导航:首页 > 污水知识 > 污水净化脱氨

污水净化脱氨

发布时间:2021-01-01 01:39:06

『壹』 请问水处理中厌氧池脱氮除磷的原理,比如污水中的氨氮是通过怎样的反应去除的,反应的方程式是什么

1、生物脱氮

反硝化细菌在缺氧条件下,还原硝酸盐,释放出分子态氮()或一氧化二氮(N2O)的过程。微生物和植物吸收利用硝酸盐有两种完全不同的用途,一是利用其中的氮作为氮源,称为同化性硝酸还原作用:NO3-→NH4+→有机态氮。许多细菌、放线菌和霉菌能利用硝酸盐做为氮素营养。另一用途是利用NO2-和NO3-为呼吸作用的最终电子受体,把硝酸还原成氮(N2),称为反硝化作用或脱氮作用:NO3-→NO2-→N2↑。能进行反硝化作用的只有少数细菌,这个生理群称为反硝化菌。大部分反硝化细菌是异养菌,例如脱氮小球菌、反硝化假单胞菌等,它们以有机物为氮源和能源,进行无氧呼吸,其生化过程可用下式表示:
C6H12O6+12NO3-→6H2O+6CO2+12NO2-+能量
CH3COOH+8NO3-→6H2O+10CO2+4N2+8OH-+能量
少数反硝化细菌为自养菌,如脱氮硫杆菌,它们氧化硫或硝酸盐获得能量,同化二氧化碳,以硝酸盐为呼吸作用的最终电子受体。可进行以下反应:
5S+6KNO3+2H2O→3N2+K2SO4+4KHSO4
反硝化作用使硝酸盐还原成氮气,从而降低了土壤中氮素营养的含量,对农业生产不利。农业上常进行中耕松土,以防止反硝化作用。反硝化作用是氮素循环中不可缺少的环节,可使土壤中因淋溶而流入河流、海洋中的NO3-减少,消除因硝酸积累对生物的毒害作用。

2.生物除磷

1)生物除磷只要由一类统称为聚磷菌的微生物完成,由于聚磷菌能在厌氧状态下同化发酵产物,使得聚磷菌在生物除磷系统中具备了竞争的优势。

2)在厌氧状态下,兼性菌将溶解性有机物转化成挥发性脂肪酸;聚磷菌把细胞内聚磷水解为正酸盐,并从中获得能量,吸收污水中的易讲解的COD,同化成细胞内碳能源存贮物聚β-羟基丁酸或β-羟基戊酸等

3)在好氧或缺氧条件下,聚磷菌以分子氧或化合态氧作为电子受体,氧化代谢内贮物质PHB或PHV等,并产生能量,过量地从无水中摄取磷酸盐,能量以高能物质ATP的形式存贮,其中一部分有转化为聚磷,作为能量贮于胞内,通过剩余污泥的排放实现高效生物除磷目的

『贰』 城市污水处理进水水质没给总氮只给氨氮怎么判断是否采用生物脱氮

看出水水质的要求复吧,要求制比较高,由于城市污水主体为生活污水的多,那免不了要用生物脱氮的
只给氨氮还有个原因可能是:一般排除废水的氮源主要集中在有机氮与氨氮,有机氮在管网中输送到水厂的过程中一般就已经完成了氨化,所以至污水厂的氮源就集中在了氨氮的缘故

『叁』 如何处理高浓度氨氮污水

氨氮废水处理技术有:高效ZU脱氮菌技术、氨氮循环吹脱回收工艺、厌氧氨氧化技术。

①高效ZU脱氮菌技术:
一般的生物脱氮技术采用A/O、SBR、生物活性炭等工艺对水质水量稳定的低浓度氨氮废水具有良好的效果,但当废水中COD、氨氮和TN含量高时,微生物代谢活性显著降低。对于高COD、高TN的化工废水,利用新型短程硝化技术结合传统成熟的A/O工艺可迅速有效地降解目标污染物,获得比传统工艺更经济、更有效的处理结果。高效生物脱氮技术的难点是高效脱氮菌的培养。其需经历三个过程,首先是从自然生境中获得高效脱氮菌菌源;其次是富集高效脱氮菌培养物,从中分离高效脱氮菌株;最后是复配高效脱氮菌剂,并以目标废水为基质驯化高效脱氮菌群。近年来,我公司联合浙江大学展开了大量研究,经过脱氮群落的结构分析、功能试验和反复筛选,获得了高效ZU脱氮菌,并在相关废水处理工程(氨氮最高达1000mg/L)得到应用,取得了理想的效果,出水氨氮稳定达标(15mg/L以下)。
特点:1、环境友好,最终产物为N2,无二次污染。
2、成本低,不需要投加吸附剂或其他化学药剂,尤为适合改造工程。
3、系统稳定,高效ZU脱氮菌具有很强的耐受性和适应性。
4、高效ZU脱氮菌生长增殖性好,一次投加,长期有效。
②厌氧氨氧化技术:
厌氧氨氧化是指在厌氧条件下,厌氧氨氧化菌直接以NH4+为电子供体,以NO2¯为电子受体,将NH4+、NO2¯转变成N2的生物氧化过程。传统生物法脱氮技术通过硝化/反硝化方式去除废水中的氨氮,其对废水氨氮浓度具有一定要求,同时氨氮的硝化消耗大量的氧气,需求动力费用较高,生物脱氮过程需求一定的碳氮比,外加碳源增加了废水处理设施的运行费用。厌氧氨氧化利用独特的生物机体以亚硝酸盐作为电子供体把氨氮转化为N2,最大限度的实现了N的循环厌氧硝化,对于高氨氮低COD的污水由于硝酸盐的部分氧化,大大节省了能源。
特点:1、依托浙江大学科研成果,国际领先的厌氧氨氧化技术。
2、无需外加碳源,节约运行成本。
3、只需将部分氨氧化成NO2¯,节约了供氧所需的动力消耗。

③氨氮循环吹脱回收工艺
高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用。
我司结合多年的工程经验,针对高浓度氨氮废水处理难度大、处理能耗高、投资较大的情况,开发出一种新型氨吹脱资源化利用的新技术-两级循环吹氨回收技术。新技术采用创新性工艺流程设计高效脱氨技术及设备、节能降耗技术和设备,适用于多种工况的氨氮废水处理技术。不仅有很好的环境效益,而且具有一定的经济效益。
本工艺采用双塔循环吹脱,填料塔吸收吹脱出的氨气,可根据工艺要求,回收氨水或者硫酸铵。处理后废水可排放或进入后续生化系统。
技术特点:双塔循环脱氨更彻底(相较单塔),去除率高;回收硫酸铵或者氨水,循环经济利用,避免二次污染;工艺简单,操作方便,运行稳定

仅供参考 欢迎采纳 希望帮到你

『肆』 氨氮废水处理中的脱氨技术

氨氮在水中存在以下平衡:NH4- +OH- à NH3+H2O运行中,含氨氮废水流动在膜组内件的容壳程,酸吸收液流动在膜组件的管程。废水中PH提高或者温度上升时,上述平衡将会向右移动,铵根离子NH4-变成游离的气态NH3。这时气态NH3可以透过中空纤维表面的微孔从壳程中的废水相进入管程的酸吸收液相,被酸液吸收立刻又变成离子态的NH4-。保持废水的PH在10以上,并且温度在35℃以上(50 ℃ 以下),这样废水相中的NH4就会源源不断地变成NH3向吸收液相迁移。从而废水侧的氨氮浓度不断下降;而酸吸收液相由于只有酸和NH4-,所以形成的是非常纯净的铵盐,并且在不断地循环后达到一定的浓度,可以被回收利用。想要了解更多有关脱氨膜技术请咨询专业的环保公司

『伍』 aspen模拟废水脱氨是加氢氧化钠怎么处理

反硝化跟降低氨抄氮有啥关系?你究竟是要降低氨氮呢还是要降低TN?反硝化是脱氮的,用于降低TN 氨氮600到120,效果还是可以的,可能你们以前效果更好吧 SV30 230?还是拿1000ml量筒做的SV30?如果这样,那就是23% 碱度是出水的还是进水的?这个只要。

『陆』 氨氮吸收塔 氨氮脱氮塔 是什么原理 我们厂是制药厂 就是车间的废液要进行脱氮处理后再去废水站处理

废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。目前采用的除氮工艺有生物硝化与反硝化、沸石选择性交换吸附、空气吹脱及折点氯化等四种。

废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。目前采用的除氮工艺有生物硝化与反硝化、沸石选择性交换吸附、空气吹脱及折点氯化等四种。
一、生物硝化与反硝化(生物陈氮法)
(一) 生物硝化
在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。生物硝化的反应过程为:
由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7.lg。
影响硝化过程的主要因素有:(1)pH值 当pH值为8.0~8.4时(20℃),硝化作用速度最快。由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度 温度高时,硝化速度快。亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间 硝化菌的增殖速度很小,其最大比生长速率为 =0.3~0.5d-1(温度20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间 必须大于硝化菌的最小世代时间 。在实际运行中,一般应取 >2 ,或 >2 ;(4)溶解氧 氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD负荷 硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。
(二) 生物反硝化
在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。以甲醇作碳源为例,其反应式为:
6NO3-十2CH3OH→6NO2-十2CO2十4H2O
6NO2-十3CH3OH→3N2十3CO2十3H2O十60H-

由上可见,在生物反硝化过程中,不仅可使NO3--N、NO2--N被还原,而且还可位有机物氧化分解。
影响反硝化的主要因素:(1)温度 温度对反硝化的影响比对其它废水生物处理过程要大些。一般,以维持20~40℃为宜。苦在气温过低的冬季,可采取增加污泥停留时间、降低负荷等措施,以保持良好的反硝化效果;(2)pH值 反硝化过程的pH值控制在7.0~8.0;(3)溶解氧 氧对反硝化脱氮有抑制作用。一般在反硝化反应器内溶解氧应控制在0.5mg/L以下(活性污泥法)或1mg/L以下(生物膜法);(4)有机碳源 当废水中含足够的有机碳源,BOD5/TN>(3~5)时,可无需外加碳源。当废水所含的碳、氮比低于这个比值时,就需另外投加有机碳。外加有机碳多采用甲醇。考虑到甲醇对溶解氧的额外消耗,甲醇投量一般为NO3--N的3倍。此外,还可利用微生物死亡;自溶后释放出来的那部分有机碳,即"内碳源",但这要求污泥停留时间长或负荷率低,使微生物处于生长曲线的静止期或衰亡期,因此池容相应增大。
二、沸石选择性交换吸附
沸石是一种硅铝酸盐,其化学组成可表示为(M2+,2M+)O.Al2O3.mSiO2·nH2O (m=2~10,n=0~9),式中M2+代表Ca2+、Sr2+等二价阳离子,M+代表Na+、K+等一价阳离子,为一种弱酸型阳离子交换剂。在沸石的三维空间结构中,具有规则的孔道结构和空穴,使其具有筛分效应,交换吸附选择性、热稳定性及形稳定性等优良性能。天然沸石的种类很多,用于去除氨氮的主要为斜发沸石。
斜发沸石对某些阳离子的交换选择性次序为:K+,NH4+>Na+>Ba2+>Ca2+>Mg2+。利用斜发沸石对NH4+的强选择性,可采用交换吸附工艺去除水中氨氮。交换吸附饱和的拂石经再生可重复利用。
溶液pH值对沸石除氨影响很大。当pH过高,NH4+向NH3转化,交换吸附作用减弱;当pH过低,H+的竞争吸附作用增强,不利于NH4+的去除。通常,进水pH值以6~8为灾。当处理合氨氮10~20mg/L的城市严水时,出水浓度可达lmg/L以下。穿透时通水容积约100~150床容。沸石的工作交换容量约0.4×10-3n-1mol/g左右。
吸附铵达到饱和的沸石可用5g/L的石灰乳或饱和石灰水再生。再生液用量约为处理水量的3~5%。研究表明,石灰再生液中加入0.1mol的NaCl,可提高再生效率。针对石灰再生的结垢问题,亦有采用2%的氯化钠溶液作再生液的,此时再生液用量较大。再生时排出的高浓度合氨废液必须进行处理,其处理方法有:(1)空气吹脱 吹脱的NH3或者排空,或者由量H2S04吸收作肥料;(2)蒸气吹脱 冷凝液为1%的氨溶液,可用作肥料;(3)电解氧化(电氯化) 将氨氧化分解为N2。
三、空气吹脱
在碱性条件下(pH>10.5),废水中的氨氮主要以NH3的形式存在(图20-2)。让废水与空气充分接触,则水中挥发性的NH3将由液相向气相转移,从而脱除水中的氨氮。吹脱塔内装填木质或塑料板条填料,空气流由塔的下部进入,而废水则由塔顶落至塔底集水池。
影响氨吹脱效果的主要因素有:
(1)pH值 一般将pH值提高至10.8~11.5;
(2)温度 水温降低时氨的溶解度增加,吹脱效率降低。例如,20℃时氨去除率为90~95%,而10℃时降至约75%,这为吹脱塔在冬季运行带来困难;
(3)水力负荷 水力负荷(m3/m2.h)过大,将破坏高效吹脱所需的水流状态,而形成水幕;水力负荷过小,填料可能没有适当湿润,致使运行不良,形成干塔。一般水力负荷为2.5~5m3/m2.h;
(4)气水比 对于一定塔高,增加空气流量,可提高氨去除率;但随着空气流量增加,压降也增加,所以空气流量有一限值。一般,气/水比可取2500~5000(m3/m2);
(5)填料构型与高度 由于反复溅水和形成水滴是氨吹脱的关键,因此填料的形状、尺寸、间距、排列方式够都对吹脱效果有影响。一般,填料间距40~50mm,填料高度为6~7.5m。若增加填料间距,则需更大的填料高度;
(6)结垢控制 填料结垢(CaCO3)特降低吹脱塔的处理效率。控制结垢的措施有:用高压水冲洗垢层;在进水中投加阻垢剂:采用不合或少含CO2的空气吹脱(如尾气吸收除氨循环使用);采用不易结垢的塑料填料代替木材等。

空气吹脱法除氨,去除率可达60~95%,流程简单,处理效果稳定,基建费和运行费较低,可处理高浓度合氨废水。但气温低时吹脱效率低,填科结垢往往严重干扰运行,且吹脱出的氨对环境产生二次污染。
四、折点氯化
投加过量氯或次氯酸钠(超过"折点",参见第十四章),使废水中氨完全氧化为N2的方法,称为折点氯化法,其反应可表示为:
NH4+十1.5HOCl→0.5N2十1.5H2O十2.5H+十1.5Cl-
由反应式可知,到达折点的理论需氯(C12)量为7.6kg/kg(NH3-N),而实际需氯量在8~10kg/kg(NH3-N)。在pH=6~7进行反应,则投药量可最小。接触时间一般为0.5~2h。严格控制pH值和投氯量,可减少反应中生成有害的氯胺(如NCl3)和氯代有机物。
折点氯化法对氨氮的去除率达90~100%,处理效果稳定,不受水温影响,基建费用也不高。但其运行费用高;残余氯及氯代有机物须进行后处理。
在目前采用的四种脱氮工艺中,物理化学法由于存在运行成本高、对环境造成二次污染等问题,实际应用受到-定限制。而生物脱氮法能饺为有效和彻底地除氮,且比较经济,因而得到较多应用。

『柒』 切削液废水如何处理是好

废水中主要含有油脂、高有机物和难降解物质,废水为混合废水,由于难版降解物质微生物不权易消化,所以需要通过物化将该废水进行预处理。
大泉水处理该设备是这样一个处理流程:废水从车间排放先经过隔油池去除油脂性物质后进入调节池,调节水质水量,然后由提升泵打入混凝气浮池进行分离,清水进入生化系统进行深度处理,废渣进入污泥脱水系统再委外处理,上清液进入排放水池,然后经计量排放槽计量排放。

『捌』 生物脱氮能处理高氨氮废水吗对进水氨氮的浓度要求最高能去到多少另外,C/N比在什么范围最好

首先不知道你说抄的高氨氮到底有多袭高,C/N控制在(15-20):1这个范围之内可以试试生化,要是太高的话,还是配合化学法再进行生化处理吧,至于第二问不太明白意思,大体给你一、三问的结果,要是有问题可以HI我

『玖』 污水处理中氨氮的过分处理对脱氮有影响吗

对脱氮(反硝化)的影响因素中,
硝酸盐浓度算不上,因此氨氮再低,如果只是被硝化细菌转化高价态的氮,
也不会对TN有多少影响,自然跟脱氮没啥关系,也谈不上多大影响.

阅读全文

与污水净化脱氨相关的资料

热点内容
液相用溶剂过滤器 浏览:674
纳滤水导电率 浏览:128
反渗透每小时2吨 浏览:162
做一个纯净水工厂需要多少钱 浏览:381
最终幻想4回忆技能有什么用 浏览:487
污水提升器采通 浏览:397
反渗透和不发渗透净水器有什么区别 浏览:757
提升泵的扬程 浏览:294
泽德提升泵合肥经销商 浏览:929
饮水机后盖漏水了怎么办 浏览:953
小型电动提升器 浏览:246
半透膜和细胞膜区别 浏览:187
废水拖把池 浏览:859
十四五期间城镇污水处理如何提质增效 浏览:915
怎么测试空气净化器的好坏 浏览:519
提升泵是干嘛的 浏览:744
布油做蒸馏起沫咋办 浏览:252
广州工业油烟净化器一般多少钱 浏览:204
喜哆哆空气净化器效果怎么样 浏览:424
油烟净化器油盒在什么位置 浏览:582