱环节,目前主要处置方法是焚烧和填埋。济南固体废弃物的贮存方式多种多样,贮存点比较分散,贮存的固体废弃物主要有煤矸石、粉煤灰。煤矸石主要贮存于各大煤炭公司;粉煤灰主要贮存在小清河和大寺干灰场等处。由于大部分的固体废弃物得到了很好的管理,没有排放到环境中去。

从产生固体废弃物的行业分布来看,产生固体废弃物最大的是冶炼、热电、采掘和化工等行业,占据了总量的90%以上,其中济钢是最大固体废弃物产生源,平均年产生量为155.6×104 t。

济南含铬废弃物主要由济南裕兴化工厂产生,包括Cr渣、Al泥。由于Cr渣中含有有毒成分Cr6+,对周围环境有严重危害。粉煤灰的产生较为集中,主要分布在历城区的黄台发电厂,1998年黄台电厂产生粉煤灰57.5×104 t。钢渣产生较为集中,主要分布在历城区济钢总厂的厂部和西部(表3-21)。

表3-21 固体废弃物重点产生源产生量统计表

注:资料来源为济南市环保局《济南市水污染防治规划》。

城市垃圾主要由居民生活垃圾、道路清扫垃圾、商业垃圾和企事业单位生活垃圾几部分组成。根据调查1998年济南市年产生活垃圾在55×104 t左右,工区内生活垃圾占济南市生活垃圾的近 1/6。生活垃圾的清运率、处理处置率为 100%,无害化处理达到92.14%。虽然清运率达100%,但并没有全部进行无害化处理,仍有部分垃圾不作任何处理,就在各简易垃圾堆放场堆放,或排放到郊区农村,对环境造成污染。

由于医疗垃圾有毒、有菌和有害,是造成社会交叉感染的主要污染源之一。济南日产医疗垃圾4269kg,医疗垃圾的致病菌远远高于生活垃圾和工业垃圾,而且医疗垃圾的处理方式主要为焚烧和填埋,会使局部大气环境受污染,增加疾病传播、蔓延的概率,加剧填埋场地下水质污染。故必须加强对医疗垃圾的管理、收集和处理。

此外小清河上游地区农业以小麦、水稻和玉米等农作物为主。农业施肥以化肥为主,农家肥为辅。另外农药的喷施及地膜的使用都对环境造成一定污染。农家肥、化肥、农药的大量使用,大部分为农作物吸收,有部分随降水、灌溉渗入地下,污染地下水体。

三、土壤环境质量评价

(一)评价因子及标准

土壤环境质量评价以国家标准(GB 15618—1995)《土壤环境质量标准》为评价标准(表3-22)。该标准只规定了8项组分或指标的标准,即Cd、Hg、As、Cu、Pb、Cr、Zn、Ni等8种元素的不同等级的上限含量。故评价因子选择这8个元素。

表3-22 土壤环境质量标准值表 单位:10 -6

续表

注:①重金属(Cr 主要是三价)和 As 均按元素量计,适用于阳离子交换量 >5cmol(+)/kg,若≤5cmol(+)/kg,其标准值为表内数值的半数。②六六六为4种异构体总量,滴滴涕为4种衍生物总量。③水旱轮作地的土壤环境质量标准,As采用水田值,Cr采用旱地值。

(二)单因子评价

1.单因子环境质量分级统计

小清河流域内重金属元素单因子环境质量评价统计结果见表3-23。汞、砷、镉、铅、锌、铜、铬、镍等单因子土壤环境质量评价结果表明:小清河调查区内表层土壤质量整体以Ⅰ类、Ⅱ类为主,同时Ⅲ类及超Ⅲ类土壤样本在占有一定的比例,但比例控制在3%以内。单因子指标中Cu、Ni、Pb 3项指标没有出现超3类土壤,且其中Ⅰ类土壤样本数达到了90%以上。表层土壤中Hg、Zn元素4 类等级均有出现,其中Ⅰ类比例超过了90%,超Ⅲ类土壤样本仅有1~2个,比例不超过1%。As、Cd两指标也是4类等级均有出现,其中虽有超3类土壤出现,但其比例也不超过1%,与Hg、Zn相比,其Ⅰ类土壤的比例有所减少,同时Ⅱ类比例增加。Cd在所有单因子评价指标中Ⅰ级所占比例最小,而3类所占比例最大。本调查区内金属Cr元素超Ⅲ类土壤样本数量最大,占到了全部样本的0.6%。综合而言,小清河流域土壤质量等级目前仍然能够保障农业生产安全。

2.单因子环境质量分级分布特征

As指标的环境质量等级以Ⅰ类土壤为主,Ⅱ类土壤主要分布在小清河中游流域,集中在华山镇、孙镇、樊家林、丁家庄、博兴县和丁庄镇一带,以岛状形式分布,分布面积占总面积的5%。虽然总体质量较好,但注意的是博兴县境内分布面积大,且有与周边乡镇相连的趋势。

Cd指标的环境质量等级以Ⅰ类土壤为主,Ⅱ类土壤分布在济南及东北部乡镇及博兴、高青和邹平等县,Ⅲ类土壤主要集中在小清河上游的济南市、北园镇一带。

Cr指标的环境质量等级主要以Ⅰ类土壤为主,但同时Ⅲ类和超Ⅲ类土壤也有分布。Ⅱ类土壤分布在小清河上游的济南市附近以及中游流域的樊家林、高城东—博兴县西之间及博兴县东部等区域,Ⅲ类土壤主要分布在济南市北园镇城区以及寨郝镇,超Ⅲ类土壤仅在济南市北园镇北部分布。

铜指标的环境质量等级Ⅱ类土壤主要分布在小清河上游济南市城区及东北部地区和中游的博兴县东部,博兴县境内仅以零星的岛状形式分布。

表3-23 小清河调查区表层土壤样品单因子评价环境质量统计表

Hg指标的环境质量等级主要以Ⅰ类土壤为主,虽然Ⅱ类和超Ⅲ类土壤也有分布,但是主要集中在济南市城区。从其分布形态来看,虽然目前Ⅲ类土壤仅以岛状分布在济南城区,但是其外围的Ⅱ类土壤分布范围有向下游蔓延的趋势,因此在今后的工作中因密切监测其发展动态。

Ni指标的环境质量等级以Ⅰ类为主,Ⅱ类土壤主要集中分布在小清河中游,镍的Ⅱ类土壤分布区较为分散,主要分布在华山镇和丁家庄、寨郝镇北—龙河等区域。

Pb指标的环境质量等级以Ⅰ类土壤为主,Ⅱ类土壤仅分布在济南市城区及周边的部分乡镇驻地。在北园镇、姚家镇、王舍人镇和郭店镇等部分居民点分布有Ⅱ类土壤。

Zn指标的环境质量等级主要以Ⅰ类土壤为主,但Ⅱ类和Ⅲ类土壤在小清河上游流域也有分布。Ⅱ类土壤集中在济南市城区及北园镇—泺口、姚家镇—北滩头及郭店镇一带。Ⅲ类土壤分布在郭店镇西北部小清河支流两岸,疑似当地工厂排放工业废水引起的点状污染。

3.单因子污染指标分析

通过计算各评价指标的单项污染指数等指标,可以反映出评价区内各指标对于环境质量的影响,从而分析出区内环境污染的影响程度。常用的污染指标包括:

1)土壤单项污染指数。单项污染指数指数小污染轻,指数大污染则重。其计算公式为

土壤单项污染指数=土壤污染物实测值/土壤污染物质量标准

2)土壤污染物累积指数。由于土壤地区背景差异较大,有时用土壤污染累积指数更能反映土壤的人为污染程度。土壤污染累积指数的计算公式如下:

土壤污染物累积指数=土壤污染物实测值/污染物背景值

3)土壤污染物分担率。土壤污染物分担率可评价确定土壤的主要污染项目,污染物分担率由大到小排序,污染物主次也同此序。

土壤污染物分担率(%)=(土壤某项污染指数/各项污染指数之和)×100%

4)土壤污染超标倍数。土壤污染超标倍数是能反映土壤的环境状况统计量。

土壤污染超标率=(土壤某项污染物实测值-某污染物质量标准)/某污染物质量标准

5)土壤样本超标率。土壤样本超标率也是反映土壤的环境状况一个统计量。

土壤污染样本超标率(%)=(土壤样本超标总数/检测样本总数)×100%

计算8项因子的污染指标,其计算结果如表3-24 所示。结果表明全区土壤指数较低,污染程度很轻微,小清河沿岸土壤污染物主要以As、Cd、Cr、Ni为主,重金属元素污染的主次顺序为:Ni>Cd>As>Cr>Zn>Cu>Hg>Pb。各单项的污染物超标倍数均<0,说明全区土壤环境质量良好,污染规模小,不足以影响全区。

表3-24 小清河流域表层土壤污染指数、超标率统计表

注:比较标准为二级土壤上限值。

(三)综合评价

1.模糊综合评价

各区域模糊评判结果统计如表3-25所示,数据显示小清河地区土壤以Ⅰ类、Ⅱ类为主,无超三类土壤出现。Ⅲ类土壤样本数为10 个,所占比例 <0.5%。总体环境质量较好。

表3-25 各调查区表层土壤样品模糊综合评价环境质量统计表

土壤综合环境质量等级分布如图3-38。可以看出,大部土壤为Ⅰ类和Ⅱ类级别。这种结果与单因子评价的结果似有差别,但是细究之可以得出:这是由于我们在选取权重的时候,是根据个因子超标的倍数,最后进行均一化得来的,因而模糊评价的结果说明各地区土壤环境背景优良,即便是部分遭遇了污染的区段,目前也只是处于较为低级的阶段,各区域的整体地表土壤环境是较优的。

一类土壤主要分布在小清河北岸的遥墙—高官寨镇—魏桥镇及西刘桥—卧铺—羊口一带,二类土壤主要分布在济南市周围、小清河上游的南岸土壤及小清河中游一带,三类土壤主要分布在济南市区及个别乡镇驻地附近土壤。

图3-38 小清河流域表层土壤综合环境质量等级分布

2.综合指数评价

综合指数法的计算,一般是在求解单因子的污染分指权的基础上,运用不同的数学模型进行计算的。选用综合指数法中的内梅罗指数法,该指数反映了各污染物对土壤的作用,同时突出了高浓度污染物对土壤环境质量的影响,其计算方法如下:

鲁西北平原典型生态区地质地球化学环境研究

式中:P为综合污染指数;I=Ci/Si(实测值/背景值),背景值为小清河沿岸土壤中该元素的背景值。

图3-39 小清河流域土壤环境内梅罗指数评价图

小清河土壤重金属综合污染分布如图3-39,严重污染区主要集中在济南市城区北园镇至华山镇区域的小清河两岸,在寺后张、西相村和南口等居民点也有零星分布,污染区重要分布在泺口、王舍人镇和寨郝镇等部分乡镇驻地,轻污染区主要集中在齐家,王舍人镇—郑家码头、辛集—起凤镇、曹家坡—高城镇—博兴县城—龙河和王道—丁庄镇等地,寺后张、九户镇、城外刘和许李等局部地区也受到重金属轻微污染。

由以上评价结果可知区域目前土壤较为清洁,污染程度较小,但区内仅沾化的土壤目前没有出现污染,其他区域均不同程度出现污染。分析出现污染区域的污染分布范围及主要污染因素可以得出以下结论:

1)从污染的分布形态看,各地污染主要以点状或孤岛状形式分布,鱼台地区污染集中在济宁西北的长沟一带,章丘集中在章丘北部的白云湖区,寿光集中在王高—田柳镇,但小清河流域污染分布已经发展到面状,污染集中在上游济南市及中游博兴县范围内。小清河流域污染区域分布范围最大,且分布形态已经由点状过渡到了面状分布,扩展趋势较快,在今后的调查中需要重点监测。

2)从污染的分布的地点看,各地污染分布表现出了较为统一的特征,即污染指数较高的区域一定程度上是河道或交通道路所处的位置重叠。这一现象表明污染源如果不及时发现和治理的化,其扩散作用更迅速、作用范围随人类活动区域的拓展而更容易扩大,作用程度也更强烈。

3)从造成污染的指标分析,各地污染源有所差异。沾化地区Cr污染比重较大,鱼台地区Cd污染贡献值大,章丘、寿光和小清河流域均是Ni污染指数最大。

综上所述,通过污染评价发现,评价区的土壤污染较为轻微,适合发展农业生产,但同时由于已经出现了局部污染,且污染有进一步扩大的趋势,因此在今后的工作中应进一步开展污染源调查和防治的重点研究,以确保生态农业的健康发展。

㈥ 地下水污染与环境演化趋势

一、地下水污染原因分析

我省平原地区浅层地下水的水质趋于恶化,尤其是豫北的南乐—内黄—滑县、修武—卫辉一带,中东部的开封—长葛—许昌—漯河—上蔡一线以东地区和南阳盆地西南部地区,环境质量不容乐观。其中部分组分的分布受环境水文地球化学规律的控制如高铁、高锰、高锑、高氟、低碘等,属于原生态的劣质水;而更多的则与人类工程活动紧密相关,如总硬度、矿化度、“三氮”、高锰酸盐指数(化学耗氧量)、挥发酚、六六六含量的变化等,则是人为因素污染所致。尽管我省各地地下水污染原因和污染途径不尽相同,但是归纳起来可以认为,造成我省地下水水质污染的主要原因是:未经处理的工业“三废”和城镇生活污水的大量排放;农药化肥的不合理施用;矿产资源的大规模开发,造成矿渣的乱堆乱放和选矿废水任意排放。

(一)全省工业“三废”、生活污水排放情况

据统计,全省的工业“三废”排放总量呈逐年递增趋势。其中,工业废水排放量1965年为4.9×108m3,1985年为12.8×108m3,2004年已增加到13.3×108m3;工业废气中的二氧化硫排放量由1990年的49×104t增加到2004年的111×104t;固体废物产生量由1990年的2039×104t增加到2004年的5140×104t,增加152%,见表3-3。尽管我省环境保护的力度不断加大,工业废水排放达标率已由1990年的43.5%提高到2004年的93.7%,但对环境尤其是地表水环境造成的压力依然很大。

表3-3 河南省工业“三废”排放及处理情况

随着城市化进程的加快,城镇人口急剧膨胀,生活污水排放量也相应增加。2004年,全省废水排放总量为25.06×108m3,其中生活污水排放量为11.73×108m3,约占47%。

(二)全省农药、化肥施用情况

由表3-4可以看出,全省农药化肥的施用量呈逐渐增加趋势。其中,化肥施用量(折纯量)1978年为52.54×104t,1988年增加到154.57×104t,1998年为320.80×104t,2004年已增加到493.16×104t。2004年的化肥施用量较1978年增加了839%。全省农药的施用量亦呈逐年递增趋势:1990年全省农药施用量为3.31×104t,2000年为9.55×104t,10年间增加了近2倍。农药使用量为1.5kg/ha,以有机磷类、聚酯类农药为主。进入21世纪以后,全省化肥施用量仍在继续增加,至2004年,全年化肥施用量已达10.12×104t。农用化肥使用量为2501kg/ha,氮、磷、钾施用比例为:1:0.4:0.19,氮肥充足,部分地区用量偏高,钾肥不足。农用塑料薄膜的使用量1990年为2.75×104t,2004年增加到10.16×104t,较1990年增加了269%。表3-5反映了2004年度我省各地区农药化肥施用情况。从此表可以看出,在18个地(市)中,该年度化肥施用量最多的属南阳市,为67×104t;化肥施用量最少的是济源市,化肥施用量为2.1×104t。该年度农药施用量最多的是周口市,为1.77×104t;最少的是济源市,农药使用量为0.04×104t。2004年全省化肥施用量4931580t(折纯量),其中氮肥2213036t,磷肥1024159t,钾肥475422t。农业面污染源对环境的影响也不可轻视。农药、化肥的大量使用,不仅污染了土壤,还影响到地表水和地下水的水质。

表3-4 河南省历年农药化肥使用情况统计表

表3-5 2004年全省农药化肥施用情况统计表

续表

(三)矿业开发过程中废水、废渣、废石的排放概况

我省是矿业大省,矿业的大规模开发势必会导致一系列环境地质问题的产生,对环境造成一定程度的影响。矿山废水含矿坑水、选矿废水、堆浸废水、洗煤水;废渣包括尾矿、废石(土)、煤矸石、粉煤灰。据《河南省矿山地质环境调查与评估报告》,全省矿坑水年产出量4.68×108m3,年排放量3.76×108m3,废石、废渣年产出量0.32×108t,年排放量0.20×108t,累计积存量2.75×108t(表3-6、表3-7)。全省各矿山企业占用、改变破坏土地状况:采矿场占地9079.67公顷、固体废料场1703.93公顷、尾矿库721.99公顷。

表3-6 全省矿山企业废水废液排放量表

表3-7 全省矿山企业废渣排放量表

工业废水和生活污水及开矿排出的大量废水不仅污染了土壤,更严重地污染了地表水体,致使境内绝大部分河流水质变差,失去使用功能,有的直接变成了排污河。而这些被污染了的地表水体又通过灌溉或直接渗透等途径使地下水受到了污染。矿山废渣、工业固体废弃物、农业上施用的农药化肥则是在降水作用下,经过溶解、淋滤、离子交换等一系列物理、化学作用使污染物通过包气带进入地下水中的。

二、地下水环境演化趋势

经过对历史资料的分析和对比,河南省地下水环境已发生了很大变化。而这种变化,始终与人类生产、生活及各种经济活动息息相关。下面根据不同时期的区域水文地质调查资料和多年来城市地下水质监测结果,概述我省地下水环境的演化趋势。

概括起来,不外乎两方面的变化,即量与质的变化,而量的变化则主要反映在水位的变化上。

(一)开采量不断加大,地下水位持续下降

前已述及,20世纪50年代,全省地下水年开采量仅(20~25)×108m3,到20世纪末,已增加到130×108m3,增加了6倍。开采量的迅速增加,直接导致地下水位的迅速下降。据有关资料,河南省区域浅层地下水位埋藏深度,在60年代之前普遍较浅,80%以上的区域地下水位埋深小于4m,最大埋深不足6m;从90年代起地下水水位逐年下降,1976年,水位降落漏斗已经形成,漏斗中心水位埋深10~15m,尚未出现埋深大于16m的区域;到90年代初地下水位埋深小于4m的区域缩小近半,最大水位埋深达到16m 左右;90年代末地下水水位埋深小于4m的区域已较小,埋深在4~8m 间的区域面积最大,豫北局部地区地下水水位埋深达20~22m。到2005年,水位仍在持续下降,区域水位降落漏斗总面积已达近万平方千米,水位埋深超过8m的地区已达21224km2,其中超过16m的地区就达5166km2,漏斗中心水位埋深已达32~33m。

图3-3和图3-4反映了降落漏斗区水位变化情况。其中清丰浅井位于南乐—滑县漏斗区,从1983至2005年的22年间,水位下降9.28m,年均下降0.42m;孟州气象局浅井位于温县—孟州漏斗区,自1989年以来水位下降了13m,年均下降0.81m。

图3-3 清丰县气象局浅井多年水位动态变化曲线

图3-4 孟州市气象局浅井水位动态变化曲线

河南省区域浅层地下水历年水位埋深面积变化情况见表3-8。此表表明:40年来,我省平原地区浅层地下水水位埋深发生了巨大变化,水位埋深普遍加大,其中小于2m的分布面积已由1964年的23549km2减少到2005年的8415km2,而大于4m的区域面积则显著增加。

表3-8 河南省平原区浅层地下水水位埋深面积变化对比表 单位:km2

(二)水化学类型趋于复杂化

水化学类型反映了水的总体特征,其变化直接反映了地下水环境的演化趋势。在自然状态下,地下水中阴离子以重碳酸根(

)、硫酸根离子(

)、氯离子(Cl)为主。1985年,平原地区浅层地下水水化学类型主要为三种阴离子:重碳酸根(

)、硫酸根离子(

)、氯离子(Cl)相互组合,共出现了27种不同的水化学类型;而本次调查采用相同的分类方法,共出现76种不同的水化学类型。尤其值得注意的是,又出现了新的水化学类型——硝酸根(

)型,阴离子中,硝酸根占了主导地位,这在以往是没有过的。虽然此类型水分布面积不大,但这充分说明地下水中氮的污染已相当严重。表3-9反映了2005年与1985年相比水化学类型演变情况。由此表可知,从全区来讲,与20年前相比,简单的HCO3型水的分布面积减少了9437km2,其他复杂的水化学类型面积相应扩大,水化学类型也更加复杂。这说明20年来我省平原地区浅层地下水质趋于恶化。

表3-9 不同时期河南省浅层地下水水化学类型分布情况对比表

(三)水的矿化度发生了变化

地下水矿化度的变化不仅取决于地质环境条件,人为因素的影响同样不可忽视。从全区来讲,浅层地下水矿化度的变化与人类工程活动紧密相关,其变化大致可分为两个阶段。

第一阶段,从20世纪60年代到80年代为水质淡化期。60年代之前地下水开采量较小,水位普遍较浅,80%以上的区域地下水位埋深小于4m,蒸发作用强,土壤盐碱化较为严重,地下水的补给、径流和排泄基本处于自然状态。60年代初期,河南省大中小型水利工程全面铺开兴建,先后上马了三门峡、宿鸭湖、昭平台、白龟山、鸭河口、陆浑等大型水库。平原地区由于在河道中节节打坝拦蓄,开辟共产主义、东风、红旗、跃进四大引黄口大引大灌,造成地下水位迅速上升,豫北和豫东及沿黄地区出现大面积土壤盐碱化。1964年,全省盐碱地面积达79×104ha,水的矿化度高,局部地段达17.63g/l。自1965年开始,全省大规模开展群众性的打井运动,治理盐碱化,井灌事业迅速发展,地下水开采量增加,水位迅速降低,豫北地区出现了水位降落漏斗,土壤盐碱化程度大大降低,水质逐渐淡化,矿化度降低,咸水分布面积缩小,淡水区域扩大。到1985年,咸水(矿化度>1.0mg/l)面积缩小到12784km2,其中矿化度>2.0mg/l的分布面积1198km2

第二阶段,为矿化度基本稳定或略有升高期。20世纪80年代以来,开采量仍在逐渐增加,大部分地区浅层地下位埋深在4m以上,一方面蒸发强度减弱,土壤淋滤作用增强,不利于土壤中盐分积累;但另一方面水位降低,有利于高矿化度废污水的渗入,造成浅层地下水污染而使矿化度升高。表3-10就反映了这种变化。与1985年相比,濮阳东南部沿黄地带、封丘东北部、商丘北部地带水质淡化,矿化度降低,而内黄—南乐、获嘉—新乡、许昌—太康—民权、上蔡—新蔡—正阳和南阳盆地西南部地区水的矿化度则有所升高。表3-10表明,2005年与1985年相比,含量<0.5mg/l的地区面积减少了9121km2,而含量0.5~1.0mg/1、1.0~2.0mg/l、>2.0mg/l的面积则分别增加了7730km2、193km2、1198km2。从整个平原地区来讲,水的矿化度基本稳定,部分地区有升高趋势。

表3-10 不同时期河南省浅层地下水矿化度变化情况对比表单位:km2

(四)高氟水区范围缩小

地方性氟中毒是我省一个突出的环境地质问题。20世纪80年代初,全省高氟水区(含量>1.0mg/l)分布面积达3.17×104km2,占全省国土总面积的19%,其成因多属于碱化型。其中平原及岗区高氟水分布面积为26654km2。全省共有氟中毒患者385.55万。我省在饮水型氟中毒病区广泛实施了改水降氟措施,收到良好效果。截至1997年底,已建改水工程6000多处。20年来,我省西部和南部地区水氟含量基本没有变化,豫北和南阳盆地的大部分地区水氟含量有所降低,中东部的大部分地区水氟含量则有升高趋势。与1985年相比,在我省平原和岗区,高氟水面积减少了3474km2(表3-11)。安阳—淇县一带的太行山前地带、洛阳以西的平原和岗区包括灵三盆地和伊洛盆地西部、黄淮海平原西南部南阳盆地唐河—泌阳段等地浅层地下水中的氟化物含量自1985年以来未发生变化,仍属于低氟水区;新乡—焦作—沁阳—孟州—温县—武陟所构成的环形地带、洛阳—巩义—郑州市区一带、新郑—尉氏—开封县、杞县—民权等地水氟含量也未发生大的变化,仍属于中氟水区;清丰—濮阳—浚县、台前—范县—濮阳县南部沿黄地带、修武—获嘉、虞城等地,水氟含量保持不变,在1~2mg/l之间,仍属于高氟水。豫北的南乐—内黄—滑县—长垣一带和南阳盆地的邓州市北部及唐河县西北部地区水氟含量有所降低。长葛—通许—太康—睢县—宁陵—永城南部以及兰考、中牟、项城、沈丘等地水氟含量有所增加。

表3-11 不同时期河南省浅层地下水氟含量变化情况对比表

(五)总硬度大面积升高

与1985年相比,豫北的浚县—濮阳、豫西的洛宁、豫东的周口—郸城、豫南的罗山—潢川等局部地段硬度略有降低,灵三盆地、沿黄地带孟津—兰考段、中部的宝丰—临颍—太康、豫南的上蔡—信阳一带和南阳盆地东部硬度基本保持不变,其余大部分地区硬度普遍升高。由表3-12可以看出,超标区(含量>450mg/l)面积较1985年增加了23380km2。目前,我省平原地区浅层地下水总硬度超标范围已达45047km2。这是因为城市大量排放工业废水与生活污水,以及城市郊区引用污水灌溉,污废水中很多酸、碱、盐类等物质被带进土壤层,经过化合分解、离子交换与离子效应等化学作用,把土壤中的钙、镁物质溶解或置换出来。同时,工业废渣和城市生活垃圾里含有许多有机物与无机物,它们被随意堆放,或用作农肥,在阳光、氧气、二氧化碳、水分以及生物的作用下,发生分解、氧化,也把土壤中的钙、镁物质置换出来。这些钙、镁物质又随雨水、灌溉水和污废水渗入地下,从而引起浅层地下水硬度的升高。

表3-12 不同时期河南省浅层地下水总硬度变化情况对比表

㈦ 环境污染的危害

1、对人体健康的危害

人需要呼吸空气以维持生命。一个成年人每天呼吸大约2万多次,吸入空气达15~20立方米。因此,被污染了的空气对人体健康有直接的影响。大气污染物对人体的危害是多方面的,表现为呼吸系统受损、生理机能障碍、消化系统紊乱、神经系统异常、智力下降、致癌、致残。人们把这个灾难的烟雾称为"杀人的烟雾"。

2、对植物危害

大气污染物,尤其是二氧化硫、氟化物等对植物的危害是十分严重的。当污染物浓度很高时,会对植物产生急性危害,使植物叶表面产生伤斑,或者直接使叶枯萎脱落;当污染物浓度不高时,会对植物产生慢性危害,使植物叶片褪绿,或者表面上看不见什么危害症状,但植物的生理机能已受到了影响。

3、酸雨

指降水的pH值低于5.6时, 降水即为酸雨。煤炭燃烧排放的二氧化硫和机动车排放的氮氧化物是形成酸雨的主要因素;其次气象条件和地形条件也是影响酸雨形成的重要因素。

4、一氧化碳(CO)

一氧化碳是无色、无臭的气体。主要来源于含碳燃料、卷烟的不完全燃烧,其次是炼焦、炼钢、炼铁等工业生产过程所产生的。人体吸入一氧化碳易与血红蛋白相结合生成碳氧血红蛋白,而降低血流载氧能力,导致意识力减弱,中枢神经功能减弱,心脏和肺呼吸功能减弱;受害人感到头昏、头痛、恶心、乏力,甚至昏迷死亡。

5、氟化物(F)

指以气态与颗粒态形成存在的无机氟化物。主要来源于含氟产品的生产、磷肥厂、钢铁厂、冶铝厂等工业生产过程。氟化物对眼睛及呼吸器官有强烈刺激,吸入高浓度的氟化物气体时,可引起肺水肿和支气管炎。长期吸入低浓度的氟化物气体会引起慢性中毒和氟骨症,使骨骼中的钙质减少,导致骨质硬化和骨质疏松。

㈧ 焦化废水的来源

分类: 教育/科学 >> 科学技术 >> 工程技术科学
问题描述:

焦化废水是如何产生的???

解析:

焦化废水是由原煤的高温干馏、煤气净化和化工产品精制过程中产生的。废水成分复杂,其水质随原煤组成和炼焦工艺而变化。核磁共振色谱图中显示:焦化废水中含有数十种无机和有机化合物。其中无机化合物主要是大量氨盐、硫氰化物、硫化物、氰化物等,有机化合物除酚类外,还有单环及多环的芳香族化合物、含氮、硫、氧的杂环化合物等。总之,焦化废水污染严重,是工业废水排放中一个突出的环境问题。

《污水综合排放标准》(GB8978-96)对焦化废水新改扩建项目要求:NH 3 -N≤15mg/L,COD≤100mg/L。过去,国内外去除焦化废水中的NH 3 -N和COD主要采用生化法,其中以普通活性污泥法为主,该方法可有效去除焦化废水中酚、氰类物质,但对于难降解有机物和NH 3 -N去除效果较差,难以达标排放。难降解有机物的处理已引起国内外有关学者的高度重视,许多学者对难降解有机物进行了大量研究,同时改进了焦化废水中NH 3 -N脱除工艺,提出了许多切实可行的处理设施和技术,使出水COD和NH 3 -N浓度大大降低。本文将介绍几种先进有效的焦化废水的处理技术。

1 焦化废水的预处理技术

去除焦化废水中的有机物主要采用生物处理法,但其中部分有机物不易生物降解,需要采用适当的预处理技术。常用的预处理方法是厌氧酸化法。

厌氧酸化法是一种介于厌氧和好氧之间的工艺,其作用机理是通过厌氧微生物水解和酸化作用使难降解有机物的化学结构发生变化,生成易降解物质。厌氧微生物对于杂环化合物和多环芳烃中环的裂解,具有不同于好氧微生物的代谢过程,其裂解为还原性裂解和非还原性裂解。厌氧微生物体内具有易于诱导、较为多样化的健全开环酶体系,使杂环化合物和多环芳烃易于开环裂解。焦化废水中存在较多的易降解有机物,可以作为厌氧酸化预处理中微生物生长代谢的初级能源和碳源,满足了厌氧微生物降解难降解有机物的共基质营养条件。焦化废水经厌氧酸化预处理后,可以提高难降解有机物的好氧生物降解性能,为后续的好氧生物处理创造良好条件 [1] 。赵建夫等 [2] 将水解一酸化作为焦化废水预处理工艺,废水经6h水解一酸化,12h好氧生化处理,COD去除率达91%,比传统的生化处理法提高了近40% [3] 。

2 焦化废水的二级处理技术

焦化废水经预处理后,废水的可生化性得到了提高,但其中难降解有机物不能彻底分解为CO2和H2O,必须进行二级处理。焦化废水的二级处理方法很多,有生物化学法、物理法、化学法以及物理化学法等。目前,效果较好的二级处理技术主要有以下几种。

2.1 催化湿式氧化技术

催化湿式氧化技术是80年代国际上发展起来的一种治理高浓度有机废水的新技术,是在一定温度、压力下,在催化剂作用下,经空气氧化使污水中的有机物、氨分别氧化分解成CO2、H2O及N2等无害物质,达到净化目的。其特点是净化效率高,流程简单,占地面积少。杜鸿章等研制出适合处理焦化厂蒸氨、脱酚前浓焦化污水的湿式氧化催化剂,该催化剂活性高,耐酸、碱腐蚀,稳定性高,适用于工业应用,对CODcr及NH 3 -N的去除率分别为99.5%及99.9%;而且,经催化湿式氧化法治理焦化废水小试结果估算,治理费用与生化法相近,但处理后的水质远优于生化法。从技术、经济指标、环境效益分析采用催化湿式氧化法治理焦化废水经济可行 [4] 。

2.2 生物强化技术

生物强化技术是指在生物处理体系中投加具有特定功能的微生物来改善原有处理体系的处理效果。投加的微生物可以来源于原有的处理体系,经过驯化、富集、筛选、培养达到一定数量后投加,也可以是原来不存在的外源微生物。实际应用中这两种方法都有采用,主要取决于原有处理体系中的微生物组成及所处的环境 [5] 。这一技术可以充分发挥微生物的潜力,改善难降解有机物生物处理效果 [6-7] 。Selvaratnam等 [8] 通过在活性污泥中投加苯酚降解菌Psendomonas Pvotida ATCC11172,提高了苯酚的去除率,系统在40d内一直保持在95%-100%的苯酚去除率,而没有进行生物强化的对照组中苯酚去除率开始很高,但很快降到40%左右。

2.3 纷顿试剂技术

纷顿试剂对有机分子的破坏是非常有效的,其实质是二价铁离子和过氧化氢之间的链反应催化生成·OH自由基,三价铁离子催化剂(称纷顿类试剂)也能激发这个反应,这两个反应生成的·OH自由基能有效地氧化各种有毒的和难处理的有机化合物;或者采用紫外灯作为辐射能源放射紫外线进入废水,当过氧化氢被紫外光激活后,反应产物是一个高反应性的·OH自由基,这个·OH基团迅速引发氧化链反应,最终有机化合物被分解为CO2和H2O。K.Banerjeek等经实验证明:采用过氧化氢添加铁盐和同时采用紫外光、过氧化氢和催化剂的两个处理过程都能有效地减少焦化废水中COD浓度 [9] 。

2.4 固定化细胞技术

固定化细胞(简称IMC)技术是通过采用化学或物理的手段将游离细胞或酶定位于限定的空间区域内,使其保持活性并可反复利用的方法。制备固定化细胞可采用吸附法、共价结合法、交联法、包埋法等。固定化细胞技术充分发挥了高效菌种或遗传工程菌在降解有机物治理中的降解潜力,该技术特点是细胞密度高,反应迅速,微生物流失少,产物分离容易,反应过程控制较容易,污泥产生量少,可去除氮和高浓度有机物或某些难降解物质 [10] 。

Amanda等 [11] 以PVA-H3BO3包埋法固定化假单孢菌Psendomonas,在流化反应器中连续运行2周,进水酚浓度从250mg/L逐渐提高到1300mg/L,出水酚浓度均为0。

2.5 三相气提升循环流化床

蔡建安 [12] 经实验研究证明:用三相气提升内循环流化床反应器(AZLR)处理焦化废水比活性污泥法效果好,其处理负荷高,COD进水负荷为13kg/(d·m 3 ),COD去除的容积负荷可达7kg/(d·m 3 )。它对酚、氰等污染物的耐受力强,去除效果好,并具有较低的曝气能耗,其COD去除率为54.4%~76%,酚的去除率为95%~99.2%,氰去除率为95%~99.2%。

2.6 缺氧-好氧-接触氧化法

该工艺在缺氧过程溶解氧控制在0.5mg/L以下,兼性脱氮菌利用进水中的COD作为氢供给体,将好氧池混合液中的硝酸盐及亚硝酸盐还原生成氨气排入大气,同时利用厌氧生物处理反应过程中的产酸过程,把一些复杂的大分子稠环化合物分解成低分子有机物。在好氧过程溶解氧在3~6mg/L范围内,先由好氧池中的碳化菌降解易降解的含碳化合物,再由亚硝酸盐菌和硝酸盐菌氧化氨氮;在接触氧化过程溶解氧控制在2~4mg/L,能够进一步降解难降解有机物,脱除氨氮、磷,对水质起关键作用。山西省临汾市煤气化公司采用这一工艺,出水水质由处理前COD3000mg/L、氨氮650mg/L、酚250mg/L,经处理后分别变为140mg/L、230mg/L、0.9mg/L,基本接近《污水综合排放标准》 [13] 。

3 焦化废水深度处理技术

焦化废水二级出水中COD和NH 3 -N常常超标,应进行三级处理。许多学者已研究出了一些三级处理方法,如化学氧化法、折点加氯法、絮凝沉淀辅以加氯法、吸附过滤辅以离子交换法等,但由于经济和技术的原因,这些方法均处于试验阶段,目前较为经济可行的三级处理方法主要有以下两种。

3.1 氧化塘深度处理法

氧化塘深度处理焦化废水简单易行,处理效果好,能耗低,易管理,费用低。COD进水浓度在250-400mg/L范围内,该方法对COD处理效果较为理想。氧化塘对低浓度焦化废水进行处理的适宜pH值为6-8,最佳pH值为7;适宜温度范围为25-35℃,最佳温度为35℃。如果投加生活污水于焦化废水中,其COD和NH 3 -N去除率都可得到提高。藻类吸收作用是焦化废水氧化塘脱除NH 3 -N的主要途径,硝化反应是焦化废水NH 3 -N转化的重要反应。吴红伟等经试验证明,采用氧化塘深度处理焦化废水,COD、NH 3 -N均可达标排放 [14] 。

3.2 粉煤灰吸附法

X光衍射仪测定结果表明:粉煤灰主要成分是SiO 2 、Al 2 SO 5 、NaAlSiO 4 等,将粉煤灰作为吸附剂深度处理焦化废水,脱色效果好,对CODcr、挥发酚、油等去除效果好,费用低廉。张兆春 [15] 等研究表明腐植酸类物质-长焰煤作为吸附剂对焦化废水中化学耗氧物质具有较快的吸附速率以及可观的吸附容量,可以对焦化废水进行深度处理。山西焦化厂采用生化-粉煤灰深度处理焦化废水的工艺技术,经处理后,除氨氮偏高外,CODcr、挥发酚、硫化物、氰化物、BOD5等污染物浓度均低于国家规定的允许排放标准,处理后的水60%被回用。

4 结束语

深入研究焦化废水的先进处理技术,既是当前经济建设面临的现实问题,也是将来进行技术攻关的重点,我们应该寻求既高效又经济的处理技术,改善环境质量,实现水资源的循环利用。

㈨ 煤化工废水预处理的工艺

煤化工废水预处理的工艺具体内容是什么,下面中达咨询为大家解答。
目前,节能环保已成为社会经济可持续发展的必然要求,零排放理念已成为整个社会公认的环保理念。随着国家对污染物排放的控制力度日益加强,加之我国大型煤化工基地普遍处于缺水地区,所以强化污水治理,实现废水的循环利用和零排放,节约水资源,现已成为煤化工企业技术发展的必然趋势和社会义务。某公司造气装置采用鲁奇加压气化工艺和设备,气化剂为纯氧和中压蒸汽。气化过程中,一些干馏附产物及未能气化分解的水蒸汽和煤炭的内在水分,构成了煤制气废水。煤制气产生的废水经过汽提和分离提取副产物(中油、焦油),含油量降低后的含酚废水经萃取剂脱酚后送到生化处理装置并经生化处理后,煤制气废水再被送到电厂进行冲渣处理,然后排入贮灰场,经过灰渣吸附达到国家一级排放标准后排放。由于城市煤气用量的不断增大以及工厂使用的原料煤煤质指标远劣于原设计用煤的煤质指标(原滚族设计造气用煤灰份为26%,现实际用煤平均灰份为38%,甚至有时灰份超过50%),造成造气废水水量、水质都已经超出了原设计指标范围。并且原设计的造气废水排放指标是按《废水综合排放标准》中二级标准设计的(COD为200mg/L,BOD为60mg/L)。而目前原设计的技术及规模已不能满足现在工厂造气废水的处理要求,从而导致排放的造气废水中主要污染物COD、NH3-N和挥发酚超出国家一级排放标准。虽然目前采用了新的污水预处理工艺,同时放大和改进原有污水处理装置,来实现生化处理装置入水指标的合格,但实际上此新工艺在运行中也存在诸多非常突出的问题。
1目前工艺条件情况简介
煤化工腔备掘废水是在煤的气化、干馏、净化及化工产品合成过程中产生的废水。煤化工废水的污染物浓度高,成分复杂。除含有氨、氰、硫氰根等无机污染物外,还含有酚类、萘、吡啶、喹啉、蒽等杂环及多环芳香族化合物(PAHs),是一种最难以治理的工业废水,处理难度大,处理成本高。我们知道,要想得到符合排放标准要求的工业废水,对废水的前期预处理以及副产物分离是至关重要的两个关键环节,其处理结果将直接影响后期的生化处理法和物理法装置系统的稳定运行,所以要求前期预处理装置必须运行稳定。(表1某煤化工厂污水水质分析)
2副产品分离工艺说明(除油、脱酸、脱氨)
煤化工气化洗涤等原料污水先进入1#、2#污水槽,自然沉淀分离除油及部分机械杂质后,经原料污水泵升压后分两路,进入塔进行脱酸、脱氨。一路经换热器与循环水换热冷却至35℃左右,作为脱酸脱氨塔填料上段冷进料,以控制塔顶温度;另一路经三次换热至150℃左右作为汽提塔的热进料,进入汽提塔的相应塔板上。塔顶出来的酸性气体CO2,H2S等经冷却器冷却,经分液罐分液,分液后的气体送入气柜或火炬,分凝液相返回酚水罐。当塔顶采出的气相中含水量和含氨量较低时,也可不经冷却直接进气柜或火炬。
侧线粗氨气经一级冷凝器与原料水换热至125-140℃左右后,进入一级分凝器进行气液分离,气氨从上部出去,经二级冷却器与循环水换热冷却至85-95℃后进入二级分凝器。自二级分凝器出来的粗氨气经三级冷却器与循环水换热冷却之后进入三级分凝器,富氨气进入氨精制系统进行精制,塔底净化水经换热器换热冷却后,进入后续装置。
3存在问题的分析
经过一段时间的运行发现装置运行不稳定,换热器严重结垢,达不到设计温度,蒸汽耗量也随之上升,同时脱酸脱氨塔内由于严重结垢致使浮阀塔件经常堵塞,直接影响了初期的水质处理。装置连续运行周期不足一月,后期的运行周期逐渐缩短。原因分析:主要是由于采用的煤质质量不可逆的普遍下降原因导致的。由于煤质灰分的逐渐上升,煤气夹带飞灰量增高,导致污水中含尘、有机悬浮杂质增高多,在升温过程中的析出沉积在换热设备表面形成坚硬的复合水垢导致换热器堵塞,塔伍核板塔件被密实,从而影响装置运行。
4解决问题
4.1 研究处理办法消除部分悬浮类物质,同时加大塔件内流通面积,改变加热方式。直接方法:脱酸脱氨塔的塔件更换;对换热器进行物理、化学清洗。间接方法:加强预处理,采用强制过滤装置(活性焦过滤器)降低结垢物质含量;部分直接加热改为间接加热根据季节和水质进行调节切换。
4.2 可实施的解决方法采用新型塔内件代替原有塔内件,对换热器经行集中清理,判别主要结垢温度条件。采用深度预处理强制过滤装置降低水中无机盐类及悬浮物类结垢物质,改变部分间接加热为直接加热。
5理论基础原因说明
5.1 塔内件对比图片
5.2 径向侧导喷射塔盘(CJST)工作原理及技术特点
5.2.1 径向侧导喷射塔盘(CJST)工作原理由下一层塔板上升的气体从板孔进入帽罩,由于气体通过板孔时被加速,能量转化,板孔附近的静压强降低,致使帽罩内外两侧产生压差,使板上液体由帽罩底部缝隙被压入帽罩内,并与上升的高速气流接触后,改变方向被提升拉成环状膜,向上运动。在此过程中, 极不稳定的液膜被高速气流拉动撞击分离板后被破碎成直径不等的液滴。气液两相在帽罩内进行充分的接触、混合,然后经罩体筛孔垂直喷射,气液开始分离,气体上升进入上一层塔板,液滴落回原塔板。
5.2.2 径向侧导喷射塔盘技术特点:①处理能力大。CJST塔板,由于帽罩的特殊结构,气体离开罩呈水平或向下方向喷出,这拉大了气液分离空间和时间,使气体雾沫夹带的可能性大为降低,这使塔板气体通道的板孔开孔率可大幅提高,一般可达20%~30%。而在开孔率相同时可允许操作气速比一般塔板高出1.5-2.0倍,仍能将气体雾沫夹带限定在允许范围以内。其次,气体携带液体并流进入帽罩,而不是像浮阀等塔板气体穿过板上液层,因而使塔板流动的液体基本上为不含气体的清液,故降液管液泛的可能性大为降低,即同样截面积的降液管,液体通过能力也可提高近一倍,所以对于扩产改造项目,保留原塔体,只需更换成新型塔板就可将塔的处理量提高100%以上。②传质效率高。CJST塔板,由于帽罩的存在,罩内液气比大,液相在气相中分散较好,特别是气液混合物撞击分离板后改变方向或折返,使液膜不断破碎、更新,气液接触混合非常激烈,对于喷射段由于液体经喷射分散度更高,颗粒更小,使气液接触面积增大。研究证明这一阶段不仅是液滴的沉降,传质作用仍在进行,罩内外基本上都是有效传质区域,塔板空间都得到充分利用。因此传质、传热过程比浮阀内进行的充分、完全,所以可达到总的塔板传质效率比浮阀高出15%以上的效果。③抗堵塞能力强。由于塔板板孔较大且无活动部件,一般不易被较脏或粘性物料堵塞。另外,气液是在喷射状态下离开帽罩的,气速较高,对罩孔本身有较强的自冲洗能力。物流中含有的颗粒、聚合物、污垢等杂质难以在罩孔聚集并堵塞罩孔。④阻力降低。CJST塔板气体并不穿过板上液层,只需克服被气体提升的那部分液体的重力,所以造成的压降要小,塔板压降在低负荷时与F1型浮阀相当,高负荷时比F1浮阀低20%~30%,负荷愈大,压降低的愈多。⑤操作弹性好。与普通塔板相比,这类塔板的板孔动能因子F0更大,不易出现降液管液泛和过量液沫夹带等不正常现象,即操作上限动能因子大,其操作弹性下限与浮阀相当上限要比浮阀稍高一些。⑥通过导向喷射,大大降低塔盘上的液面梯度,使得塔盘气体分布较为均匀,它非常适合大塔径单溢流塔板。⑦喷出的液体方向与塔盘液体流动方向一致,从而降低了液相返混程度。⑧导向喷射减小了液面梯度和液层厚度,使得塔板的总体压降降低。⑨操作条件适应性强,适用于高压强与较低真空以及高液气比与低液气比下操作。⑩操作简便可靠,这类塔板从开工启动到稳定运行时间很短,并能持续稳定生产,这与它具有很好的传质效率有关。
根据以上的特殊优越性能实现主装置自身的长周期运行。
5.3 深度预处理强制过滤装置(活性焦过滤器)采用此装置,科降低水中无机盐类及悬浮物类结垢物质,改变部分间接加热为直接加热。
5.3.1 活性焦过滤器优点说明目前,因国内难处理工业废水治理市场需求较小,活性焦多活跃在焦化废水、造纸废水、制药废水等领域,主要应用于其工艺废水中有机物脱除和脱色。随着环保形势日趋紧张的现实要求,加之其逐渐展现出来的处理能力,活性焦将会在煤化工综合废水处理中得到更广泛的应用。
5.3.2 与我们目前所使用的活性炭(煤质破碎炭为主的系列品种)的性能相比较活性焦因结构上中孔发达,其性能指标表现在――碘值有所降低,但亚甲蓝值、糖蜜值大为增高,从而在应用上表现出能吸附大分子、长链有机物的特性。由于资源优势的存在,生产成本及生产得率均比破碎炭有一定的优势,其售价还不到活性炭的50%,单纯从原料成本一个角度就大大降低了工艺的运行成本。
5.3.3 活性焦产品质量指标为:
①强度Hardness (w%) 91
②亚甲蓝Methylene blue(mg/g)60
③灰分Ash (w%)12.5
④装填密度Apparent Density(g/l)540
⑤碘值Lodine No.(mg/g)620
⑥比表面积(N2吸附)Specific surface area(m2/g) 490
⑦糖蜜值 Sugar Phickness(mg/g)>200
⑧粒度 Particle size distribution(w%)
0~3.15mm:其中>1.25 92%
5.3.4 吸附原理及主要性能参数(吸附容量和吸附速率)
5.3.5 吸附原理活性焦不断吸附水中溶质,直到吸附平衡即溶质浓度不再改变时为止。一定温度下,达到吸附平衡时,单位重量活性焦所吸附的溶质重量和水中溶质浓度的关系曲线,称为吸附等温线。其曲线常用弗罗因德利希公式表示:X/M=kC1/n
式中:X为活性炭吸附的溶质量;M为所加活性焦重量;C为达到吸附平衡时,水中溶质浓度;k和n为试验得出的常数。
5.3.6 主要性能参数(吸附容量和吸附速率)①吸附容量。吸附容量是单位重量活性焦达到吸附饱和时能吸附的溶质量,和原料、制造过程及再生方法有关。吸附容量越大,所用活性焦量越省。②吸附速率。吸附速率是指单位重量活性焦在单位时间内能吸附的溶质量。因吸附有选择性,性能参数应由实验测定。颗粒活性焦要有一定的机械强度和粒径规格。
5.4 活性焦在水处理中的应用
5.4.1 非煤化工废水应用概述活性焦最早用于去除生活用水的臭味。沼泽水常带土味,湖泊和水库水常带藻类形成的臭味,用活性焦处理最为有效,并且只需在出现臭味时使用。大多用粉状活性焦,直接投入混凝沉淀池或曝气池内,随污泥排除,不再回收利用。活性焦能去除水中产生臭味的物质和有机物,如酚、苯、氯、农药、洗涤剂、三卤甲烷等。此外,对银、镉、铬酸根、氰、锑、砷、铋、锡、汞、铅、镍等离子也有吸附能力。在给水处理厂中,活性焦吸附法又起完善水质的作用。
5.4.2 煤化工工艺活性焦应用说明本工艺采用的设备是以粒状活性焦为滤料的过滤器,运行过程中须定期反复冲洗,以除去焦层中的悬游物,防止水头损失过大(见过滤)。活性焦滤器也可采用流化床或移动床。与快滤池不同,水流均从下而上。流化床的流速会使炭层膨胀,不易阻塞。移动床内失效的炭会从池底连续排出,而新活性焦会从池顶连续补充。活性焦的再生。粒状活性焦吸附容量耗尽后再生,常用的方法是加热法,废焦烘干后在850°C左右的再生炉内焙烧。颗粒活性焦每次再生约损耗5~10%,且吸附容量逐次减少。再生效率对活性焦滤池的运行费用(也就是对水处理成本)影响极大。由于活性焦吸附水中有机物的能力特强,而微生物降解有机物的能力将起到再生活性焦的作用。同时活性焦的关键作用会大大降低进入换热器和脱氨脱酚的悬浮物、大颗粒飞灰和有机物含量,从而起到预处理保护作用,实现了污水处理主要装置的长周期的正常稳定运行。另外,转化为固态污染物的活性焦还是良好的循环流化床燃料,可充分消除对环境污染。
6工艺改造
①脱酸脱氨塔件的改造,由原来的浮阀塔板,改造更换为径向侧导喷射塔板。②入脱酸脱氨塔前增加深度预处理强制过滤装置(活性焦过滤器)。③适当的对塔底改变加热方式,对含悬浮较少的塔底液进行加热,改变来料预热方式。改造后工艺装置见图4。
7取得的效果
7.1 原料水的改变煤化工制气废水经活性焦过滤后出水水质(mg/L)分析见表2。
7.2 运行周期变化煤化工制气废水预处理装置改造前后运行后周期等对比见表3。
7.3 煤化工制气废水经萃取后出水水质分析见表4。
8小结
①通过以上改造后装置达到了稳定运行,成本投资不大。
②预处理运行稳定后,出水水质连续稳定,完全满足后续生化处理法的要求,为达标排放提供关键前提条件。
③对后续生化法、物理法处理装置的稳定运行起到了重要保障,特别是采用单塔蒸汽汽提脱酸脱氨后有机溶剂萃取法提取副产物,对北方冬季煤化工污水处理装置的连续达标稳定运行具有重要的指导意义。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

阅读全文

与煤灰渣场废水挥发酚相关的资料

热点内容
戴森净化器黄色曲线代表什么 浏览:95
农村污水治理都有哪些参考 浏览:10
水蒸气蒸馏物质的量之比 浏览:540
进口ro滤芯什么的好 浏览:995
钠离子交换浓水 浏览:261
净水器一直咕咕叫是什么原因 浏览:136
净水器tds值降多少算正常 浏览:22
炼汞蒸馏炉 浏览:831
水壶里边有了水垢怎样处理 浏览:89
买净化器看什么 浏览:86
净水器滤芯一级是什么 浏览:508
室外污水波纹管焊接参数 浏览:732
青岛污水池膜结构盖板多少钱 浏览:2
如何选择客厅净水器 浏览:530
整栋楼的污水主管道如何疏通 浏览:987
童衣树脂四合扣 浏览:775
不锈钢开水壶水垢怎么清理 浏览:58
营口红润污水处理 浏览:232
超滤水烧开后有白色沉淀物是什么 浏览:399
园区污水排放量如何计算 浏览:534