A. 橡胶制造业废水怎么处理
一、合成橡胶废水特点:
合成橡胶废水中约85%是来自乳液聚合生产过程,以乳液聚合生产中产生的工业废水为例,简述其来源及特性。
苛性钠洗涤器;污染源为废苛性钠溶液。废水特性是高PH值,呈碱性,有色。
单体回收和凝聚工序;污染源为分离出的水层和溢出的絮凝液,内有悬浮物和溶解的有机物,呈酸性。
胶粒脱水工序;污染源为胶粒漂洗水,内有不溶性有机物和可溶性固体物。
单体回收槽和反应器;污染源为汽提塔和反应器的清洗水,内有各种有机物,不溶性和可溶性固体,大量未凝聚的胶液。
车距地面水;污染源为地面和设备的清洗水,内有溶解的和可分离的有机物,悬浮的和溶解的固体。
二、天然橡胶加工废水特点
天然橡胶加工废水,主要是以天然胶乳或胶园凝胶为原料生产天然生胶,以及以天然胶乳为原料,生产浓缩胶乳和胶清橡胶所排放的废水。橡胶废水的成份复杂,除主要含橡胶乳清外,还有蛋白质,脂类,糖类和无机盐类。天然生胶加工废水又细分为凝固废水、洗胶废水、冲洗水等。天然橡胶(标准胶)加工过程中,鲜胶乳凝固自然流出的乳清为凝固废水的主要部分,凝块经压薄、压绉后还需洗涤,这就产生了主要包括凝块通过压薄、压绉脱出的乳清,压薄(绉)后凝块在洗涤浸泡过程中又脱出的乳清等的洗胶废水。冲洗水为后续的清水冲洗过程中产生的。这3类废水水质和污染物组成基本相同,但浓度依次降低。
三、常用处理方法:
1、氧化塘-活性污泥机械强制曝气法,占地面积大,处理时间长,连续曝气效率较高但缺少后续脱氮环节,致使NH3—N处理效果差。
2、氧化塘自然曝气氧化法,占地面积大,不充分曝气时有恶臭产生。有的胶厂生产车间的占地面积甚至不及一个单一氧化塘的面积。氧化塘以延长HRT降解污染物的方式与规模化胶厂产胶的较短生产时间很不协调。涉及厌氧处理的,若要回收沼气,须进行较大投资选择适宜的工艺参数和路线来完善沼气工程的设计和沼气的利用,才能创造出较高的环境效益和经济效益。
3、厌氧-氧化塘自然曝气法的优点是结构简单,但占地面积大,处理时间长,厌氧段有恶臭产生。厌氧-活性污泥机械强制曝气氧化法虽省去氧化塘,占地面积小,但厌氧段增加了后续负荷(不论厌氧发酵还是UASB等其他工艺),还产生恶臭,处理时间长。
4、厌氧+好氧生物接触氧化工艺,接触氧化池中使用LW立体填料,能达到更高的有机物去除能力和对氨氮去除效率。降低运行费用。通常情况下,不需要投加任何化学药剂即可保证废水达标排放,处理工程的主要运行费用是工艺所需的电耗。优势高效菌及配套工艺技术的优势,确保了生物处理工程的电耗非常低。
B. 硫酸根为什么对水溶液无影响
谁说没影响,是有影响的,去要去除!在工业生产中,经常会使用硫酸,比如化肥厂用来生产磷肥,硫铵,日化厂生产洗涤剂,食品加工行业用来浸泡提取……这些生产过程都会产生高硫酸根废水,最终汇入污水处理系统。有经验的污水处理技术人员都知道,高硫酸盐废水进入厌氧系统,会对厌氧细菌造成毒性,那么中毒的临界浓度是多少,中毒的根源又是什么呢,我们今天就来聊聊这个问题。
1. 反应原理
其实,硫酸盐本身对厌氧细菌中的产甲烷菌并没有严重的抑制作用,但是,厌氧反应的过程和硫酸盐的厌氧产物会对产甲烷菌造成毒性。
首先,当废水中的硫酸盐浓度很高,甚至高于COD的浓度时,那么在厌氧反应过程中,由硫酸盐还原菌主导的还原反应会逐步取得主导地位,有机物的产甲烷反应会逐步弱化;由于硫酸盐还原菌的世代周期较产甲烷菌短,对环境和抑制物质的耐受性又强,若是长时间运行,会使厌氧污泥中硫酸盐还原菌成为优势菌种,产甲烷菌成为弱势菌种,从而导致厌氧反应器的COD降解能力下降,最终失效。
其次,在厌氧环境中,硫酸盐还原菌会将硫酸盐还原为硫化氢,游离的硫化氢会对厌氧细菌中的产甲烷菌造成毒性。根据研究,当废水中游离的硫化氢浓度达到250mg/l时,厌氧颗粒污泥的活性下降约50%。
同时,由于水中含有的游离硫化氢也可以被氧化剂氧化,从而表征为COD;所以,在化验数据时,会表现为厌氧出水的COD升高,去除效率下降。
当然,厌氧反应中产生的硫化氢也会带来一些问题,例如厌氧装置区域有异味,厌氧系统中气水交界面腐蚀严重和沼气品质降低,这些我们会在后面的文章中单独讲解。
2. 运行注意事项
在厌氧处理系统中,应尽量避免硫酸盐的进入,但在实际生产中,可能由于客观的原因,我们无法避免硫酸盐随生产排水进入厌氧系统,这时,操作运行应注意以下三点:
1. 理想的状态下,COD和硫酸根的比例最好维持在10:1以上,最少也应控制在5:1以上,以保证厌氧反应器中产甲烷反应处于主导地位。如果比例失调,需要进行预处理或者引入硫酸盐浓度较低的其他废水进行稀释。
2. 正常运行时,游离的硫化氢浓度应占总硫化氢浓度的20%以下。所以厌氧反应器运行时,还需控制厌氧进水中的硫酸根浓度在1000mg/l以下,以保证反应器中有毒性的游离硫化氢浓度大大低于250mg/l。
3. 对于硫酸盐浓度相对较高的废水,也可适当提高进水中的pH值,使厌氧反应器中的pH值保持中性或弱碱性,以降低游离硫化氢的浓度。
C. 硫酸钠废水国家排放标准
无。
国家废水排放标准中未明确对硫酸钠(硫酸根)的含量进行规定。
国家规定了一切排污单位所排污水中硫化物的含量为A等级1mg/L,B等级1mg/L,C等级1mg/L
D. 市政污水中硫酸根浓度
废水的排放标准中,要求硫酸盐排放浓度<1500 mg/L,和余高于这一浓度,就属高硫酸盐废水。
硫酸盐废水的危害
含硫酸盐废水中的硫酸盐本身虽然无害,但是它遇到厌氧环境会在硫酸盐还原菌(SRB)作用下产生H2S,H2S能严重腐蚀处理设施和排水管道,且气味恶臭,严重污染大气。另外硫酸盐废水排入型卖水体会使受纳水体酸化,pH降低,危害水生生物;排入农田会破坏土壤结构,使土壤板结卜棚逗,减少农作物产量及降低农产品品质。目前,我国很多城市的地下水已经受到不同程度的硫酸盐污染,寻求行之有效的硫酸盐废水处理工艺早已成为环境工程界普遍关注的问题。
E. 氧气、二氧化碳、硫化氢那个对套管腐蚀性更大,比例是多少
硫化氢对套管腐蚀性更大
企业排水系统中的管道及闸井等部位容易积聚对人体有害的硫化氢气体,稍有不慎易造成人员伤亡事故。因此在日常的运行管理中,应加强对重点部位的监测,作业时应采取一定的防护措施。
关键词:排水系统;硫化氢;监测与防护
企业排水系统中主要吸纳工矿企业排出的废水,其中的一些化学物质在密闭的排水管道及设施中,在特定的条件下相互混合,发生化学反应生成新的物质。这些物质中有一些会对设施管道产生腐蚀,有一些对人的身体构成危害,其中硫化氢就是一种非常有害的物质。
硫化氢是一种无色,带有腐蛋臭味,且具有刺激性和窒息性的气体。其分子质量为 34.08u,体积质量为 1.19(比空气重),最高浓度常常集中在通风不良的下水道底部、各种污水井底部、污泥坑塘底部和污水河底泥中。
1、硫化氢产生机理
下水道内产生恶臭的物质主要是硫化氢。由于附着于下水道管壁所形成的粘泥中有一种特殊的专性厌氧菌,这种细菌主要是硫酸盐还原菌,在厌氧条件下将污水中的含硫酸盐有机物还原,使之生成硫化氢。污水中硫酸根和硫化氢气体含量分别用下列公式表示:
硫酸根含量SO42-(g)=硫酸根浓度(mg/L)×排水管排水量(m3)
硫化氢气体产生量H2S(g•min)=硫化氢浓度(mg/L)×[排水管道容积+下水道入口处容积](m3)×硫化氢发生时间(min)
2、各种因素对硫化氢生成的影响
①pH值的影响
气相中的硫化氢含量随pH值的高低而变化,当污水的pH值<7 时,气相中的硫化氢浓度变高;当pH值<6 时,气相中的硫化氢含量大量增加;当pH值<5 时,硫化氢几乎接近 100%,而溶解性的HS-几乎未检出。当pH值接近 7 时,H2S和HS-含量大致相等,pH值>10 时H2S几乎不存在。
②温度的影响
硫酸盐还原菌的最适生长温度为 22~23 ℃。
③有机物浓度的影响
作为污水中的有机物成分如BOD、COD的含量增加,会导致溶解氧快速消耗,在硫酸盐还原菌的作用下,污水中的硫酸根被还原,从而使硫化氢含量增加。
④氧化还原电位(ORP)的影响
污水中氧化还原电位(ORP)在-100~-300mV之间时,硫酸盐还原菌最活跃,加快了还原作用。
⑤污水滞留时间与硫化氢浓度的关系
污水管内污水滞留时间愈长,硫化氢含量增加愈快。如果滞留时间由 1h增加到 1.5 h,硫化氢会增加2~6 倍。当用泵提升污水时,硫化氢会释放出来进入空气中,所以污水滞留时间与释放到空气中的H 2S气体呈正比例关系。因此,抑制硫化氢的生成必须尽可能缩短污水在管道内的停留时间。
⑥排水设备状态的影响
排水管道内表面特别粗糙或设施构造不合理等容易导致管壁挂泥和底部沉泥堆积,从而使微生物迅速繁殖,造成厌氧状态而产生硫化氢。
3、硫化氢气体对人体的毒害
硫化氢气体的产生不仅对排水管道造成相当严重的腐蚀,对人体的健康也造成极大的危害。 对人体的危害主要是通过呼吸道吸收中毒。不同浓度硫化氢对人的危害也不同。如下表:
浓度(mg/m3) 接触时间 毒 性 反 映
0.0007~0.2 远低于危害浓度,可以被敏感地发觉
0.4
臭味明显
30~40 臭味强烈,仍能耐受,是引起症状的阈浓度
70~150 1~2h 呼吸道和眼出现刺激症状,吸附 5 min 后不再闻到臭味,导致嗅神经麻痹
300 1h 6~8min 出现眼急性刺激症状,长期接触引起肺水肿
375~750 0.5~1h
发生肺水肿和中枢神经系统症状,引起头痛、头晕 、步态不稳、恶心呕吐,以至意识丧失
1000 数秒钟 很快出现急性中毒,呼吸加快、麻痹而死亡
1400 30s 立即~昏迷而死亡
我以前写的 报表没时间整理