导航:首页 > 污水知识 > 泉州印染废水排放标准

泉州印染废水排放标准

发布时间:2024-03-29 06:53:11

Ⅰ 印染废水排放标准

法律分析:除了国家的污水综合排放标准外(GB 8978-1996),纺织印染行业也有纺织染整工业水污染物排放标准(GB 4287-1992),该标准对各类纺织印染产品均采用同一标准。

法律依据:《中华人民共和国环境保护法》

第五条 环境保护坚持保护优先、预防为主、综合治理、公众参与、损害担责的原则。

第六条 一切单位和个人都有保护环境的义务。

地方各级人民政府应当对本行政区域的环境质量负责。

企业事业单位和其他生产经营者应当防止、减少环境污染和生态破坏,对所造成的损害依法承担责任。

公民应当增强环境保护意识,采取低碳、节俭的生活方式,自觉履行环境保护义务。

Ⅱ 关于印染废水排放标准以及国标号是什么

除了国家的污水综合排放标准外(GB 8978-1996),纺织印染行业也有纺织染整工版业水污染物排放标权准(GB 4287-1992),该标准对各类纺织印染产品均采用同一标准。该标准由于制定时间较早,其各项指标不如污水综合排放严格。而且标准中也没有涉及产品的生产过程和污染物产生的原因和具体数量,更没有涉及生产过程中采用传统工艺还是清洁生产工艺,是以末端治理为主的排放标准。从管理层面上看,不利于有关部门的监督管理。
http://down.foodmate.net/standard/sort/3/6620.html

到这里下载

Ⅲ 印染废水的最新排放标准是 GB4278-2012吗

不是GB 4278-2012,而是GB 4287-2012 纺织染整工业水污染物排放标准(含2015年环境保护部公告第41号:调整GB 4287-2012部分指标执行要求的公告)。

Ⅳ 印染废水排放标准的标准简介

本标准适用于纺织染整工业企业的排放管理,以及建设项目的环境影响评价、设计、竣工验收及其建成后的排放管理。
本标准不适用于洗毛、麻脱胶、煮茧和化纤原料蒸煮等工序所产生的废水。 GB3097 海水水质标准
GB3838 地面水环境质量标准
GB6920 水质PH值的测定 玻璃电极法
GB7467 水质 六价格的测定 二苯碳酰二肼分光光度法
GB7474 水质 铜的测定 二乙基二硫代氨基甲酸钠分光光度法
GB7475 水质 铜、锌、铅、镉的测定 原子吸收分光光度法
GB7478 水质 铵的测定 蒸馏和滴定法
GB7479 水质 铵的测定 纳氏试剂比色法
GB7481 水质 铵的测定 水杨酸分光光度法
GB7488 水质 五日生化需氧量(BOD5)的测定稀释与接种法
GB8978 污水综合排放标准
GB11903水质 色度的测定法
GB11914水质 化纤需氧量的测定 重铬酸盐法 本标准分三级:
4.1.1排入GB3838中III类水域(水体保护区除外),GB3097中二类海域的废水,执行一级标准。
4.1.2排入GB3838中IV、V类水域,GB3097中三类海域的废水,执行二级标准。
4.1.3排入设置二级污水处理厂的城镇下水道的废水,执行三级标准。
4.1.4排入未设置二级污水处理厂的城镇下水道的废水,必须根据下水道出水受纳水域的功能要求,分别执行4.1.1和4.1.2的规定。
4.1.5GB3838中I、II类水域和III类水域中的水体保护区,GB3097中一类海域,禁止新建排污口,扩建、改建项目不得增加排污量。
4.2标准值
本标准按照不同年限分别规定了纺织染整工业水污染物最高允许排放浓度和最高允许排水量。
4.2.1 1989年1月1日之前立项的纺织染整工业建设项目及其建成后投产的企业按表1执行。
表1
分级 最高允许排水量m3/100米布最高允许排放浓度, mg/L
生化需氧量(BOD5)化学需氧量(CODcr)色度(稀释倍数)pH值悬浮物氨氮硫化物六价铬铜苯胺类
Ⅰ级60180806~9100251.00.50.52.0
Ⅱ级2.5802401606~9150402.00.51.03.0
Ⅲ级300500 6~9400 2.00.52.05.0
4.2.2 1989年1月1日至1992年6月30日之间立项的纺织染整工业建设项目及其建成后投产的企业按表2执行
表2
分级 最高允许排水量m3/100米布最高允许排放浓度, mg/L
生化需氧量(BOD5)化学需氧量(CODcr)色度(稀释倍数)pH值悬浮物氨氮硫化物六价铬铜苯胺类
Ⅰ级30100506~970151.00.50.51.0
Ⅱ级2.5601801006~9150251.00.51.02.0
Ⅲ级300500 6~9400 2.00.52.05.0
4.2.3 1992年7月1日起立项的纺织染整工业建设项目及其建成后投产的企业按表3执行。
表3
分级 最高允许排水量m3/100米布1)最高允许排放浓度, mg/L
缺水区丰水区2)生化需氧量(BOD5)化学需氧量(CODcr)色度(稀释倍数)pH值悬浮物氨氮硫化物六价铬铜苯胺类二氧化氯
Ⅰ级25100406~970 15 1.00.50.51.00.5
Ⅱ级40180806~9100251.00.51.02.00.5
Ⅲ级300 500-- 6~9400 -- 2.0 0.52.05.00.5
注: 1)100米布排水量的布幅以914mm计; 宽幅布按比例折算。 本标准由各级人民政府环境保护行政主管部门负责监督实施。
附录A 废水中二氧化氯监测分析方法连续滴定碘量法(参考件)
A1适用范围
本法适用于亚漂设备及含有大量亚氯酸盐的废水。
A2原理
二氧化氯和亚氯酸根均是氧化剂,它们都能氧化碘离子而析出碘,继而用硫代硫酸钠滴定-碘量法,但在不同的PH值条件下,氧化数变化不同。
在pH=7,ClO2+I-→ClO2-+1/2I2
氧化数由4→3
在pH=1~3,
ClO2+5HI→H++Cl-+ H2O+5/2I2,
氧化数由4→-1
HClO2+4HI→2I2+HCl+2H2O,氧化数由3→1
因此,可一次采样,控制不同PH值连续滴定来测定二氧化氯和亚氯酸根。
A3 试剂
A3.1硫代硫酸钠标准液:c(Na2S2O3)=0.1mol/L。溶解25G硫代硫酸钠(Na2S2O3 ·H2O) 于1L新煮沸的蒸馏水中,至少存放二周之后,用碘酸钾或重格酸钾标定。最初必须存放一段时间,是为了是所含的亚硫酸氢盐离子氧化。使用煮沸的蒸馏水,并加入几毫升三氯甲烷,以使细菌分解作用减小到最低程度,以下述两种方法中任选一种来标定。
A3.2 碘酸验溶液:溶解3.249G无水碘酸氢钾(一级试剂)或3.567G碘酸钾(在103+-2C温度下干燥1H)于蒸馏水中,转入1L容量瓶稀至标线,即为C=0.100 00MOL/L溶液,贮存于具玻璃塞瓶内。
于80ML蒸馏水中,边搅拌边加入1ML浓硫酸,10.00ML C=0.100 00MOL/L的碘酸氢钾和1G碘化钾,立即用c(Na2S2O3)=0.1mol/L溶液滴至淡黄色,加入 淀粉指示剂,继续滴到蓝色消失为止。
A3.3重铬酸盐溶液:溶解4.904K无水重铬酸钾(一级试剂)于蒸馏水中,转入1L容量瓶并稀至标线,即为c(1/6K2Cr2O7)=0.1000mol/L的溶液,贮存于具玻璃塞瓶内,用10.00ML重铬酸钾标准溶液代替碘酸盐标准溶液,在暗处放置6MIN后用 溶液滴定,方法同前。
硫代硫酸钠的浓度(MOL/L)=1/所消耗硫代硫酸钠毫升数
A3.4硫代硫酸钠标准滴定液:用新煮沸过的蒸馏水将上述硫代硫酸钠标准液稀释至0.0100或0.0500 MOL/L。
A3.50.5K/100ML淀粉指示剂:于0.5K淀粉中,加入少许冷水调成糊状,倾入100ML沸腾的蒸馏水中搅拌,然后沉淀过夜。应用上层清液,加入0.125G水杨酸,0.4G氯化锌防腐。
A3.6碘化钾晶体。
A3.7 氢氧化钠溶液:溶解4G氢氧化钠于1L蒸馏水中。
A3.8(1+1)硫酸。
A3.9缓冲溶液(PH=7):称取34.0G磷酸二氢钾和35.5G磷酸氢二钠于烧杯中,加水溶解后稀释至1L。
A4测定步骤
取量0.5ML(或适量)水样,用0.1MOL/L氢氧化钠调至近中性,加缓冲液5ML和1G碘化钾,用0.0100MOL/L硫代硫酸钠溶液滴至淡黄色,加1ML0.5G/100ML淀粉指示剂,继续滴至蓝色消失,记下读数A,加3ML(1+1)硫酸(PH调至1~3),溶液又呈蓝色,继续滴至无色,消耗硫代硫酸钠标液为B毫升,若亚氯酸盐含量很高,可改用0.0500MOL/L或适当浓度硫代硫酸钠标液滴定。
A5计算公式
二氧化氯(ClO2,mg/L)=a*c/v*67450
亚氯酸根(ClO2-,mg/L)=(b-4a)*c*67450/4v
式中:V--水样体积,mL; c--硫代硫酸钠标准滴定液浓度
a--第一次滴定所消耗硫代硫酸钠标准滴定液体积,ML:
b--第二次滴定所消耗硫代硫酸钠标准滴定液体积,ML; 1染整DYEING AND FINISHING
对纺织材料(纤维、纱、线和织物)进行以化学处理为主的工艺过程。染整包括预处理、染色、印花和整理。俗称印染。
2纺织品TEXTILE
纺织工业产品,包括各类机织物、无纺织布、各种缝纫包装用线、绣花线、绒线以及绳类、带类等。

Ⅳ 2008年4月出版的印染废水排放标准

纺织染整工业水污染物排放标准 (GB 4287 1992 ) 是现行的标准。对排放废水有严格的指标限定,如果需要请提供一个邮箱。
国家发改委组织于2008年2月4日发布了“印染行业准入条件”(发改委2008年第14号公告)已经于2008年3月1日起实施。在2010年已对该准入条件进行了修订。
《印染行业准入条件》2008年2月4日
为了规范印染行业建设,促进结构调整、保护环境,减少污染,实现印染行业可持续发展,根据国家有关法律和产业政策,制定印染行业准入条件。
一、生产企业布局
(一)根据资源、能源状况和市场需求,各省(自治区、直辖市)要科学规划印染行业发展,新建或改扩建印染项目必须符合国家产业规划和产业政策,符合本地区生态环境规划和土地利用总体规划要求。
(二)在国务院、国家有关部门和省(自治区、直辖市)人民政府规定的风景名胜区、自然保护区、饮用水保护区和主要河流两岸边界外规定范围内不得新建印染项目;已在上述区域内投产运营的印染生产企业要根据该区域规划,通过搬迁、转产等方式逐步退出。
(三)缺水或水质较差地区要严格控制印染项目建设。水源相对充足地区建设印染项目,地方政府要科学规划、合理布局,相对集中建设,实行集中供热和污染物的集中处理。
二、工艺与装备要求
(一)新建或改扩建印染项目应采用先进的工艺技术,采用节能环保的设备,主要设备参数应实现在线检测和自动控制,禁止采用列入《产业结构调整指导目录》限制类、淘汰类的落后生产工艺和设备,限制采用使用年限超过5年的二手前处理、染色设备。新建或改扩建印染生产线总体水平应接近或达到国际先进水平[棉、化纤及混纺机织物印染项目设计建设应执行《印染工厂设计规范》(GB50426-2007)]。
(二)新建或改扩建印染项目应优先选用高效、节能、低耗的连续式处理设备和工艺;连续式水洗装置要求密封性好,并配有逆流、高效漂洗及热能回收装置;间歇式染色设备浴比应能满足1:8以下(丝、毛染色1:10以下)的工艺要求;定型(拉幅烘燥)设备要具有温度、湿度等主要工艺参数在线测控装置,具有废气净化和余热回收装置,箱体外层具有很好的保温性能。
(三)新建印染企业应具有一定的经济规模,棉、麻、化纤、丝绸机织物印染设计年生产能力应≥2000万米/年;毛机织物印染设计年生产能力应≥200万米/年;针织或纱线印染设计年生产能力应≥2000吨/年。
三、质量与管理
(一)印染企业应开发生产低消耗、低污染、高附加值的纺织产品,要建立良好的产品质量保障体系,产品质量要符合国家或行业标准要求,产品综合成品率达到95%以上。
(二)印染企业应实行三级能源、用水计量管理,设置专门机构或人员对能源、取水、排污情况进行监督,并建立管理考核制度和数据统计系统。
四、资源消耗
(一)新建或改扩建印染项目应按照规定进行节能评估,单位产品能耗和新鲜水取水量应达到表1规定。
表1 新建或改扩建印染项目印染加工过程综合能耗及新鲜水取水量
分类综合能耗新鲜水取水量棉、麻、化纤及混纺机织物≦38公斤标煤/百米≦2吨水/百米丝绸机织物≦30公斤标煤/百米≦2吨水/百米针织物及纱线≦1.2吨标煤/吨≦120吨水/吨
注1:机织物百米基准值为布幅宽度106cm、布重12.00kg/100m 的合格产品,当机织产品布幅宽度或布重不同时,可按相关标准进行换算(以下同)。
2:毛织物能耗、取水定额另行制定(以下同)。
(二)现有印染企业应加快技术改造,印染单位产品能耗和新鲜水取水量应达到表2规定要求。
表2 现有印染企业印染加工过程综合能耗和新鲜水取水量
分类综合能耗新鲜水取水量棉、麻、化纤及混纺机织物≦54公斤标煤/百米≦3吨水/百米丝绸机织物 ≦35公斤标煤/百米 ≦2.6吨水/百米针织物及纱线≦1.6吨标煤/吨≦150吨水/吨
五、环境保护与资源综合利用
(一)新建或改扩建印染项目环保设施要按照《纺织工业企业环保设计规范》(GB50425-2007)的要求进行设计和建设,执行环保设施与主体工程同时设计、同时施工、同时投产的“三同时”制度。所在地区有集中污水处理设施或允许排放到城市污水收集系统的企业,需配置适当的处理设施或预留足够的处理场地,排放污染物指标达到集中处理厂或《污水排入城市下水道水质标准》规定的要求;污染物直接排放到水体的印染企业,必须配置完善的处理设施,对污水及固体废弃物进行综合治理,污水处理及运行应实行自动化控制和在线监测。污染物排放必须符合污染物排放总量控制指标,并达到国家和地方环保部门规定的排放标准。
(二)新建或改扩建印染项目要按照环境友好和资源综合利用的原则,选择可生物降解(或易回收)浆料的坯布;使用生态环保型、高吸尽率染化料和助剂;建设冷却水、冷凝水及废水回收装置;以棉型产品为主有丝光工艺的项目,应配置碱回收装置。做到废水清浊分流、分质回用,废水回用率要求达到30%以上。
(三)印染企业要大力推行清洁生产,鼓励企业进行清洁生产审核评估和能源审计,改进生产技术和装备,从生产的源头控制污染物产生量,降低生产和末端治理成本。
六、安全生产与社会责任
(一)新建或改扩建印染项目应按照《纺织工业企业安全设计标准》的要求,建设安全生产设施,并建立、健全安全生产责任制,遵守安全生产的各项规定。
(二)印染企业应按照《纺织企业社会责任管理体系》(CSC9000-T)要求,履行社会责任。鼓励企业进行环境质量体系认证和职业健康安全管理体系认证。
七、监督管理
(一)新建或改扩建印染项目应在省级及以上投资管理部门备案,项目建设必须符合本准入条件。对不符合准入条件的印染项目,投资管理部门不得备案;土地管理部门不得办理土地审批手续;环保部门不得办理环保审批手续;建设部门不得办理建设开工手续;安全监管部门不得办理安全许可;融资部门不得提供任何形式的授信支持。
(二)新建或改扩建印染项目投产前,要经省级及以上投资、建设、土地、环保、安全监管等行政部门和行业专家组成联合核查组按照准入条件及相关规定进行检查,经检查未达到准入条件的项目,投资管理部门应责令企业限期完善有关建设内容。达到准入条件并符合项目建设要求后,企业应按照规定办理《安全生产许可证》、《排污许可证》或《城市排水许可证》等相关许可后,方可进行生产销售。
(三)各级纺织行业管理部门应加强对印染企业执行准入条件情况的监督检查,督促现有企业按照准入条件要求,加快技术改造和结构调整,尽早达到准入条件要求。
(四)中国纺织工业协会及各地纺织行业协会要宣传国家产业政策,加强行业指导和行业自律,协助政府有关部门做好行业监督、管理工作。
八、附则
(一)本准入条件适用于中华人民共和国境内(台湾、香港、澳门特殊地区除外)各类所有制的印染企业,具有印染能力的毛纺织、麻纺织、丝稠、色织、针织等企业。
(二)本准入条件采用的标准或数据如有修订,从其规定。
(三)本准入条件自2008年3 月 1日起实行,由国家发展和改革委员会负责解释。

Ⅵ 印染废水处理成本是多少

印染废水若按照GB42872012表2间接排放标准处理,成本为每吨3、70元;若按照GB42872012表2直接排放标准处理,成本为每吨4、70元。

印染废水处理若执行GB42872012表2间接排放标准的成本具体如下:

折旧:每吨0.30元;

人工:每吨0.30元;

电费:每吨0.70元;

药费:每吨1、00元;

污泥处置费:每吨1、40元;

合计:每吨3、70元;

执行GB42872012表2直接排放标准的成本具体如下:

折旧:每吨0.30元;

人工:每吨0.30元;

电费:每吨0.70元;

药费:每吨1、00元;

污泥处置费:每吨1、40元;

深度处理:每吨1、00元;

合计:每吨4、70元。

Ⅶ 印染废水总氮超标怎么处理

印染废水总氮超标如何处理

一、印染废水介绍以及总氮的来源

印染废水属于有机性废水,其所有的污染物和颜色大多数是天然的有机物质以及人工合成的有机物质组成,印染废水具有以下特征:(1)色度大,(2)水质水温以及pH变化大,(3)有机物含量比较高,而且含有比较强的毒性,(4)氨氮浓度高,主要是前面印花工艺中使用了尿素作为印花助剂,以及部分使用含氮染料,增加了印染废水的处理难度。

其中总氮主要来源于尿素和含氮的有机染料,染料结构中含有硝基和胺基的基团化物质,我国环保部于2012年10月份制定了《纺织染整工业水污染物排放标准》,于2013年1月1日起正式执行,对于总氮的排放标准是,总氮直接排放20(35)mg/L,总氮间接排放是30(50)mg/L。

图一 印染废水污染物的来源

二、印染废水现有的总氮去除办法和瓶颈

现有大多数印染废水是通过传统的硝化反硝化方式去除总氮,是利用异养微生物氧化作用将有机氮类物质转化为氨氮,氨氮再被自养硝化菌氧化为硝态氮,再通过反硝化细菌将硝态氮还原为气态氮气,从而达到脱氮的目的。

从反应方程式可以看出。反硝化细菌是利用有机物中的C作为电子供体,通过分解有机碳提供能量,再以硝酸根作为电子受体,将离子型氮源转化为气体的氮气,由此实现有机物的分解以及氮的去除。

通过以上分析可以看出,在印染废水总氮的转化过程中,首先通过氨化将有机氮转化为氨氮,再通过硝化作用变为硝态氮,最后通过反硝化作用变为氮气。然而在实际的处理过程中,废水的总氮往往超标,而氨氮却是达标的,这是什么原因导致的呢?

引起这一问题主要是卡在了反硝化脱氮环节,微生物通过厌氧反硝化的方式脱除硝态氮。但是由于实际现场的厌氧池中,微生物密度低,印染废水的毒性大,以及停留时间过短,导致脱氮负荷急剧降低,从而导致厌氧效率低下,总氮最终都转化为硝态氮,但是硝态氮难以转化为氮气。因此总氮超标。

三、高效反硝化脱氮设备去除印染废水总氮

从第二段描述可知,需要通过提高厌氧微生物反硝化的效率,才能够降低总氮,传统方式通过增加厌氧池的体积来改善,占地面积过大,而且效果极度不稳定,因此在总氮的提标上不可行。

根据硝态氮的特点,研发推出一款高效脱氮设备,这款设备能够提升反硝化细菌的密度,增加反硝化细菌降解硝态氮的能力,反应仅需要半小时,就能够彻底脱氮。其原理图如下所示:

其中,在脱氮环节有以下核心技术:

第一,专业定制的填料;以天然火山石经过表面处理为填料,填料的比表面积很大,使得单位面积上富集大量的反硝化细菌膜,提升反硝化细菌的密度。

第二,增加氮气释放技术;在内部结构增加氮气释放模块,脱氮效率高导致氮气大量在水体中积累,通过氮气释放技术将废水的氮气快速脱除,从而有利于微生物继续将硝态氮转化为氮气。

第三,精心培养的反硝化细菌;反硝化细菌经过筛选并经过各种条件的刺激,使得反硝化细菌能够适应印染废水高毒性,波动大的特点。

通过以上核心技术的加成,印染废水只需要在设备中停留15-30分钟,即可彻底脱氮,并且针对总氮浓度在500以下的废水,均能够去除。大大节省了设备的占地面积。

该技术具有以下特点:

脱氮效率高——正常运行脱氮负荷2kg N/m³·d,出水总氮稳定达标

占地面积小——10t/h的处理量,降低20mg/L总氮,占地面积仅3㎡

易操作维护——全自动控制,无需更换填料,反冲洗水量少、频率低

污泥产量少——反冲洗排出的少量微生物回流至生化池继续分解

运行成本低——去除20 mg/L的总氮,吨水成本约0.7元

四、总结

本文主要讲述了印染废水总氮的组成,其中大多数印染废水氨氮都是达标的,但是硝态氮超标,然而传统的生化技术对于硝态氮的去除能力有限,导致废水中仍然残留100-200mg/L的硝态氮。高效脱氮设备,增加反硝化的能力,占地面积小,仅需要停留半个小时就可以彻底脱氮,目前在国内属于行业领先。

Ⅷ 物化法处理印染废水的研究进展


我国是印染纺织第一大国,而印染行业又是工业废水排放大户,据不完全统计,全国印染废水每天排放量为3.0×106~4.0×106t。印染废水具有水量水质变化大、有机污染物含量高、色度深、pH波动大等特点,过去常采用成本较低的生化法处理即可满足较低的排放标准。
1处理印染废水的物理方法
常用的处理印染废水的物理方法主要包括吸附、混凝、膜处理等。通常地,吸附和膜处理技术作为生物处理的深度处理技术;而混凝技术视具体情况可以放在生物处理工段的前面,也可以放在后面。这些技术都可取得较好的效果。不过一般来说此类技术只是对废水中的污染物进行了相间转移,并没有从根本上消除污染,而且相应材料消耗较大,增加了处理成本,限制了大范围的推广应用。
1.1吸附法
当印染废水与多孔性物质混合或通过由其颗粒组成的滤床时,污染物就会进入多孔物质的孔隙内或者是黏附在表面而被除去。吸附法适用于低浓度印染废水,多用于深度处理。应用最多的吸附剂是活性炭,但单独采用活性炭吸附处理印染废水的成本很高。
近些年来研究的重点主要在于寻找开发新型廉价易得的吸附剂,并对其进行改性来提高吸附性能,其种类和主要性能如表1所示。
1.2混凝法
混凝工艺流程简单,操作管理方便。但由于染料品种繁多,单一混凝剂难以适应成分复杂的印染废水,因此开发新型高效无毒混凝剂,对现有药剂进行改性,争取做到一剂多用是目前该技术发展的趋势。
目前常用的絮凝剂包括无机絮凝剂、有机絮凝剂及生物絮凝剂。无机絮凝剂主要有铝盐、铁盐等低分子混凝剂以及聚合氯化铝(PAC)、聚合硫酸铁等高分子混凝剂。传统的铝盐混凝一直占主导地位,其絮体小、形态稳定,对大部分染料废水处理效果比较理想,但反应较慢,受温度影响较大且有毒性;铁
盐反应快、絮体大、易失稳沉淀,对疏水性染料脱色效率高,但对亲水性染料脱色不理想,投加量不当会使水体呈现黄色,COD去除率低。有人围绕着铁磁性物质展开研究,通过磁种混凝使非磁性污染物获得磁性,实现磁分离来缩短时间。D.Pak等〔1〕将炼钢过程中产生的废渣粉碎(其成分中含有磁性铁氧化物)来处理纺织废水,沉降速度较FeCl3或PAC大10倍,对色度、SS、TOC、COD、总氮和总磷的去除率都较高;贾宏艺等〔2〕利用磁性纳米Fe3O4颗粒的超顺磁特性,在外加磁场的作用下将磁颗粒、亚铁盐及有机物形成的混凝体迅速沉降下来,COD去除率较只投加亚铁盐时高15%。
有机高分子絮凝剂较无机絮凝剂絮凝速度快且稳定,用量少,受共存盐类、pH及温度影响小,产生的残渣也较少,因此应用前景更加广泛。主要品种有聚丙烯酰胺、聚丙烯酸、聚二甲基二烯丙基氯化铵、聚胺等,由于合成高分子有毒性,因而天然无毒的高分子絮凝剂如壳聚糖日益受到重视。但壳聚糖只能溶解于弱酸性溶液,溶解度较小,在壳聚糖分子上引入基团对其进行改性,增强壳聚糖的螯合能力已经成为必然趋势。刘运学等〔3〕对比了羧甲基壳聚糖和壳聚糖对某毛巾厂印染废水的混凝处理效果,在相同工艺条件下前者得到的脱色率和COD去除率都优于后者。
近些年生物絮凝剂发展迅猛,其对水中胶体和悬浮物具有絮凝作用,且无二次污染,具有高效、无毒、絮凝对象广泛、脱色效果独特等优点,但是成本较高,技术上还存在一些问题。
1.3膜分离
膜分离技术由于无相变、设备简单、操作方便等优点,迅速发展日趋成熟并已形成工业化规模,但不适宜直接处理印染废水,否则极容易造成严重的膜污染且难以再生;膜分离技术多用于深度处理,降低和去除残存的有机物、色度并脱除无机盐分,分离前段工艺中形成的微生物、絮凝物或是投加的固体催化剂,与其他技术联用的效果极好,出水可以达到回用标准。丛利泽等〔4〕采用混凝沉淀法对COD高达2500mg/L,色度高达10000倍的印染废水进行预处理,后接膜生物反应器与纳滤膜分离系统组合工艺,处理后COD降到30mg/L,NH3-N降到8mg/L,色度为0,其中纳滤膜主要分离色素等生物难降解小分子物质。浙江某公司〔5〕采用超滤-反渗透联用处理印染废水,超滤可去除部分有机物及色度,更主要是去除可能污堵反渗透膜的胶体、细菌、病毒等杂质,延长了反渗透膜的清洗周期和寿命;反渗透可去除98%的盐分,完全去除硬度,同时对COD、色度也具有极高的去除作用,出水完全达到纯水标准。
2化学氧化方法
化学氧化能够使印染废水中的有机染料发生化学反应而被分解,常用的氧化剂包括O2、O3、ClO2、H2O2、新生态MnO2等。这些氧化剂都能与染料发生氧化还原反应,但由于成本高或效率低导致费用昂贵,于是人们纷纷添加催化剂来提高其氧化性能,通过产生氧化活性更高的˙OH来提高其氧化能力。印染废水中染料的颜色来源于染料分子的共扼体系—含不饱和基团—N=N—、C=C、—N=O、C=O、C=S—、—CH=N—等的发色体〔6〕。˙OH的标准氧化电位高达2.8eV,是除元素氟以外最强的氧化剂,能够有效打破共扼体系结构,使之变成无色的有机分子,无选择地将绝大多数有机物彻底氧化成CO2、H2O和其他无机物。
2.1光化学氧化法
光化学氧化印染废水不受盐离子种类、有机物浓度和pH波动的影响,无二次污染,操作条件温和。利用紫外光照射在TiO2的表面产生˙OH进而氧化有机污染物是当前实验室内最主要的方法,但对于色度较高的印染废水由于光透过性较差而使处理效果不够理想。
于是研究重点正在从利用紫外光的光催化氧化向利用可见光的光敏化氧化转变。因为染料本身就是一种光敏化剂,能够被可见光激发向TiO2转移电子,形成的导带电子被水中的氧捕获,进而形成˙O2-和˙OH,这样协助催化剂被间接激发,从而扩大了可利用光的波长范围,甚至可以直接利用太阳光,极大地降低了处理成本。在实验室内采取的措施有:改变光收集装置透镜聚焦〔7〕、复式抛物线集光器〔8〕、镀发光剂〔9〕、联合类Fenton技术〔8-10〕等,这些都得到了良好的处理效果。在突尼斯占地50m2的光敏化氧化工艺中试装置的运行结果表明,太阳光能够去除难降解有机物和色度〔11〕,甚至较实验室内有更高的效率(量子产率达15%),并提高了废水的可生化性,这在阳光充沛的地区具有极大的意义,只是太阳光的光效率过低,使得处理设施占地面积庞大。
2.2电化学氧化法
关于电化学氧化的研究主要集中在对电极的改进上,以提高电极材料的催化性能,提高电流效率降低能耗。温轶等〔12〕以碳纳米管电催化电极做阳极,不锈钢片为阴极分解处理含活性艳红X-3B的模拟印染废水,在酸性条件下当电流密度为20mA/cm2时可以有效电催化氧化有机染料。A.Sakalis等〔13〕以铌/硼掺杂金刚石为阳极来处理4种偶氮染料,与Pt/Ti相比,电耗更低,效率更高,脱色率高达90%。A.Koparal等〔14〕利用硼掺杂金刚石拉西环形阳极在双极滴流塔反应器中处理碱性红29,其分解率达99%,最优的条件下脱色率和COD去除率分别为97.2%和91%,而电流密度仅1mA/cm2。
实际印染废水往往含有大量无机盐类,导电性较强,无需额外投加电解质。研究表明,当废水中含有卤化物时电解效率会提高,其中NaCl影响最大,不仅能降低电耗,利于絮凝,还能在阳极形成ClO-继续氧化。A.Sakalis等〔15〕还发现Na2SO4也有相似效果可生成S2O32-,但效果没有NaCl明显。
另外通过电解产生的O2或是外界提供的O2还可以在阴极上还原产生H2O2,类似与Fenton试剂联用。JunshuiChen等〔16〕将Fe2+换成Co2+,获得了更强的催化能力,对溴邻苯三酚红的分解更加迅速。
电化学方法处理印染废水快速高效,优点众多,但由于价格昂贵,实际应用并不多,目前着重在对微观机理、中间产物及其毒性的研究。
2.3湿式氧化法
湿式氧化法(WAO)是在高温高压条件下,利用溶解的氧气将废水中有机物氧化的方法。该工艺操作条件苛刻,对反应器要求严格,且停留时间较长。旨在降低反应温度和压力的湿式催化氧化技术(CWAO)近年来受到广泛的重视和研究。
如何使反应条件变得更加温和是湿式催化氧化工艺的关键。有人投加H2O2、O3等氧化性物质来降低操作条件,也有人制备高效催化剂尝试在常压较低温度下处理染料溶液。Sung-ChulKim等〔17〕以10gAl-Cu柱状黏土催化H2O2处理1000mg/L的活性蓝19溶液,常压、80℃下,20min内可完全将其去除,还抑制了Cu的溶出。YanLiu等〔18〕在常温常压下向500mg/L的甲基橙模拟染料废水通入空气2.5h,采用Fe2O3-CeO2-TiO2/γ-Al2O3作为催化剂,脱色率、COD去除率和TOC去除率分别可达98.09%、97.50%和97.08%;HongzhuMa等〔19〕在常压、35℃、pH=5的条件下,用CuO-MoO3-P2O5催化氧气处理300mg/L的甲基橙溶液,脱色率仅有55%,而在相同条件下亚甲基蓝10min的脱色率就可达99.26%。
2.4Fenton法
Fenton试剂是由H2O2与Fe2+混合组成的氧化体系,H2O2在酸性条件下(一般pH<3.5)被Fe2+或Fe3+催化分解产生高活性的˙OH和˙O2H,同时Fe离子还具有絮凝作用。W.Bae等〔20〕采用Fenton法处理印染纺织废水时发现Fe离子絮凝的效果远大于自由基的氧化作用。此技术去除效率高,易操作,但是酸性的反应环境会造成设备腐蚀,因此在排放前须进行中和处理,且出水中Fe2+排放浓度高。李绍锋等〔21〕采用Fenton试剂对9种活性染料所配水样进行处理,pH在3~5之间,Fenton试剂对9种染料的降解效果均较好,色度去除率达90%以上,COD去除率在40%~80%之间。反应后的UV-VIS吸收光谱区已无N=N双键及芳香结构的特征
吸收,说明染料分子中此部分结构已被Fenton试剂彻底破坏。单独采用Fenton试剂氧化印染废水中的有机物时H2O2的消耗量过大,处理成本高,一般需与其他技术联用。近年来有人在Fenton工艺里引入紫外〔20〕、草酸盐等或是固定催化剂〔22-24〕,可进一步增强其氧化能力、扩大适用的pH范围和抑制Fe的溶出。JiyunFeng等〔25〕把Fe涂在斑脱土上作为光Fenton催化剂氧化偶氮染料OrangeⅡ,脱色率100%,TOC去除率达50%~60%。A.Durán等〔8〕对比了光Fenton技术在投加草酸盐与否时处理活性蓝4溶液的效果,发现前者有助于创造低pH氛围,提高了反应速率,且COD、TOC的去除率都优于后者。
2.5微波诱导催化氧化法
微波是指波长为1mm~1m、频率为300~300000MHz的一种电磁波。在液体中微波能使极性分子高速旋转,产生热效应;许多磁性物质如过渡金属及其化合物、活性炭等对微波有很强的吸收能力,常作为诱导化学反应的催化剂,当受微波辐射时不均匀的表面会产生许多“热点”,其能量比其他部位高得多,诱导产生高能电子辐射、臭氧氧化、紫外光解和非平衡态等离子体等多种反应,可以产生高温并形成活性氧化物质,从而使有机物直接分解或将大分子有机物转变成小分子有机物。
张国宇等〔26〕以颗粒活性炭为催化剂微波诱导氧化雅格素红BF-3B150%染料废水,较单独使用微波氧化和活性炭吸附两者时都具有明显的优越性,最优条件下色度和COD去除率分别为99.6%、96.8%。微波辐射能有效解吸活性炭表面的有机物,使活性炭再生并有利于有机物的消解和回收再利用。但是活性炭的机械强度较差,微波、高温及水力扰动都会使其结构受到破坏甚至破碎,从而影响了其催化活性和寿命。近些年来所使用的催化剂逐渐转到金属及其化合物,例如张惠灵等〔27〕用CuO/γ-Al2O3替换活性炭,效果明显,当掺杂CeO2后脱色率又提高30%,还延长了催化剂的使用寿命;洪光等〔28〕以改性氧化铝诱导微波氧化处理雅格素蓝BF-BR染料,催化活性和使用寿命均优于颗粒活性炭。
2.6超声催化氧化法
超声处理效果不受溶液色度影响,并可能实现完全褪色和100%矿化。超声空化能在液体中产生局部高温高压、高剪切力,诱使水分子及染料分子裂解产生˙OH自由基,另外溶解在溶液中的N2和O2也可以发生自由基裂解反应产生˙N和˙O自由基,进一步引发各种反应,使水中有机物矿化成无机物或转换成易生物降解的小分子化合物,还有可能促进絮凝。由于超声波产生的自由基浓度有限,能量转化率低,效果并不理想〔29〕,目前多使用催化剂〔30〕或者与其他氧化技术联用来提高效率。A.Maezawa等〔31〕发现超声提高了光催化分解酸性橙52的效率和TOC的去除率,并且不受Cl-的影响,可能是超声波增加了催化剂的表面积,提高了传质速度,同时在催化剂表面生成的H2O2有利于产生˙OH。Ki-TaekByun等〔32〕在多泡声致发光条件下30min内去除亚甲基蓝,较普通TiO2催化UV快得多,但同时证实了微气泡在崩溃瞬间发出的光对染料的氧化几乎不起作用。JianhuiSun等〔33〕研究表明超声可以显著增加低Fe2+浓度的Fenton试剂氧化酸性黑1的能力,最适条件下30min去除率达到98.83%,避免了普通Fenton含铁污泥的问题。G.Tezcanli-Güyer等〔34〕发现超声对O3和UV有催化作用,可以提高O3的传质,同时在催化剂表面生成的H2O2有利于产生˙OH,当3种方法协同作用时,酸性红7的分解速率大大提高。
符德学等〔35〕采用超声协同钛铁双阳极电解体系氧化含有碱性湖蓝5B的印染度水,集超声空化、阳极催化氧化、电生自由基氧化和电絮凝等技术于一体,COD去除率达到90.2%,脱色率达到98.3%。
3结束语
上述方法用来处理印染废水各有优劣,物理法总体上处理成本较高,其中的吸附法和膜分离技术适合于作为深度处理技术;化学氧化处理效率高、二次污染较少,越来越受到青睐,但直接用于生产则费用昂贵,这限制了这些高效技术的实际应用。比较有效的处理工艺是将化学氧化技术与生化技术结合,充分发挥各自的优势,通过物化处理减少印染废水的生物毒性,提高可生化性,再采用处理成本较低的生化法进一步处理。吸附法和膜分离技术作为出水要求严格的工艺或回用水技术较为合适。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd

阅读全文

与泉州印染废水排放标准相关的资料

热点内容
蓝蓝纯净水怎么样 浏览:821
港澳男同大尺度裸体爱爱电影 浏览:316
百丽浓缩除垢剂 浏览:286
和李采潭合作过的男演员有哪些 浏览:846
听春阅读器提升 浏览:276
三亚市养殖污水处理有哪些厂家 浏览:517
有水生小金宝的电视剧 浏览:472
主角是女黑人的孤岛电影 浏览:290
晚上在线观看的片子网站 浏览:493
污水处理厂怎么把污水变成纯净水 浏览:618
医药废水前言 浏览:914
林允儿电影伦理 浏览:932
网吧服务器回写用intnel900p 浏览:419
免费看电影网站前面加 浏览:721
生理盐水做除垢剂 浏览:822
蒸馏水打开后保存多久 浏览:580
废水中总磷超标原因 浏览:536
树脂补牙能拆下来吗 浏览:322
油脂污水多 浏览:984
啄木鸟系列在哪看 浏览:927