导航:首页 > 污水知识 > 有机废水处理的基本设计与计算

有机废水处理的基本设计与计算

发布时间:2024-04-30 11:18:21

A. 关于水处理方面的书籍

1、《现代膜技术与水处理工艺》,作者:张萱;

2、《现代水处理技术》,作者:冯敏;

3、《工业水处理技术问答》,作者:金熙;

4、《污水处理厂工艺设计手册》,作者:王社平;

5、《有机废水处理的基本设计与计算》,作者:王光裕;

6、《水的深度处理与回用技术》,作者:张林生;

7、《光催化水处理技术明链》,作者:张峰;

8、《循环冷却水技术问答》,作者:齐唤槐缓冬子;

9、《废水处理生物膜》和模,作者:温沁雪;

10、《工业水处理及实例精选》,作者:窦照英。

B. 废水处理的技术

【技术概述】
微电解技术是处理高浓度有机废水的一种理想工艺,该工艺用于高盐、难降解、高色度废水的处理不但能大幅度地降低cod和色度,还可大大提高废水的可生化性。
该技术是在不通电的情况下,利用微电解设备中填充的微电解填料产生“原电池”效应对废水进行处理。当通水后,在设备内会形成无数的电位差达1.2V 的“原电池”。“原电池”以废水做电解质,通过放电形成电流对废水进行电解氧化和还原处理,以达到降解有机污染物的目的。在处理过程中产生的新生态[?O H] 、[H] 、[O]、Fe2+ 、Fe3+等能与废水中的许多组分发生氧化还原反应,比如能破坏有色废水中的有色物质的发色基团或助色基团,甚至断链,达到降解脱色的作用;生成的Fe2+ 进一步氧化成Fe3 +,它们的水合物具有较强的吸附- 絮凝活性,特别是在加碱调pH 值后生成氢氧化亚铁和氢氧化铁胶体絮凝剂,它们的絮凝能力远远高于一般药剂水解得到的氢氧化铁胶体,能大量絮凝水体中分散的微小颗粒、金属粒子及有机大分子.其工作原理基于电化学、氧化- 还原、物理以及絮凝沉淀的共同作用。该工艺具有适用范围广、处理效果好、成本低廉、处理时间短、操作维护方便、电力消耗低等优点,可广泛应用于工业废水的预处理和深度处理中。
【技术特点】
⑴反应速率快,一般工业废水只需要半小时至数小时;
⑵作用有机污染物质范围广,如:含有偶氟、碳双键、硝基、卤代基结构的难除降解有机物质等都有很好的降解效果;
⑶工艺流程简单、使用寿命长、投资费用少、操作维护方便、运行成本低、处理效果稳定。处理过程中只消耗少量的微电解填料。填料只需定期添加无需更换,添加时直接投入即可。
⑷废水经微电解处理后会在水中形成原生态的亚铁或铁离子,具有比普通混凝剂更好的混凝作用,无需再加铁盐等混凝剂,COD去除率高,并且不会对水造成二次污染;
⑸具有良好的混凝效果,色度、COD去除率高,同量可在很大程度上提高废水的可生化性。
⑹该方法可以达到化学沉淀除磷的效果,还可以通过还原除重金属;
⑺对已建成未达标的高浓度有机废水处理工程,用该技术作为已建工程废水的预处理,即可确保废水处理后稳定达标排放。也可将生产废水中浓度较高的部分废水单独引出进行微电解处理。
⑻该技术各单元可作为单独处理方法使用,又可作为生物处理的前处理工艺,利于污泥的沉降和生物挂膜
【适用废水种类】
⑴.染料、化工、制药废水;焦化、石油废水; ------上述废水处理水后的BOD/COD值大幅度提高。
⑵. 印染废水;皮革废水;造纸废水、木材加工废水;
------对脱色有很好的应用,同时对COD与氨氮有效去除。
⑶. 电镀废水;印刷废水;采矿废水;其他含有重金属的废水;
------可以从上述废水中去除重金属。
⑷. 有机磷农业废水;有机氯农业废水;
------大大提高上述废水的可生化性,且可除磷,除硫化物
新型填料
【技术概述】
它由多元金属合金融合催化剂并采用高温微孔活化技术生产而成,属新型投加式无板结微电解填料。作用于废水,可高效去除COD、降低色度、提高可生化性,处理效果稳定持久,同时可避免运行过程中的填料钝化、板结等现象。本填料是微电解反应持续作用的重要保证,为当前化工废水的处理带来了新的生机。
【铁炭原电池反应】
阳极:Fe - 2e →Fe2+ E(Fe / Fe2+)=0.44V
阴极:2H﹢ + 2e →H2 E(H﹢/ H2)=0.00V
当有氧存在时,阴极反应如下:
O2 + 4H﹢ + 4e → 2H2O E (O2)=1.23V
O2 + 2H2O + 4e → 4OH﹣ E(O2/OH﹣)=0.41V 电镀和金属加工业废水中锌的主要来源是电镀或酸洗的拖带液。污染物经金属漂洗过程又转移到漂洗水中。酸洗工序包括将金属(锌或铜)先浸在强酸中以去除表面的氧化物,随后再浸入含强铬酸的光亮剂中进行增光处理。
该废水中含有大量的盐酸和锌、铜等重金属离子及有机光亮剂等,毒性较大,有些还含致癌、致畸、致突变的剧毒物质,对人类危害极大。因此,对电镀废水必须认真进行回收处理,做到消除或减少其对环境的污染。
电镀混合废水处理设备由调节池、加药箱、还原池、中和反应池、pH调节池、絮凝池、斜管沉淀池、厢式压滤机、清水池、气浮反应,活性炭过滤器等组成。
电镀废水处理采用铁屑内电解处理工艺,该技术主要是利用经过活化的工业废铁屑净化废水,当废水与填料接触时,发生电化学反应、化学反应和物理作用,包括催化、氧化、还原、置换、共沉、絮凝、吸附等综合作用,将废水中的各种金属离子去除,使废水得到净化。 重金属废水主要来自矿山、冶炼、电解、电镀、农药、医药、油漆、颜料等企业排出的废水。如果不对重金属废水处理,就会严重污染环境。废水处理中重金属的种类、含量及存在形态随不同生产企业而异。除重金属在废水处理中显得很重要。
由于重金属不能分解破坏,而只能转移它们的存在位置和转变它们的物理和化学形态,达到除重金属的目的。例如,废水处理过程中,经化学沉淀处理后,废水中的重金属从溶解的离子形态转变成难溶性化合物而沉淀下来,从水中转移到污泥中;经离子交换处理后,废水中的重金属离子转移到离子交换树脂上,经再生后又从离子交换树脂上转移到再生废液中。
因此,废水处理除重金属原则是:
除重金属原则一:最根本的是改革生产工艺.不用或少用毒性大的重金属;
除重金属原则二:是采用合理的工艺流程、科学的管理和操作,减少重金属用量和随废水流失量,尽量减少外排废水量。重金属废水处理应当在产生地点就地处理,不同其他废水混合,以免使处理复杂化。更不应当不经除重金属处理直接排入城市下水道,以免扩大重金属污染。
废水处理除重金属的方法,通常可分为两类:
除重金属方法一:是使废水中呈溶解状态的重金属转变成不溶的金属化合物或元素,经沉淀和上浮从废水中去除.可应用方法如中和沉淀法、硫化物沉淀法、上浮分离法、电解沉淀(或上浮)法、隔膜电解法等废水处理法;
除重金属方法二:是将废水中的重金属在不改变其化学形态的条件下进行浓缩和分离,可应用方法有反渗透法、电渗析法、蒸发法和离子交换法等。这些废水处理方法应根据废水水质、水量等情况单独或组合使用。 陶瓷膜也称GT膜,是以无机陶瓷原料经特殊工艺制备而成的非对称膜,呈管状或多通道状。陶瓷膜管壁密布微孔,在压力作用下,原料液在膜管内或膜外侧流动,小分子物质(或液体)透过膜,大分子物质(或固体颗粒、液体液滴)被膜截留从而达到固液分离、浓缩和纯化之目的。
在膜科学技术领域开发应用较早的是有机膜,这种膜容易制备、容易成型、性能良好、价格便宜,已成为应用最广泛的微滤膜类型。但随着膜分离技术及其应用的发展,对膜的使用条件提出了越来越高的要求,需要研制开发出极端条件膜固液分离系统,和有机膜相比,无机陶瓷膜具有耐高温、化学稳定性好,能耐酸、耐碱、耐有机溶剂、机械强度高,可反向冲洗、抗微生物能力强、可清洗性强、孔径分布窄,渗透量大,膜通量高、分离性能好和使用寿命长等特点。
无机陶瓷膜在废水处理中应用最大的障碍主要有二个方面,其一是制造过程复杂,成本高,价格昂贵;其二是膜通量问题,只有克服膜污染并提高膜的过滤通量,才能真正推广应用到水处理的各个领域。
特点
⑴独有的双层膜结构:涤饵DEAR无机陶瓷膜系统在在膜过滤层表面,通过溶胶一凝胶法制备TiO2溶胶,采用浸渍提拉法在陶瓷膜上涂敷纳米TiO2光催化材料,使陶瓷膜表面具有“自洁”功能,减缓有机在膜表面积累和堵塞,一方面降低膜污染,另一方面提高陶瓷膜管强度和膜过滤通量,提高膜通量稳定性;Al2O3—ZrO2复合膜结构:使膜管机械性能更加优良,由于材料本身的性能缺陷或制备过程中存在的一些实际问题,单一无机膜材料一般不能满足实际需要,因此无机负载复合分离膜的研制得到迅速发展,涤饵DEAR无机陶瓷膜采用整体复合技术,通过溶胶凝胶法,制备Al2O3—ZrO2复合膜,由于含ZrO2材料与Al2O3、SiO2和TiO2等材料相比具有更好的机械强度、化学耐久性和抗碱侵蚀等特性,涤饵DEAR®无机陶瓷膜具有更强的机械强度和热稳定性,而且复合膜的孔径分布窄,呈单峰。
⑵可实现在线反冲,膜通量稳定:由于复合陶瓷膜独特结构和机械性能,能有效承受0.4mp以下的反冲压力,可实现在线反冲,从而获得稳定的膜通量,克服了无机膜系统在水处理应用中价格高、易污染、膜通量小、设备庞大等问题,使无机陶瓷膜系统在水处理中应用成为可能。涤饵DEAR无机陶瓷膜是专为污水处理设计的,其最大特点是膜通量大,其运行膜通量是有机膜10-100倍,是普通多孔陶瓷膜的50-10倍、机械强度高、耐污染、可实现在线反冲。
技术参数
膜层厚度:50—60μm,膜孔径0.01-0.5μm;
气孔率:44—46%;
过滤压力:1.0 Mpa,反冲压力:0.4 Mpa以下;
膜材质:双层膜,外膜TiO2;内膜Al2O3—ZrO2复合膜
应用领域
中水回用;
工业废水回用:
工厂化养殖原水解毒处理;
发电厂、化工厂等大型冷却循环水旁滤系统;
油田采出水回用处理;
轧钢乳化液废液处理;
金属表面清洗液再生处理。

C. 废水处理中设计 反应池间的过水孔的大小怎么算 假如提升泵是80M3 过水孔大小怎么定 是按照什么计算的

反应池间的过水孔的大小由通过的流量和两池间允许的液面髙差确定内。可以应用孔口的流量公式容来计算:
1、按设计规范选定两池间允许的液面髙差h;
2、根据总流量的大小,选择合理的孔数,从而确定单个孔口的流量Q。
3、用孔口的流量公式算出单个孔口的过流面积 A = Q/[μ√(2gh)]
式中孔口的流量系数可取μ=0.61,g为重力加速度。
算出过流面积 A后,若是方孔,开平方就可得到孔口的边长;若是圆孔口,用圆面积公式就可算出孔径。

D. 急!用UASB法处理5000吨每日酒精废水处理工艺论文,要有具体的设计计算!非常感谢

先根据污泥容积负荷确定反应时间计算出流速,再根据这些数据计算出UASB的工艺尺寸。一般出水还要有20%回流。比如污泥负荷10kgCOD/m³*d,一天有3000kgCOD处理,就要20m³污泥处理15小时,再根据每日5000吨废水计算出每小时的流速确定塔的底部面积,底部面积和总容积算出来高度就出来了。
下面有些资料你参考下
(1) 污泥参数
设计温度T=25℃
容积负荷NV=8.5kgCOD/(m3.d) 污泥为颗粒状
污泥产率0.1kgMLSS/kgCOD,
产气率0.5m3/kgCOD
(2) 设计水量Q=2800m3/d=116.67m3/h=0.032 m3/s。
(3) 水质指标
表5 UASB反应器进出水水质指标
水 质 指 标 COD(㎎∕L) BOD(㎎∕L) SS(㎎∕L)
进 水 水 质 3735 2340 568
设计去除率 85% 90% /
设计出水水质 560 234 568

3.5.2 UASB反应器容积及主要工艺尺寸的确定[5]
(1) UASB反应器容积的确定
本设计采用容积负荷法确立其容积V V=QS0/NV
V—反应器的有效容积(m3)
S0—进水有机物浓度(kgCOD/L)
V=3400 3.735/8.5=1494m3
取有效容积系数为0.8,则实际体积为1868m3
(2) 主要构造尺寸的确定
UASB反应器采用圆形池子,布水均匀,处理效果好。
取水力负荷q1=0.6m3/(m2•d)
反应器表面积 A=Q/q1=141.67/0.6=236.12m2
反应器高度 H=V/A=1868/236.12=7.9m 取H=8m
采用4座相同的UASB反应器,则每个单池面积A1为:
A1=A/4=236.12/4=59.03m2
取D=9m
则实际横截面积 A2=3.14D2/4=63.6 m2
实际表面水力负荷 q1=Q/4A2=141.67/5 63.6=0.56
q1在0.5—1.5m/h之间,符合设计要求。
3.5.3 UASB进水配水系统设计
(1) 设计原则
① 进水必须要反应器底部均匀分布,确保各单位面积进水量基本相等,防止短路和表面负荷不均;
② 应满足污泥床水力搅拌需要,要同时考虑水力搅拌和产生的沼气搅拌;
③ 易于观察进水管的堵塞现象,如果发生堵塞易于清除。
本设计采用圆形布水器,每个UASB反应器设30个布水点。
(2) 设计参数
每个池子的流量
Q1=141.67/4=35.42m3/h
(3) 设计计算
查有关数据[6],对颗粒污泥来说,容积负荷大于4m3/(m2.h)时,每个进水口的负荷须大于2m2
则 布水孔个数n必须满足 пD2/4/n>2 即n<пD2/8=3.14 9 9/8=32 取n=30个
则 每个进水口负荷 a=пD2/4/n=3.14 9 9/4/30=2.12m2
可设3个圆环,最里面的圆环设5个孔口,中间设10个,最外围设15个,其草图见图4
① 内圈5个孔口设计
服务面积: S1=5 2.12=10.6m2
折合为服务圆的直径为:

用此直径用一个虚圆,在该圆内等分虚圆面积处设一实圆环,其上布5个孔口
则圆环的直径计算如下:
3.14 d12/4=S1/2

② 中圈10个孔口设计
服务面积: S1=10 2.12=21.2m2
折合为服务圆的直径为:

则中间圆环的直径计算如下:
3.14 (6.362-d22)/4=S2/2
则 d2=5.2m
③ 外圈15个孔口设计
服务面积: S3=15 2.12=31.8m2
折合为服务圆的直径为

则中间圆环的直径计算如下:3.14 (92-d32)=S3/2
则 d3=7.8m
布水点距反应器池底120mm;孔口径15cm

图4 UASB布水系统示意图
3.5.4 三相分离器的设计
(1) 设计说明 UASB的重要构造是指反应器内三相分离器的构造,三相分离器的设计直接影响气、液、固三相在反应器内的分离效果和反应器的处理效果。对污泥床的正常运行和获得良好的出水水质起十分重要的作用,根据已有的研究和工程经验, 三相分离器应满足以下几点要求:
沉淀区的表面水力负荷<1.0m/h;
三相分离器集气罩顶以上的覆盖水深可采用0.5~1.0m;
沉淀区四壁倾斜角度应在45º~60º之间,使污泥不积聚,尽快落入反应区内;
沉淀区斜面高度约为0.5~1.0m;
进入沉淀区前,沉淀槽底缝隙的流速≤2m/h;
总沉淀水深应≥1.5m;
水力停留时间介于1.5~2h;
分离气体的挡板与分离器壁重叠在20mm以上;
以上条件如能满足,则可达到良好的分离效果。
(2) 设计计算
本设计采用无导流板的三相分
① 沉淀区的设计
沉淀器(集气罩)斜壁倾角 θ=50°
沉淀区面积: A=3.14 D2/4=63.6m2
表面水力负荷q=Q/A=141.67/(4 63.6)=0.56m3/(m2.h)<1.0 m3/(m2.h) 符合要求
② 回流缝设计
h2的取值范围为0.5—1.0m, h1一般取0.5
取h1=0.5m h2=0.7m h3=2.4m
依据图8中几何关系,则 b1=h3/tanθ
b1—下三角集气罩底水平宽度,
θ—下三角集气罩斜面的水平夹角
h3—下三角集气罩的垂直高度,m
b1=2.4/tan50=2.0m b2=b-2b1=9-2 2.0=5.0m
下三角集气罩之间的污泥回流缝中混合液的上升流速v1,可用下式计算:
V1=Q1/S1=4Q1/3.14b2
Q1—反应器中废水流量(m3/s)
S1—下三角形集气罩回流缝面积(m2)
符合要求
上下三角形集气罩之间回流缝流速v2的计算: V2=Q1/S2
S2—上三角形集气罩回流缝面积(m2)
CE—上三角形集气罩回流缝的宽度,CE>0.2m 取CE=1.0m
CF—上三角形集气罩底宽,取CF=6.0m
EH=CE sin50=1.0 sin50=0.766m
EQ=CF+2EH=6.0+2 1.0 sin50=7.53m
S2=3.14(CF+EQ).CE/2=3.14 (6.0+7.53) 1.0/2=21.24m2
v2=141.67/4/21.24=1.67m/h
v2<v1<2.0m/h , 符合要求
确定上下集气罩相对位置及尺寸
BC=CE/cos50=1.0/cos50=1.556m
HG=(CF-b2)/2=0.5m
EG=EH+HG=1.266m
AE=EG/sin40=1.266/sin40=1.97m
BE=CE tan50=1.19m
AB=AE-BE=0.78m
DI=CD sin50=AB sin50=0.778 sin50=0.596m
h4=AD+DI=BC+DI=2.15m
h5=1.0m
气液分离设计
由图5可知,欲达到气液分离的目的,上、下两组三角形集气罩的斜边必须重叠,重叠的水平距离(AB的水平投影)越大,气体分离效果越好,去除气泡的直径越小,对沉淀区固液分离效果的影响越小,所以,重叠量的大小是决定气液分离效果好坏的关键。
由反应区上升的水流从下三角形集气罩回流缝过渡到上三角形集气罩回流缝再进入沉淀区,其水流状态比较复杂。当混合液上升到A点后将沿着AB方向斜面流动,并设流速为va,同时假定A点的气泡以速度Vb垂直上升,所以气泡的运动轨迹将沿着va和vb合成速度的方向运动,根据速度合成的平行四边形法则,则有:

要使气泡分离后进入沉淀区的必要条件是:

在消化温度为25℃,沼气密度 =1.12g/L;水的密度 =997.0449kg/m3;
水的运动粘滞系数v=0.0089×10-4m2/s;取气泡直径d=0.01cm
根据斯托克斯(Stokes)公式可得气体上升速度vb为

vb—气泡上升速度(cm/s)
g—重力加速度(cm/s2)
β—碰撞系数,取0.95
μ—废水的动力粘度系数,g/(cm.s) μ=vβ

水流速度 ,
校核:

, 故设计满足要求。

图5 三相分离器设计计算草图
3.5.5 排泥系统设计
每日产泥量为
=3735×0.85×0.1×3400×10-3=1079㎏MLSS/d
则 每个UASB每日产泥量为
W=1097/4=269.75㎏MLSS/d
可用200mm的排泥管,每天排泥一次。
3.5.6 产气量计算
每日产气量 G=3726×0.85×0.5×3400×10-3 =5397 m3/d=224.9 m3/h
储气柜容积一般按照日产气量的25%~40%设计,大型的消化系统取高值,小型的取低值,本设计取38%。储气柜的压力一般为2~3KPa,不宜太大。
3.5.7 加热系统
设进水温度为15°C,反应器的设计温度为25°C。那么所需要的热量:
QH= dF. γF.( tr-t) . qv /η
QH-加热废水需要的热量,KJ/h;
dF-废水的相对密度,按1计算;
γF-废水的比热容,kJ/(kg.K);
qv-废水的流量,m3/h
tr-反应器内的温度,°C
t-废水加热前的温度,°C
η-热效率,可取为0.85
所以 QH=4.2 1 (25-15) 141.67/0.85=7000KJ/h
每天沼气的产量为5397 m3,其主要成分是甲烷,沼气的平均热值为22.7 KJ/L
每小时的甲烷总热量为:(5397/24) 22.7 103=5.1 106 KJ/h,因此足够加热废水所需要的热量。
3.5.8 加碱系统
在厌氧生物处理中,产甲烷菌最佳节pH值是6.8~7.2,由于厌氧过程的复杂性,很难准确测定和控制反应器内真实的pH值,这就要和靠碱度来维持和缓冲,一般碱度要2000~5000mgCaCO3/L时,就会导致其pH值下降,所以,反应器内碱度须保持在1000mgCaCO3/L以上,因为为保证厌氧反应器内pH值在适当的范围内,必须向反应器中直接加入致碱或致酸物质。间接调节pH值。主要致碱药品有:NaCO3、NaHCO 3、NaOH以及Ga(OH)2[6]。
在UASB反应器中安装pH指示仪,并在加碱管路上设有计量装置,将计量装置和pH指示仪用信号线连接起来,根据UASB反应器中pH值的大小来调整加碱量,当UASB反应器中pH值过低时,打开加碱管路上的开关,往UASB反应器中加碱,使pH值下降;反之,当UASB反应器中pH值过高时,关闭加碱管路上的开关,停止加碱,使pH值上升。
3.5.9 活性污泥的培养与驯化 对于一个新建的UASB反应器来说,启动过程主要是用未驯化的絮状污泥(如污水处理厂的消化污泥)对其进行接种,并经过一定时间的启动调试运行,使反应器达到设计负荷并实现有机物的去除效果,通常这一过程会伴随着污泥颗粒化的实现,因此也称为污泥的颗粒化。由于厌氧生物,特别是甲烷菌增殖很慢,厌氧反应器的启动需要很长的时间。但是,一旦启动完成,在停止运行后的再次启动可以迅速完成。当没有现成的厌氧污泥或颗粒污泥时,采用最多的是城市污水处理厂的消化污泥。除了消化污泥之外,可用作接种的物料很多,例如牛粪和各类粪肥、下水道污泥等。一些污水沟的污泥和沉淀物或微生物的河泥也可以被用于接种,甚至好氧活性污泥也可以作为接种污泥,并同样能培养出颗粒污泥。污泥的接种浓度以6~8kgVSS/m3(按反应器总有效容积计算)为宜,至少不低于5 kgVSS/m3,接种污泥的填充量应不超过反应器容积的60%。从负荷角度考虑UASB的初次启动和颗粒化过程,可分为三个阶段:
阶段1:即启动的初始阶段,这一阶段是低负荷的阶段(<2Kg COD/(m3•d))。
阶段2:即当反应器负荷上升至2~5Kg COD/(m3•d)的启动阶段。在这阶段污泥的洗出量增大,其中大多为细小的絮状污泥。实际上,这一阶段在反应器里对较重的污泥颗粒和分散的、絮状的污泥进行选择。使这一阶段的末期留下的污泥中开始产生颗粒状污泥或保留沉淀性能良好的污泥。所以在5.0 Kg COD/(m3•d)左右是反应器中以颗粒污泥或絮状污泥为主的一个重要的分界。
阶段3:这一阶段是反应器负荷超过5.0 Kg COD/(m3•d)。在此时,絮状污泥变得迅速减少,而颗粒污泥加速形成直到反应器内不再有絮状污泥存在。
当反应器负荷大于5.0 Kg COD/(m3•d),由于颗粒污泥的不断形成,反应器的大部分被颗粒污泥充满时其最大负荷可以超过20 Kg COD/(m3•d)。当反应器运行在小于5.0 Kg COD/(m3•d),系统中虽然可能形成颗粒污泥,但是,反应器的污泥性质是由占主导地位的絮状污泥所确定。

E. 求助:污水处理中污泥消化部分设计计算

我这里有个好氧消化的实例你参考一下:
条件:进水BOD5(mg/L)200 出水BOD5(mg/L)20 生物膜专法的产泥浓度属(g/L) 10~20 MLVSS去除率(%) 45~50

2.2 池体设计
2.2.1 池形的选择
消化池采用穿孔管曝气,为便于管道的安装将池子设计成矩形,长、宽比为1∶1。由于采用地埋式,故设计超高取0.4m。
2.2.2 池容积的确定
池容积根据污泥产生量W(kg/d)和达到设计氧化率所需的停留时间T(d)来确定。
①污泥产生量W
如不考虑BOD5在水解池中的变化则设计时可采用曝气池污泥产量公式W=YQSr-KVXa来估算污泥量。为估算方便将其简化为:

F. 如何设计污水处理方案

一、设计的认识
1、关于设计的价值
在很多人看来,水处理工程比较容易,大部分项目看看就大概知道怎么回事了,稍微多花点心思还可以弄出来一些“创新”。这么多年下来,各种专有技术的名词层出不穷,而其实际的内容往往大同小异,各种各样的环保公司也前仆后继。在这种模仿和复制的过程中,佼佼者在慢慢积累经验和教训,也有很多人在其中跌倒而茫然不知方向。行业有句话是“好的项目经理都是拿钱砸出来的”,同时要明白的是,在不尊重客观规律的情况下,拿钱也砸不出好的项目经理。对于一个项目,工程的设计是项目控制的主线,往往起着至关重要的作用,而在复杂项目中,设计的好坏基本决定着项目的成败。
设计向来不是简单的参考和细化的过程,而是一个很活泼的东西。每个项目都有着不同的外部条件,从水质水量的分析到区域的差异性,还有用户的使用习惯与投入产出预期。这些都需要进行充分的分析与沟通,并通过系统的专业化手段来进行协调,让工程经济高效地建设完成并达到预定的工艺目的。
在某种程度上设计是一个创作行为,具有其核心的价值。有价值的设计应该具备以下特点:
1)很好地理解了工程的工艺目的,充分保证了工程本身的功能。
2)考虑了不同的用户习惯及外部环境的建筑美学等,工程各方面达到一个平衡的状态。
3)工程设计与工程建设配合密切,节约了项目组织成本。
2、设计与画图的区别
设计和画图有着本质的区别。
一般而言,设计指的是对一个完整的系统负责,包括了项目的基础设计条件的确认、设计过程中各种要素的权衡和选择,还包括了图纸设计和配合项目实施等。在实际设计的工作中,为了保证设计的正确性和合理性,前期需要花费大量的精力用于项目基本资料的收集和确认,比如现场考察及与业主沟通确认等,在设计过程中要进行各种方案的讨论与比选,还有各种因为外部条件发生变化产生的反复,有些项目还需要开展现场试验等工作。以上工作都需基于扎实的专业基础,结合项目实际情况进行综合性的判断,在条件不充分时还需要进行适当的预判,综合素质要求高。
画图是设计的一部分,是设计人员应该具备的基本功。在具体的画图的工作中,工艺路线及总体方案已经确定,主要是总图及各单体的细化设计工作,细致性和重复性的劳动较多。画图首先应充分理解设计意图,才能在细化设计中少走弯路,高质量、快速地完成画图任务。
3、设计需要熟悉和掌握的基本知识
设计需要有良好的各方面的专业知识和专业技能的基础,主要包括以下方面:
1)废水处理基本理论
工艺设计首先需要掌握相关基本理论,包括了废水的组分与特性、污染物的去除机理,还需要具备基本的水力计算基础知识。
工程设计最终是为工艺目的服务的,只有基于基本理论出发,设计才是有根的设计。
2)国家标准、规范与手册
国家标准和规范为了规范工程建设而颁布的,具有强制性,在设计中需遵守。
设计手册是为了方便开展设计工作而编制的,手册较为全面地涵盖了设计中的各个方法,是重要的参考资料。设计人员要熟悉并合理地加以利用。
3)常规单元的设计
设计都是针对具体的项目及组成项目的各个工艺单元而言,需要对工艺单元的设计要素有着充分的了解,才能开展工艺设计工作。
4)工程制图基础
工程设计是通过图纸语言来阐述的,了解基本的投影理论、国家基本的制图规定、图纸的构成和深度要求等,可以让图纸设计有一个规范的开始。
AutoCAD软件是通用的绘图软件,需要掌握基本的绘图技巧。
5)设备、仪表与管道等知识
设备、仪表与管道等都是工程必不可少的组成部分,需要掌握相关知识,熟悉其规格参数及使用条件才能进行合理的选型和设计,使工程建设符合设计需求。
6)辅助专业常规知识
工艺设计人员还需要了解建筑结构、电气自控等辅助专业的常规知识,在专业配合方面才能顺利对接。
4、不同阶段能力的需求
对于设计人员而言,开始设计工作的切入点各有不同,但无论做那种工作,要想快速成长,需要时刻注意熟悉和掌握各种基本技能。
5、关于设计的周期
好的设计需要消耗大量的精力,在每个环节都进行仔细地考虑和权衡,并落实到文字和图纸上。同时还涉及到各方的配合与协调,需要合理的反馈和决策时间,综合下来形成了设计周期。
成熟的有丰富积累的设计团队效率会高很多,设计周期也会短。要有更短的设计周期,除了执行能力外,考验的是设计团队的综合判断能力,特别是在条件不成熟时的预判能力,能快速在纷繁的需求中抓住项目的主线,协调解决关键问题,并指导项目的实施。

二、开始参与设计
对于新手而言,开始参与设计工作时,往往从一些简单的事情做起:
1、项目现场实施配合
项目现场的实施配合是设计人员应该有的经历,在协助解决现场施工和图纸的相关问题的同时,可以帮助深入理解施工图的构成,锻炼将图纸和实际工程联系起来的能力。对于一个成熟的设计工程师而言,丰富现场经验的积累是必不可少的。
2、简单工艺单体的图纸设计
从简单的比较容易理解的图纸绘制,开始接触设计工作,比如集水池、泵房等。在总体工作量不大的情况下,能了解和熟悉设计的过程和要点,图纸的绘制技巧,各专业之间的配合等等。在完成任务的同时,更多资料在易净水网(www.ep360.cn。)对图纸设计工作形成整体的认识。制图要养成良好的习惯,需要做到以下几点:
1)不抄图:提高设计效率的有效途径是参考外部图纸,但同时设计中最容易犯的错误的是简单的抄图。其中最大的区别在于,参考图纸是以基本理论和设计规范作为依据,在设计中借鉴其他的设计成果。抄图仅仅是在其他人的成果上改图,不考虑设计的适用性,容易导致设计与项目实际需求不符,出现设计错误。
2)充分理解单元工艺功能:单元的工艺功能是根本,在设计经常由于外部条件变化需要适当做一些调整。只有充分理解了工艺功能,调整时才有灵活性,而且不影响工艺目的。
3)谨慎面对设备安装检修需求:设备厂家一般会提供安装图纸,而设备厂家往往提供的是通用图,或其他类似项目的图纸,不一定完全匹配本项目的需求。设计中需要充分理解设备的安装检修条件,结合项目的实际外部条件和需求再进行针对性的设计考虑,才能保证设计的合理性。
3、方案制作的参与
在工艺路线及设计参数都比较明确的情况下,以规范和手册为基本依据,进行设计计算的校核、设备选型等工作,配合完善方案。简单的文字工作比较容易参与,同时可以熟悉基本的设计计算、设备选型等技能。
设计经验的成长是一个循序渐进的过程,要想在设计能力的台阶上走得更高,尤其需要注意基本能力的积累。

三、设计经验的成长
1、良好的心态
做好长期的打算。废水处理工程涉及范围广,知识面要求全,项目建设周期一般较长,成熟的设计师都需要有大量的项目经验,并经过完整项目的历练,一般至少需要3~5年以上时间。而且在工作中,大量的时间实际上是处理非常琐碎的事情,包括各种反复,但这些工作很多时候都是必要的,任何忽略可能带来一些不好的后果。设计工作需要有良好的心态,一方面琐碎的工作可以熟能生巧,另一方面,过程当中的各种错误和反复实际上也是设计能力提升的过程。
2、寻根问底的习惯
设计工作中尽量弄清楚各种设计考虑的原始出发点,工艺参数一般都能还原到理论依据,附属的设计一般和经济性、安装检修条件及运行方便性有关。有了寻根问底的习惯,设计才能建立在一个坚实的基础上。
3、工作的技巧
任务开始前,要充分理解任务的核心需求,首先满足完成基本任务,再根据自己的特点进行适当发挥。工作首先应服从总体的安排,才能提高整体效率,设计当中的理解、沟通和协调技巧非常重要,是设计能力的重要组成。
4、设计能力的沉淀
平时多积累问题,通过设计项目的参与、现场的考察等积累相关经验,多主动参与讨论,将各种经验转化成自己的设计能力的沉淀。有了设计能力的沉淀,才能与项目结合,形成自己对于设计的独立见解,才能真正具备独立承担项目的能力。
你也可以到易净水网资料库上看看,上面有很多污水处理设计方案案例可以借鉴。

G. 如何进行污水处理厂的高程计算及平面、高程布置

污水处理厂
平面布置及高程布置
一、污水处理厂的平面布置
污水处理厂的平面布置应包括:
处理构筑物的布置污水处理厂的主体是各种处理构筑物。作平面布置时,要根据各构筑物(及其附属辅助建筑物,如泵房、鼓风机房等)的功能要求和流程的水力要求,结合厂址地形、地质条件,确定它们在平面图上的位置。在这一工作中,应使:联系各构筑物的管、渠简单而便捷,避免迁回曲折,运行时工人的巡回路线简短和方便;在作高程布置时土方量能基本平衡;并使构筑物避开劣质土壤。布置应尽量紧凑,缩短管线,以节约用地,但也必须有一定间距,这一间距主要考虑管、渠敷设的要求,施工时地基的相互影响,以及远期发展的可能性。构筑物之间如需布置管道时,其间距一般可取5-8m,某些有特殊要求的构筑物(如消化池、消化气罐等)的间距则按有关规定确定。
厂内管线的布置污水处理厂中有各种管线,最主要的是联系各处理构筑物的污水、污泥管、渠。管、渠的布置应使各处理构筑物或各处理单元能独立运行,当某一处理构筑物或某处理单元因故停止运行时,也不致影响其他构筑物的正常运行,若构筑物分期施工,则管、渠在布置上也应满足分期施工的要求;必须敷设接连人厂污水管和出流尾渠的超越管,在不得已情况下可通过此超越管将污水直接排人水体,但有毒废水不得任意排放。厂内尚有给水管、输电线、空气管、消化气管和蒸气管等。所有管线的安排,既要有一定的施工位置,又要紧凑,并应尽可能平行布置和不穿越空地,以节约用地。这些管线都要易于检查和维修。
污水处理厂内应有完善的雨水管道系统,以免积水而影响处理厂的运行。
辅助建筑物的布置辅助建筑物包括泵房、鼓风机房、办公室、集中控制室、化验室、变电所、机修、仓库、食堂等。它们是污水处理厂设计不可缺少的组成部分。其建筑面积大小应按具体情况与条件而定。有可能时,可设立试验车间,以不断研究与改进污水处理方法。辅助建筑物的位置应根据方便、安全等原则确定。如鼓风机房应设于曝气池附近以节省管道与动力;变电所宜设于耗电量大的构筑物附近等。化验室应远离机器间和污泥干化场,以保证良好的工作条件。办公室、化验室等均应与处理构筑物保持适当距离,并应位于处理构筑物的夏季主风向的上风向处。操作工人的值班室应尽量布置在使工人能够便于观察各处理构筑物运行情况的位置。
此外,处理厂内的道路应合理布置以方便运输;并应大力植树绿化以改善卫生条件。
应当指出:在工艺设计计算时,就应考虑它和平面布置的关系,而在进行平面布置时,也可根据情况调整构筑物的数目,修改工艺设计。
总平面布置图可根据污水厂的规模采用1∶200~1∶1000比例尺的地形图绘制,常用的比例尺为l:500。
图1为某甲市污水处理厂总平面布置图、主要处理构筑物有:机械除污物格栅井、曝气沉砂池、初次沉淀池与二次沉淀池(均设斜板)、鼓风式深水中层曝气池、消化池等及若干辅助建筑物。
该厂平面布置特点为:流线清楚,布置紧凑。鼓风机房和回流污泥泵房位于暖气池和二次沉淀池一侧,节约了管道与动力费用,便于操作管理。污泥消化系统构筑物靠近四氯化碳制造厂(即在处理厂西侧),使消化气、蒸气输送管较短。节约了基建投资。办公室。生活住房与处理构筑物、鼓风机房、泵房、消化池等保持一定距离,卫生条件与工作条件均较好。在管线布置上,尽量一管多用,如超越管、处理水出厂管都借道雨水管泄入附近水体,而剩余污泥、污泥水、各构筑物放空管等,又都与厂内污水管合并流人泵房集水井。但因受用地限制(厂东西两恻均为河浜),远期发展余地尚感不足。
图2为乙市污水厂的平面布置图,泵站设于厂外。主要构筑物有:格栅、曝气沉砂池、初次沉淀池、曝气池、二次沉淀池及回流污泥泵房等一些辅助建筑物。湿污泥池设于厂外便于农民运输之处。
该厂平面布置的特点是:布置整齐、紧凑。两期工程各自成系统,对设计与运行相互干扰较少。办公室等建筑物均位于常年主风向的上风向,且与处理构筑物有一定距离,卫生、工作条件较好。在污水流人初次沉淀池、曝气池与二次沉淀池时,先后经三次计量,为分析构筑物的运行情况创造了条件。利用构筑物本身的管渠设立超越管线,既节省了管道,运行又较灵活。
第二期工程预留地设在一期工程与厂前区之间,若二期工程改用别的工艺流程或另选池型时,在平面布置上将受一定限制。泵站与湿污泥池均设于厂外,管理不甚方便。此外,三次计量增加了水头损失。
二、污水处理厂的高程布置
污水处理厂高程布置的任务是:确定各处理构筑物和泵房等的标高,选定各连接管渠的尺寸并决定其标高。计算决定各部分的水面标高,以使污水能按处理流程在处理构筑物之间通畅地流动,保证污水处理厂的正常运行。
污水处理厂的水流常依靠重力流动,以减少运行费用。为此,必须精确计算其水头损失(初步设计或扩初设计时,精度要求可较低)。水头损失包括:
(1)水流流过各处理构筑物的水头损失,包括从进池到出池的所有水头损失在内;在作初步设计时可按表1估算。
表1 处理构筑物的水头水损失
构筑物名称 水头损失(cm) 构筑物名称 水头损失(cm)
格栅 10~25 生物滤池(工作高度为2m时):
沉砂池 10~25
沉淀池: 平流
竖流
辐流 20~40 1)装有旋转式布水器 270~280
40~50 2)装有固定喷洒布水器 450~475
50~60 混合池或接触池 10~30
双层沉淀池 10~20 污泥干化场 200~350
曝气池:污水潜流入池 25~50
污水跌水入池 50~150

(2)水流流过连接前后两构筑物的管道(包括配水设备)的水头损失,包括沿程与局部水头损失。
(3)水流流过量水设备的水头损失。
水力计算时,应选择一条距离最长、水头损失最大的流程进行计算,并应适当留有余地;以使实际运行时能有一定的灵活性。
计算水头损失时,一般应以近期最大流量(或泵的最大出水量)作为构筑物和管渠的设计流量,计算涉及远期流量的管渠和设备时,应以远期最大流量为设计流量,并酌加扩建时的备用水头。
设置终点泵站的污水处理厂,水力计算常以接受处理后污水水体的最高水位作为起点,逆污水处理流程向上倒推计算,以使处理后污水在洪水季节也能自流排出,而水泵需要的扬程则较小,运行费用也较低。但同时应考虑到构筑物的挖土深度不宜过大,以免土建投资过大和增加施工上的困难。还应考虑到因维修等原因需将池水放空而在高程上提出的要求。
在作高程布置时还应注意污水流程与污泥流程的配合,尽量减少需抽升的污泥量。污泥干化场、污泥浓缩池(湿污泥池),消化池等构筑物高程的决定,应注意它们的污泥水能自动排人污水人流干管或其他构筑物的可能性。
在绘制总平面图的同时,应绘制污水与污泥的纵断面图或工艺流程图。绘制纵断面图时采用的比例尺:横向与总平面图同,纵向为1∶50-1∶100。
现以图2所示的乙市污水处理厂为例说明高程计算过程。该厂初次沉淀池和二次沉淀池均为方形,周边均匀出水,曝气池为四座方形池,表面机械曝气器充氧,完全混合型,也可按推流式吸附再生法运行。污水在入初沉池、曝气池和二沉池之前;分别设立了薄壁计量堰(、为矩形堰,堰宽0.7m,为梯形堰,底宽0.5m)。该厂设计流量如下:
近期 =174L/s 远期 =348L/s
=300L/s =600L/s
回流污泥量以污水量的100%计算。
各构筑物间连接管渠的水力计算见表2。
处理后的污水排人农田灌溉渠道以供农田灌溉,农田不需水时排人某江。由于某江水位远低于渠道水位,故构筑物高程受灌溉渠水位控制,计算时,以灌溉渠水位作为起点,逆流程向上推算各水面标高。考虑到二次沉淀池挖土太深时不利于施工,故排水总管的管底标高与灌溉渠中的设计水位平接(跌水0.8m)。
污水处理厂的设计地面高程为50.00m。
高程计算中,沟管的沿程水头损失按表2所定的坡度计算,局部水头损失按流速水头的倍数计算。堰上水头按有关堰流公式计算,沉淀池、曝气池集水槽系底,且为均匀集水,自由跌水出流,故按下列公式计算:
B= (1)
=1.25B (2)
式中Q--集水槽设计流量,为确保安全,常对设计流量再乘以1.2~1.5的安全系数();
B--集水槽宽(m);
h0--集水槽起端水深(m)。
高程计算:
高程(m)
灌溉渠道(点8)水位 49.25
排水总管(点7)水位
跌水0.8m 50.05
窨井6后水位
沿程损失=0.001×390 50.44
窨井6前水位
管顶平接,两端水位差0.05m 50.49
二次沉淀池出水井水位
沿程损失=0.0035×100=0.35m 50.84
二次沉淀池出水总渠起端水位
沿程损失=0.35-0.25=0.10m 50.94
二次沉淀池中水位
集水槽起端水深 =0.38m
自由跌落=0.10m
堰上水头(计算或查表)=0.02m
合计 0.50m 51.44
堰F3后水位
沿程损失=0.002810=0.03m
局部损失==0.28m
合计 0.31m 51.75
堰F3前水位
堰上水头=0.26m
自由跌落=0.15m
合计 0.41m 52.16
曝气池出水总渠起端水位
沿程损失=0.64-0.42=0.22m 52.38
曝气池中水位
集水槽中水位=0.26m 52.64
堰F2前水位
堰上水头=0.38m
自由跌落=0.20m
合计 0.58m 53.22
点3水位
沿程损失=0.62-0.54=0.08m
局部损失=5.85×=0.14m
合计 0.22m 53.44
初次沉淀池出水井(点2)水位
沿程损失=0.0024×27=0.07m
局部损失=2.46×=0.15m
合计 0.22m 53.66
初次沉淀池中水位
出水总渠沿程损失=0.35-0.25=0.10m
集水槽起端水深 =0.44m
自由跌落 =0.10m
堰上水头=0.03m
合计 0.67m 54.33
堰F1后水位
沿程损失=0.0028×11=0.04m
局部损失==0.28m
合计 0.32m 54.65
堰F1前水位
堰上水头=0.30m
自由跌落=0.15m
合计 0.45m 55.10
沉砂池起端水位
沿程损失=0.48-0.46=0.02m
沉砂池出口局部损失=0.05m
沉砂池中水头损失=0.20m
合计 0.27m 55.37
格栅前(A点)水位
过栅水头损失0.15m 55.52m
总水头损失 6.27m
上述计算中,沉淀池集水槽中的水头损失由堰上水头、自由跌落和槽起端水深三部分组成,见图3。计算结果表明:终点泵站应将污水提升至标高55.52m处才能满足流程的水力要求。根据计算结果绘制了流程图,见图4。

图3 集水槽水头损失计算示意
-堰上水头;-自由跌落;-集水槽起端水深;-总渠起端水深

图4 污水处理流程
污泥流程的高程计算以图1所示的甲市污水处理厂为例。该厂污泥处理流程为:
二次沉淀池--污水泵站--初次沉淀池--污泥投配(预热)池--污泥泵站--消化池--贮泥池--运泥船外运
高程计算顺序与污水流程同,即从控制性标高点开始计算。
甲市处理厂设计地面标高为4.2m,初次沉淀池水面标高为6.7m。二次沉淀池剩余活性污泥系利用厂内下水道排至污水泵站,计算从略。从初次沉淀池排出污泥的含水率为97%,污泥消化后经静澄、撤去上清液,其含水率为96%。初次沉淀池至污泥投配池的管道用铸铁管,长150m,管径300mm。设管内流速为15m/s,按式(3)

式中—输泥管道沿程压力损失(m)
L—输泥管道长度(m)
D—输泥管管径(m)
v—污泥流速(m/s)
—海森-威廉(Haren-Williams)系数,其值决定于污泥浓度,见下表:
污泥浓度(%) 值
0.0 100
2.0 81
4.0 61
6.0 45
8.5 32
10.1 25
可求得其水头损失为:
m
自由水头1.5m,则管道中心标高为:
6.7-(1.20+1.50)=4.0m
流入污泥投配池的管底标高为:
4.0-0.15=3.85m

图5 投配池及标高
污泥投配池的标高可据此确定,投配池及标高见图5。
消化池至贮泥池的各点标高受河水位的影响(即受河中运泥船高程的影响),故以此向上推算。设要求贮泥池排泥管管中心标高至少应为3.0m才能向运泥船排尽池中污泥,贮泥池有效深2.0m。已知消化池至贮泥池的铸铁管管径为200mm,管长70m,并设管内流速为1.5m/s,则根据式(1)可求得水头损失为1.20m,自由水头设为1.5m。又,消化池采用间歇式排泥运行方式,根据排泥量计算,一次排泥后池内泥面下降0.5m。则排泥结束时消化池内泥面标高至少应为:
3.0+2.0+0.1+1.2+1.5=7.8m
开始排泥时的泥面标高:
7.8+0.5=8.3m
式中0.1为管道半径,即贮泥池中泥面与入流管管底平。
应当注意的是:当采用在消化池内撇去上清液的运行方式时,此标高是撇去上清液后的泥面标高,而不是消化池正常运行时的池内泥面标高。
当需排除消化池中下面的污泥时,需用排泥泵排除。
据此绘制的污泥高程图见图8-5。

H. 污水处理设计中ABR池怎么设计计算,要详细的步骤和参数的选取,能找实例的加分,最好是近几年的设计,谢谢

ABR反应器设计计算
设计条件:废水量1 200 m3/d,PH=4.5,水温15℃,CODcr=8000 mg/L,水力停留时间48h。
1、反应器体积计算
按有机负荷计算
按停留时间计算
式中: ——反应器有效容积,m3;
——废水流量,m3/d;
——进水有机物浓度,g COD/L 或g BOD5/L;
——容积负荷,kg COD/m3.d;
——水力停留时间,d。
已知进水浓度COD8000mg/L,COD去除率取80%,参考国内淀粉设计容积负荷[1]P206: kgCOD/m3.d,取 kg COD/m3.d。则
按有机负荷计算反应器有效容积

按水力停留时间计算反应器有效容积
取反应器有效容积2400m3校核容积负荷
kgCOD/m3.d 符合要求[1]P206
取反应器实际容积2400 m3。

2、反应器高度
采用矩形池体。一般经济的反应器高度(深度)为4~6m,本设计选择7.0m。超高0.5m。

3、反应器上下流室设计
进水系统兼有配水和水力搅拌功能,应满足设计原则:
①确保各单位面积的进水量基本相同,防止短路现象发生;
②尽可能满足水力搅拌需要,保证进水有机物与污泥迅速混合;
③很容易观察到进水管的堵塞;
④当堵塞被发现后,很容易被清除。
反应器上向反应隔室设计
虑施工维修方便,取下向流室水平宽度为940mm,选择上流和下流室的水平宽度比为4:1。
校核上向流速
基本满足设计要求
[5] 要求上向流速度0.55mm/s。(1.98m/h)
[6]P94要求进水COD大于3000mg/L时,上向流速度宜控制在0.1~0.5m/h;进水COD小于3000mg/L时,上向流速度宜控制在0.6~3.0m/h。
[1]P202UASB要求上向流速度宜控制在0.1~0.9m/h。
下向流速

4、配水系统设计
[5]选择折流口冲击流速1.10mm/s,以上求知反应器纵向宽度为 ,则折流口宽度

选择 ,校核折流口冲击流速
> 1.10mm/s [5]
折流口设一450斜板,使得平稳下流的水流速在斜板断面骤然流速加大,对低部的污泥床形成冲击,使其浮动达到使水流均匀通过污泥层的目的[5]。

5、反应器各隔室落差设计
[1]P208重力流布水,如果进水水位差仅比反应器的水位稍高(水位差小于100mm)将经常发生堵塞,因为进水的水头不足以消除阻塞,若水位差大于300mm则很少发生这种堵塞。设计选择反应器各隔室水力落差250mm。

6、反应器有效容积核算

选择 则设计的反应器结构容积大于按容积负荷计算反应器实际所需容积2400 m3,满足处理负荷要求。
7、气体收集装置
[2]P203沼气的产气量一般按0.4~0.5 Nm3/kg(COD)估算。
沼气产量
[7]P157选用气流速度5m/s,则沼气单池总管管径

选择管子规格DN80。
两池总管汇集
选择DN125,即进入阻火器管径。

8、水封高度
沼气输送管应注意冷凝水积累及其排除,水封中设置一个排除冷凝水的出口,以保持水封罐中水位一定。

9、排泥设备
一般污泥床的底层将形成浓污泥,而在上层是稀的絮状污泥。剩余污泥应该从污泥床的上部排出。在反应器底部的“浓”污泥可能由于积累颗粒和小沙砾活性变低的情况下,建议偶尔从反应器底部排泥,避免或减少在反应内积累的沙砾。设计原则:
①建议清水区高度0.5~1.5m;
②可根据污泥面高度确定排泥时间,一般周排泥1~2次;
③剩余污泥排泥点以设在污泥区中上部为宜;
④矩形池应沿池纵向多点排泥;
⑤应考虑下部排泥的可能性,避免或减少在反应内积累的沙砾;
⑥对一管多孔排泥管可兼作放空管或出水回流水力搅拌污泥床的布水管。
⑦排泥管一般不小于150mm。
排泥量计算:
产泥系数:r=0.15kg干泥/(kgCOD.d),见[1]P156
设计流量:Q=1200m3/d ,进水浓度S0=8000mg/L=8kg/m3,厌氧处理效率E=80%
Δx= r×Q×S0×E=1200×8×0.8×0.15=1152kg
设污泥含水率为98%,因含水率P>95%,取污泥密度ρ=1000kg/m3,则污泥产量为:
每天排泥:
每周排泥:57.6×7=403.2 m3
每组反应器每天排泥:
一组每周排泥:28.8×7=201.6 m3
每个隔室每天排泥:
一隔每周排泥:4.8×7=33.6 m3
13、进水装置设计
水泵选择:水量 Q=1200 m3/d=50 m3/h
扬程 H=15h (净扬程10m,管阻2m,自由水头1m)
查进水泵规格:
型号 流量(m3/h) 扬程(m) 轴功率(kw) 效率(%) 转速(rpm)
2 1/2PW 70 16.5 5.5 63 1850
回流泵选择:回流100%(目的是提高进水的pH),水量为1200 m3/d
查回流泵规格:
型号 流量(m3/h) 扬程(m) 轴功率(kw) 效率(%) 转速(rpm)
2 1/2PW 72 8.5 2.72 61.5 1440

查泵管规格:公称直径2 1/2管,外径75.5mm,普通壁厚3.75mm。
高位槽容积设计按5min泵的最大流量计算:
设计为

阅读全文

与有机废水处理的基本设计与计算相关的资料

热点内容
本田车空气滤芯什么材质的好 浏览:917
什么是超纯水日本 浏览:163
饮水机水龙头怎么拆开图解 浏览:278
ppr水管容易结水垢吗 浏览:813
在纯水中加入什么酸 浏览:532
石油醚蒸馏回首 浏览:567
蒸馏法分离或提纯什么 浏览:560
用树脂可以做什么装饰品 浏览:301
比亚迪元空调滤芯多少钱 浏览:22
饮水机为什么一夜之间没有水了 浏览:101
艾尚空气净化器质量怎么样 浏览:949
反渗透净水器不用电会怎么样 浏览:305
含油污水属于危废 浏览:455
空调回风口有去离子 浏览:372
临夏市污水处理厂工程 浏览:88
如何快速安装汽车空调滤芯 浏览:741
PCB中树脂塞孔表面 浏览:201
净水器怎么关掉热水 浏览:72
4040ro膜需要多少公斤压力 浏览:746
迈腾机油滤芯怎么判断 浏览:624