A. 求问大神关于纺织厂污水处理相关问题(用于学生学习研究 谢谢。)
染料厂和抄纺织印染不是一袭个概念,染料厂是化工合成,如偶氮类、苯胺类、硫化等多种染料的生产过程,过程中要用到大量的原料,产生大量的副产品,这个废水相当难处理;
纺织印染共有几个单元:第一是预处理,布匹在车间内经漂白,退浆,煮练,丝光等过程进行处理,将棉布、纤维上的一些色素胶体处理掉,更容易着色均匀,且手感舒服;
第二个单元就是染色,通过各种颜色调色机,调出来配到染缸中,同时要配渗透剂,稳定剂,缓冲剂(如氨)等,最后再烘干。
预处理单元排出的废水中主要是强碱,退浆废水中含有的淀粉浆和化学浆料(PVA),后续单元排出的主要是染料、大量的氨氮,当然也有染色过程中添加的各种助剂,包括保险粉、平平加等药剂,很多都是直接买来的一桶一桶的药,找不到具体成分,只有功能说明。
腊染的废水还含有大量的松香。
回收的话有丝光水的碱回收,松香的回收,别的基本上没有可回收的。重金属国家对于铬有严格的要求,但是这个水中应该非常少了。
排放标准:《纺织染整工业水污染物排放标准》( GB 4287-2012代替GB 4287-92 2013-01-01实施 )
写累了,就先写这些,不清楚再问吧
B. 印染废水处理工艺
印染废水处理中,常用的物化处理工艺主要是混凝沉淀法与混凝气浮法。此外,电解法、生物活性炭法和化学氧化法等有时也用于印染废水处理中:
1.混凝法
混凝法是印染废水处理中采用最多的方法,有混凝沉淀法和混凝气浮法两种。常用的混凝剂有碱式氯化铝、聚合硫酸铁等。混凝法对去除COD和色度都有较好的效果。
混凝法设置在生物处理前时,混凝剂投加量较大,污泥量大,易使处理成本提高,并增大污泥处理与最终处理的难度。混凝法的COD去除率一般为30%~60%,BOD5去除率一般为20%~50%。
作为废水的深度处理,混凝法设置在生物处理构筑物之后,具有操作运行灵活的优点。当进水浓度较低,生化运行效果好时,可以不加混凝剂,以节约成本;当采用生物接触氧化法时,可以考虑不设二次沉淀池,让生物处理构筑物的出水直接进入混凝处理设施。在印染废水处理中,多数是将混凝法设置在生物处理之后。其COD去除率一般为15%~40%。
当原废水污染物浓度低,仅用混凝法已能达到排放标准时,可考虑只设置混凝法处理设施。
2.化学氧化法
纺织印染废水的特征之一是带有较深的颜色。主要由残留在废水中的染料所造成。此外,有些悬浮物、浆料和助剂也能产生颜色。废水脱色就是去除废水中上述显色有机物。印染废水经生物法或混凝法处理后,随BOD和部分悬浮物的去除,色度也有一定的降低。一般情况下,生物法的脱色率较低,仅为40%~50%。混凝法的脱色率稍高,但因染料品种和混凝剂的不同而有很大的差别,脱色率在50%~90%之间。因此,采用上述方法处理后,出水仍有较深的颜色,对排放和回用都很不利。为此,必须进一步进行脱色处理。常用的脱色处理法有氧化法和吸附法两种。氧化脱色法有氯氧化法、臭氧氧化法和光氧化法三种。
化学氧化法一般作为深度处理设施,设置在工艺流程的最后一级。主要的目的是去除色度,同时也降低部分COD。经化学氧化法处理后,色度可降到50倍以下,COD去除率较低,一般仅5%~15%。
3.电解法
借助于外加电流的作用产生化学反应,把电能转化成化学能的过程称电解。利用电解的化学反应,使废水的有害杂质转化而被去除的方法称为废水电解处理法,简称电解法。
电解法以往多用于处理含氰、含铬电镀废水,近年来才开始用于处理纺织印染废水的治理,但尚缺乏成熟的经验。研究表明,电解法的脱色效果显著,对某些活性染料、直接染料、媒染染料、硫化染料和分散染料印染废水,脱色率可达90%以上,对酸性染料废水脱色率达70%以上。电解法对于处理小水量的印染废水,具有设备简单、管理方便和效果较好的特点。固定床电解法在工程上也有应用,取得了较好的效果。其缺点是耗电较大、电极消耗较多,不适宜在水量较大时采用。电解法一般作为深度处理,设置在生物处理之后。其COD去除率为20%~50%,色度可以降到50倍以下。
当原废水浓度低,仅用电解法已能达到排放标准时,可考虑只设置电解法处理设施。仅用电解法处理时,COD去除率为40%~75%。
4.活性炭吸附法
活性炭吸附技术在国内用于医药、化工和食品等工业的精制和脱色已有多年历史。70年代开始用于工业废水处理。生产实践表明,活性炭对水中微量有机污染物具有卓越的吸附性,它对纺织印染、染料化工、食品加工和有机化工等工业废水都有良好的吸附效果。一般情况下,对废水中以BOD、COD等综合指标表示的有机物,如合成染料、表面性剂、酚类、苯类、有机氯、农药和石油化工产品等,都有独特的去除能力。所以,活性炭吸附法已逐步成为工业废水二级或三级处理的主要方法之一。
吸附是一种物质附着在另一种物质表面上的过程。吸附是一种界面现象,其与表面张力、表面能的变化有关。引起吸附的推动能力有两种,一种是溶剂水对疏水物质的排斥力,另一种是固体对溶质的亲和吸引力。废水处理中的吸附,多数是这两种力综合作用的结果。活性炭的比表面积和孔隙结构直接影响其吸附能力,在选择活性炭时,应根据废水的水质通过试验确定。对印染废水宜选择过渡孔发达的炭种。此外,灰分也有影响,灰分愈小,吸附性能愈好;吸附质分子的大小与炭孔隙直径愈接近,愈容易被吸附;吸附质浓度对活性炭吸附量也有影响。在一定浓度范围内,吸附量是随吸附质浓度的增大而增加的。另外,水温和pH值也有影响。吸附量随水温的升高而减少,随pH值的降低而增大。故低水温、低pH值有利于活性炭的吸附。
C. 印染废水,是染浆废水来的,脱色效果不好,怎么办
不知到你用的什么工艺,一般生物处理不易脱色的话,可以考虑加点絮凝剂,另外氧化法也比较常用,下面一个参考文摘不错的:
由于染料生产品种多,并朝着抗光解、抗氧化、抗生物氧化方向发展,从而使染料废水处理难度加大.染料废水处理难点:一是COD高,而BOD/COD值小,可生化性差;二是色度高,而成分复杂.三是水质水量不稳定,排放具有间歇性.印染废水的处理目标一般是COD的去除与脱色,但脱色问题难度更大.
3. 脱色处理方法
3.1 物理方法
3.1.1吸附法
吸附法是利用多孔性的固体物质,使废水中的一种或多种物质被吸附在固体表面而去除的方法.吸附脱色技术是依靠吸附剂的吸附作用来脱除染料分子的.吸附按其作用力可分为物理吸附、化学吸附和离子交换吸附三种.目前用于吸附脱色的吸附剂主要是靠物理吸附, 但离子交换纤维、改性膨润土等也有化学吸附作用.
常用的吸附剂包括可再生吸附剂如活性炭、离子交换纤维等和不可再生吸附剂如各种天然矿物(膨润土、硅藻土)、工业废料(煤渣、粉煤灰) 及天然废料(木炭、锯屑) 等.传统的吸附剂是活性碳,活性炭具有较高的比表面积(500- 600 m2/g),它只对阳离子染料、直接染料、酸性染料、活性染料等水溶性染料具有较好的吸附性能.活性炭去除水中溶解性有机物(分子量不超过400)非常有效,但它不能去除水中的胶体疏水性染料.若废水BOD5> 500mg/L,则采用吸附法是不经济的.膨润土作为水处理中的吸附剂和絮凝剂,已被广泛用于印染废水脱色领域,近年来制成多种复合膨润土、VS型纤维和聚苯乙烯基阳离子交换纤维等,具有物理吸附和离子交换功能,且比表面大、离子交换速度快,易再生,对难处理的阳离子染料废水有很好的脱色效果,有些改性的膨润土的脱色效果甚至高于活性炭[4];某些集吸附与絮凝性能为一体的吸附剂如硅藻土复合净水剂也已开发;用电厂粉煤灰制成具有絮凝性能的改性粉煤灰,对疏水性和亲水性染料废水均具有很高的脱色率;另外工业废料(如煤渣、粉煤灰等)、天然废料(如木炭、木屑等)、植物秸秆(如玉米棒等)均对印染废水具有一定的吸附作用.
吸附法尤其适合难生化降解的纺织印染废水脱色处理,印染废水的吸附脱色技术是一项非常有效而又比较经济的方法.活性炭吸附脱色技术不适合印染废水一级处理,只能用于深度脱色处理,活性炭处理成本高,再生困难,所以活性炭的再生技术是正在研究的课题,其中生物再生是研究的重点方向.煤、炉渣吸附剂,原料来源广,成本低,但在处理印染废水之后存在二次污染,所以只适合与生化法或砂过滤等方法联合使用.离子交换树脂对水溶性染料离子吸附特别有效,离子交换吸附剂的开发研制是今后的主要发展方向之一.廉价、高效、因地制宜新型吸附材料的开发是一项很有前途的技术.吸附法与其它处理方法的优化组合处理印染废水,脱色效果更佳.[5]
综上所述,吸附脱色的发展方向体现在两个方面: ①根据吸附机制开发、寻找新的吸附剂; ②对现有吸附剂的改性与活化, 以提高脱色效果和再生能力.
3.1.2超滤法脱色
超滤是利用一定的流体压力推动力和孔径在20~200üA 的半透膜实现高分子和低分子的分离.超滤过程的本质是一种筛滤过程,膜表面的孔隙大小是主要的控制因素.该法的优点是不会产生副作用,可以使水循环使用.早在70 年代初期, 膜分离技术就尝试用来处理印染废水.目前, 该方法可用于去除各种染料和添加剂.但由于分离染料混合物的困难, 并未达到完美的程度.
在这种技术中,半透膜的性质起着决定性的作用.就材料而言,膜有动态膜,纤维素类膜,聚砜超滤膜,荷电超滤膜或疏松反渗透膜.[6]
(1)动态膜从处理效果和经济上讲,ZrO-PAA 动态膜是可行的.但能耗较大,其渗透水及化学物质的再利用率可达88% 到96%.
(2) 纤维素类膜.CA 膜的选择性随膜表面与各种染料互变异构体相互作用而发生变化,但膜材料本身在耐pH、耐温等方面仍然有所不足.纤维素类膜在耐pH值、耐压、耐温度等方面优于CA ,用纤维素超滤膜反渗透处理染色废液, 染料去除率97% 以上可实现水的循环使用,但反渗透所需的高压操作仍是它的不足.
(3) 聚砜超滤膜由于其良好的物理化学稳定性,有较大的应用前景.使用聚砜超滤膜代替纤维素膜可实现高温操作, 回收染料减轻污染, 但仍未达到国家排放的标准.
(4) 荷电超滤膜或疏松反渗透膜是用来描述其分离性能介于反渗透和超滤之间的一种膜.荷电超滤膜是以其化学结构含有荷电基团而定义的, 疏松反渗透膜是以其物理结构而命名, 它们往往指的一种膜.对盐NaCl 截留只有2%~ 3% , 而对于500~2 000 分子量的物质,具有较高的分离率, 同时保持高的水通量.一般染料的分子量正好在这种膜的截留范围, 特别是离子型染料.该膜在低压下操作(10 kg/cm 2) 耐pH值、耐压密、耐污染、耐温等方面都比较突出,前景广阔[7].
3.1.3辐射降解法
电离辐射可有效地降解染料水溶液,辐射技术和其它技术有很好的协同作用.与常规污染物处理技术相比,辐射技术在常温常压下进行,具有工艺简单、无二次污染等特点,对难降解有机污染物的处理更有其独特长处.[8]
用60Co γ射线辐照甲基橙和活性艳蓝KNR水溶液,辐照后染料水溶液的可见光区和紫外区的特征吸收峰随吸收剂量的增加而渐渐下降至接近零,说明辐射降解反应既破坏了染料分子的发色基团,同时也破坏了染料的有机分子结构.脱色率和COD去除率均随吸收剂量的增加而增加.过氧化氢与辐射有协同作用,在相同的吸收剂量下,脱色率和COD去除率均随过氧化氢的浓度增加而增加.另外,该法pH值适用范围很广;溶液的初始浓度越大,COD去除和脱色效果越差;氧的存在可以促进染料分子的降解.在同样辐照条件下,染料的辐射降解效果因染料分子的结构不同而略有不同[9].
辐射法处理印染等难降解污水时虽然有机物的去除率高、设备占地小、操作简便,但用来产生高能粒子的装置价格昂贵,技术要求高,而且该方法能耗较大,能量利用率不高,若要真正投入实际运行,还需进行大量的研究工作.
3.2 物理化学法
3.2.1絮凝法
印染废水的絮凝脱色技术, 投资费用低, 设备占地少, 处理量大, 是一种被普遍采用的脱色技术.某印染厂采用混凝脱色- 悬浮曝气生物滤池工艺处理主要含活性染料的废水,原水CODCr, SS的平均质量浓度分别为296,285 mg/L 和平均色度为550倍, 处理后出水水质相应各项指标分别为40, 20 mg/L 和10 倍, 其去除率分别为87%, 92%和98%.[10]
在印染废水中使用的絮凝剂很多,大致可分为无机絮凝剂、有机絮凝剂和微生物絮凝剂三类,其中,有机絮凝剂还分为天然有机高分子絮凝剂、合成有机高分子絮凝剂.由于印染废水水质比较复杂,无机单盐絮凝剂在水解絮凝过程中,未能完成具有优势絮凝效果的形态,投药量大,絮凝效果差;无机高分子絮凝剂可以较好地除去废水中大部分悬浮态染料,但对于水溶性染料中分子量小、不容易形成胶体的废水则难以处理;有机高分子絮凝剂对于水溶性染料等废水具有很好的脱色性能,但单独使用效果差,而且易于产生有毒物质;因此,开发研制价廉、无毒、高效的新型有机絮凝剂,已成为目前絮凝法的主要研究方向之一.
复合絮凝剂则能同时发挥几种絮凝剂的优点,使絮凝法用于印染废水处理既经济,又适用.如将有机絮凝剂与无机絮凝剂复配使用,充分发挥有机高分子絮凝剂的吸咐架桥性能和无机絮凝剂的电性中和能力,可以使处理出水达到较好的效果.此外,淀粉衍生物、木质素衍生物、羧甲基壳聚糖[11]等天然高分子具有无毒、原料广、价廉和可生物降解等优点,也得到科研工作者的高度重视.另外,微生物絮凝剂是利用生物技术,从微生物体或其分泌物提取、纯化而获得的一种安全、高效,且能自然降解的新型水处理剂.与普通的絮凝剂相比,有固液易于分离,沉淀少,适用性广等优点,因此微生物絮凝剂的研究正成为当今世界絮凝剂方面研究的重要课题[12].总之,高效、无毒、无害的环境友好性絮凝即将在印染废水处理中有广阔的应用前景.
絮凝法虽然是含染料废水处理的常用方法,但对于许多可溶性好的染料, 处理效果往往不佳.因此, 复合絮凝法将成为工业废水处理工艺研究的主要内容和发展方向.根据实际出水要求,采用适当的预处理和后处理手段,发挥絮凝工艺与其它工艺的协同工作的优势,以达综合治理的目的,这对于提高印染废水的处理效果,降低处理成本具有极其重要的意义.
然而,用絮凝法进行废水脱色依然存在以下几个方面的问题:产生大量的淤泥;由于废水水质变化大,每批废水脱色前均需要进行预试验,以确定最佳条件,提高了成本,又费时.过量的阳离子絮凝剂会在废水中产生大量氮的化合物,它们对鱼类有毒且难以生物降解和硝酸化抑制,絮凝剂过量也可能导致沉淀重新溶解.脱色效率低,不符合排放标准.因此,实际生产中,应根据实际出水要求,采用适当的预处理和后处理手段,发挥混凝工艺与其它工艺的协同工作的优势,以达综合治理的目的,这对于提高印染废水的处理效果,降低处理成本具有极其重要的意义.
3.3 化学方法
3.3.1电化学法
电化学法是处理印染废水的另一种有效的处理方法.电化学法通过可溶性电极在阳极和阴极上发生电絮凝、电气浮和H的间接还原作用从而达到处理废水的目的.电化学法处理印染废水具有设备小、占地少、运行管理简单、COD去除率高和脱色好等优点,但同时电化学法存在着能耗大、成本高和析氧析氢副反应等缺点.近年来,随着电化学和电力工业的发展以及许多新型高析氧析氢过电位电极的发明,电化学法又重新引起人们的重视.根据电极反应方式划分, 传统电化学方法可细分为内电解法、电絮凝和电气浮法、电氧化学.
内电解法是利用废水中有些组分易被氧化,有些组分易被还原,在有导电介质存在时,电化学反应便会自发进行,同时兼有絮凝、吸附、共沉淀等综合作用的一种废水处理方法[13].最著名的内电解法是铁屑法, 即将铸铁作为滤料, 使印染废水浸没或通过, 利用Fe 和FeC 与溶液的电位差, 发生电极反应, 产生较高化学活性新生态H, 能与印染废水多种组分发生氧化还原反应, 破坏染料发色结构, 而阳极产生的新生态Fe2+, 其水解产物有较强的吸附和絮凝作用.该法不需要外加电源,操作简单,成本低廉,是种很有前途的处理方法.
电气浮法是以Fe、AL作阳极产生的H2将絮体浮起;而电絮法则是利用电极反应产生的Fe2+ 、Al3+实现絮凝脱色.采用石墨、钛板等作极板, 对染料废水通电电解, 阳极产生O2或Cl2, 阴极产生H2.通过O的氧化作用及H的还原作用破坏染料分子而使印染废水脱色, 脱色率可达98% 以上,COD去除率达80%以上.
国内重点研究的是电化学与其它方法相结合,其中较为有成就的是用絮凝复合床新技术处理高色度印染废水,对色度>10000倍的印染废水处理后,脱色率可达99%以上,CODCr去除率达75%.国外在新型电极方面研究较多,如:Sb/SnO2、Ti/SnO2、Ti/RnO2、Ti/Pt等电极.
电催化高级氧化技术(Advanced Electro catalysis Oxidation Processes , AEOP) 是最近发展起来的新型AOPs ,因其处理效率高、操作简便、与环境兼容等优点引起了研究者的注意.它能在常温常压下,通过有催化活性的电极反应直接或间接产生轻基自由基, 从而有效降解难生化污染物.陈武等进行了三维电极电化学方法处理印染废水实验, COD去除率达74.7% ,色度去除率达93.3%[14].
3.3.2氧化法
氧化法是使染料分子中发色基团的不饱和双键被氧化断开,形成分子量较小的有机物或无机物,从而使染料失去发色能力的一种印染废水处理方法.氧化法主要有:高温深度氧化法、化学氧化法和光催化氧化降解法等.
高温深度氧化法主要是焚烧法.
化学氧化法是印染废水脱色处理的主要方法,其机理是利用氧化剂将染料不饱和的发色基团打破而脱色.Fenton试剂(Fe2+-H2O2)、臭氧、氯气、次氯酸钠等是一般采用的氧化剂.常见的有组合法和催化氧化法等.如采用混凝- 二氧化氯组合法的优点在于ClO2氧化能力强,是HClO的9倍多,且无氯气氧化法处理废水时可能与水中有机物结合生成氯代有机物(AOX)[15].
化学氧化法能有效地去除印染废水中的色度,但不能很好地去除废水中的COD,对此有人提出了不完全氧化的方法,即只部分氧化,使有机物通过自由基耦合降低水溶性而絮凝去除.陈玉峰[16]等通过实验发现,电生成Fenton试剂处理实际工业印染废水,CODCr去除率在80 %以上, 脱色率达到95% ,处理费用1117元/m3,具有很好的实际应用价值和市场前景.盛翼春[17]通过研究发现,采用新型电催化氧化对染料浓度高达0.3g/l的水溶性染料废水在2分钟内脱色率高达95%以上.
同时,随着太阳能技术的发展进步,光催化氧化也越来越受到人们的重视.夏金虹[18]用纳米TiO2粉体光催化降解印染废水,脱色率为96% , CODCr去除率为86%,TiO2催化性能比较稳定,可重复使用.光催化氧化技术具有工艺设备简单、操作条件易控制、处理成本较低、氧化能力强、无二次污染等突出优点,在有机废水处理中有着广阔的应用前景.但悬浮体系的纳米TiO2颗粒由于粒径极为细小,存在着难以回收、容易中毒、不易分散等缺点,需通过先进的负载技术或光化学反应器,甚才会获得更高催化效率.因此,纳米TiO2光催化剂的负载技术对其实现大规模实用化、商品化和工业化具有重大的实际意义,是今后TiO2研究的主要方向[19].
总之, 氧化法是一种优良的印染废水脱色方法,但也有其自身的缺憾.如果氧化程度不足, 染料分子的发色基团可能被破坏而脱色, 但其中的COD仍未除尽; 若将染料分子充分氧化, 能量、药剂量消耗可能会过大, 成本太高, 所以氧化法一般用于氧化- 絮凝或絮凝- 氧化工艺.采用氧化- 絮凝工艺, 目的是通过氧化法将水溶性染料分子变为疏水性或使阳离子染料分子转变为中性, 阴性分子, 以利絮凝除去.反之, 采用絮凝- 氧化工艺则是将氧化作为后处理步骤, 对印染废水做深度处理经进一步去除残余色度及COD[20].
3.3.3还原法
还原法式使用还原型脱色剂对直接染料废水进行脱色处理的方法,使用的原料主要是铁屑.铁屑是机械加工过程中的废料, 用于处理印染废水,不仅成本低廉、操作简单, 而且能够获得以废治废的效果.该方法主要基于电化学反应.铁屑是铁-碳合金, 浸入废液后形成无数微小原电池.电极反应产物为Fe2+, H2,OH-, 均具有较高的化学活性, 可有效地脱除废水中的染料分子.其它还原剂有保险粉(+ 活性炭)、亚硫酸及其盐.洪俊明等[21]通过铁屑内电解的强化A/ O MBR 工艺处理印染废水, 出水的水质中色度的去除率超过90.0 %和COD的去除率达到94.9 %.董永春[22]等采用以含硫还原剂和氢化物引发剂为基础的稳定双组分还原反应系统,处理直接染料染色废水,使之与其中的直接染料发生还原脱色反应,其优点是脱色剂用量少,反应快速,脱色率高.还原法的主要缺点是还原降解产物具有毒性, 必须经过二次处理.如活性炭吸附等, 处理费用增大.
3.3.4高级氧化法
高级氧化法(Advanced Oxidation Processes ,AOPs)脱色被认为是一种很有前途的方法.所谓高级氧化法如UV + H2O2、UV + O3, 因为在氧化过程中产生羟基自由基(·OH), 其强氧化性使染料废水脱色.经研究发现它对偶氮染料的脱色很有效, 高级氧化反应随O3和H2O2加入量的增加,其反应速率也随之增加[23]. 在实际生产中与某些化学辅助剂会提高脱色效果, 而且UV + H2O2方法处理偶氮型活性染料产生的降解产物对环境完全无害.最近的研究发现二氯三嗪基型偶氮类活性染料使用UV + H2O2方法脱色也有很好的效果[24].
氧化剂O3对绝大多数染料的脱色效果较好, 无二次污染, 引入紫外光(UV) 等可加快氧化和提高脱色率.有学者指出O3/UV 对偶氮染料脱色效果好,UV 的引入促使O3在溶液中产生氧化性强的羟自由基.胡文容[25]等指出, 虽超声波几乎不能降解偶氮肿I , 但对O3氧化有明显的强化作用, 当O3浓度为7107mg/ L , 加80w 超声波是超声波协同O3处理偶氮肿的最佳组合, 既可满足90 %脱色率, 又可节省48%的O3.但是目前用O3处理染废水费用较高, 开发新型臭氧发生器并和UV 或超声波连用以提高效率、降低费用是O3在染料废水处理中推广的前提, O3对COD的去除不理想.
高级氧化法的对环境污染极小,效果较好,但有一个严重不足之处是处理费用较高, 从而限制了它的广泛使用.
3.3.5超声波氧化
超声波处理印染废水是基于超声波能在液体中产生局部高温、高压、高剪切力,诱使水分子及染料分子裂解产生活性非常强的氢氧自由基, 对大部分有机污染物有氧化作用并可并促进絮凝;同时,在超声波作用下传质加强,超声空化产生局部高温高压,可大大强化氢氧自由基对有机物的氧化速度,提高降解效率.
用超声波可以强化臭氧氧化处理偶氮类染料废水,这是因为超声波空化效应产生高能条件促使臭氧快速分解,产生大量的自由基,从而使氮类染料脱色.张家港市九州精细化工厂用根据超声波气振技术设计的FBZ 废水处理设备处理染料废水[26],色度平均去除率为97.0 % ,CODCr去除率为90.6% ,总污染负荷削减率为85.9 %.符德学[27]等使用该法处理含碱性湖蓝-5B的印染废水,COD去除率达90.2%,脱色率达到98.3%.刘静[28]等的实验结果表明,超声波与微电场的协同作用大大提高了脱色率,在最佳条件下处理60min,色度去除率可达96.6%.
3.3.6萃取法
萃取是采用与水互不相溶,但能很好溶解污染物的萃取剂,使其与废水充分混合接触后,利用污染物在水中和溶剂中不同的分配比分离和提取污染物,从而净化废水.废水中的酸性染料可用混合胺进行萃取回收,阴离子染料可用离子对萃取法用长碳链去除,萃取剂可用氢氧化钠再生.由邻苯二甲酸与间苯二酚为原料制备荧光黄的生产废水可用N235/煤油系统萃取,其COD去除率可达91-98%,色度去除率为99.8%[29].
离子对萃取法是一种新的废水脱色方法.该法是将染色残液与一非水溶性有机溶剂一同振荡,当两相分离时,水相中便呈现无色,染料聚积于上层有机相中.只要燃料含有至少一个磺酸基团或者是染料必须是酸性的,那么任何深浓的染色废液均可用此法脱色.该有机相可反复使用数次[30].离子对萃取法的优点有:液/液相分离工艺简单,能耗低.对于活性染料来说,仅钠盐和钙盐形成的水解产物需处理.萃取剂无需再生就可重复使用[31].
3.4 生物处理方法
生物法是利用微生物酶来氧化或还原染料分子,破坏其不饱和键及发色基团,从而达到处理目的的一种印染废水处理方法.生物法目前仍是国内外主要的印染废水处理方法.
生物法的缺点在于微生物对营养物质、PH、温度等条件有一定的要求,难以适应印染废水水质波动大、染料种类多、毒性高的特点;同时还存在占地面积大、管理复杂、对色度和COD去除率低等缺点.生物法处理印染废水的脱色率和COD去除率不高,一般不适宜单独应用,可作为预处理或深度处理.
3.4.1传统生物处理技术
生物法处理印染废水中,以活性污泥法最为普遍,这是因为活性污泥法具有可分解大量有机物、能去除部分色素、可调节pH值、运转效率高且费用低等优点,但对色度的去除往往不够理想,因此组合式生物处理技术是目前印染废水的常用方法.我国生物法中以表面活性污泥法和接触氧化法占多数,此外,鼓风曝气活性污泥法、射流曝气活性污泥法、生物转盘法等也有应用,生物流化床尚处于试验性应用阶段.
在印染废水处理中,厌氧- 好氧工艺具有的这种独特降解机理引起国内的广泛关注,并得到了深入的研究和应用,取得了明显的效果[32].娄金生等在印染废水的处理过程中采用了厌氧- 好氧工艺,取得了良好效果,COD总去除率大于90 % ,脱色率大于95%.
3.4.2微生物强化处理技术
随着纺织工业新产品和新技术的开发,印染废水中水溶性染料、活性染料和化学浆料的数量和种类的不断增加,从而导致印染废水可生物降解性下降,如大量的聚乙烯醇(PVA)等,因此选育及应用优化脱色菌和PVA降解菌开始引起人们的关注.选育和培养出各种优良脱色菌株或菌群是生物法一个重要的发展方向.白腐真菌不但对活性艳红X3B染料有较好的脱色作用,而且对难处理的成分复杂的实际染料废水也有较好的降解作用,能有效去除印染废水的COD和BOD5.虽然不能彻底生化降解染料废水,但给后续的深度处理带来极大方便[33].
黄建岷[34]在实验中采用富集法分离菌株,所得脱色菌处理印染废水有明显的脱色效果,脱色率可达70 %以上.与活性炭吸附脱色相比差异不大,证明利用微生物处理印染废水的色度问题是可行的, 但在菌种筛选方面仍有大量工作可做.
3.4.3膜生物反应器处理技术
膜生物反应器处理技术作为一种新型的污水处理工艺,是传统活性污泥法和膜分离技术的有机结合,可通过膜片提高某些专性菌的浓度和活性,还可以截留许多分解速度较慢的大分子难降解物质,通过延长其停留时间而提高对它的降解效率.但由于膜易堵塞且制造费用较高,对膜技术在水处理领域全面推广产生一定阻力.不过,随着材料科学的发展、膜制造技术的进步、膜质量的提高、膜制造成本的降低以及工艺的改进,膜生物反应器的应用范围将越来越广.
3.4.4生物酶脱色技术
一些使用合适的厌氧和嗜氧的联合生物处理可提高染料的降解性, 但是在厌氧条件下, 偶氮还原酶通常将偶氮染料分解为相应的胺类, 其中许多会致低能或致癌,而且偶氮还原酶具有强专一性, 只分解被选择染料的偶氮键.与此相反,苯氧化酶——过氧化木质素酶(木质素酶, LiP) , 过氧化锰酶(MnP) , 和漆酶——对芳香环没有强的专一性, 因此, 有可能降解各种不同的芳香化合物.这些酶制剂可有效地使许多结构不同的染料脱色.初始反应速率与制剂中每一个酶(漆酶、LiP 和MnP) 都有关系.一些染料添加剂可显著降低脱色速率.因此, 在评价新的酶及其处理工艺时, 必须考虑染色助剂对酶活性的影响.今后研究工作主要集中于已选择出的酶的固定化以便为酶脱色的工业应用打下基础[35].
4. 发展前景
各种脱色方法比较分析,可以看出每种处理方法从经济性,技术性,对环境影响和实用性都有一定的缺陷, 气吹、混凝、吸附、过滤等一般具有设备简单、操作简便和工艺成熟等优点,但是这类处理方法通常是将有机物从液相转移到固相或气相,不仅没有完全消除有机污染物和消耗化学药剂,而且造成废物堆积和二次污染.吸附脱色具有只吸附染料, 但不破坏其结构的特点, 但目前使用的吸附剂往往存在吸附量不够, 或再生不容易的缺点.高级氧化法脱色如光氧化、超临界氧化、湿式氧化、低温等离子体化学法被认为是一种很有前途的方法, 但其昂贵的价格成为制约其广泛应用的重要原因.一些传统的氧化方法如NaClO、H2O2、臭氧和紫外氧化等证明对废水脱色并不有效, 采用强化物理化学与酶催化降解的方法可能将有非常广阔的应用前景.因此在实际工程中应该按照具体条件和要求,合理选择工艺组合,以便取得最佳的效果.
D. 工业废水处理常用的方法有哪些
废水的处理方法包括物理法、化学法和生物法。
物理法就是利用物理作用,使呈悬浮状态的杂质从水中分离出来。物理法在处理废水过程中不改变水的基本化学性质。如沉淀、过滤、反渗透、气浮、离心、蒸发等工艺均属于物理法的范畴。
向废水中投加某些化学药剂,利用其产生的化学反应来分离、转化、分解或回收废水中的污染物,使其转化为无害物的方法称为化学法。常用的化学法有混凝、中和、吸附、氧化还原,离子交换等。
利用水中微生物的新陈代谢功能,将水中的有机物分解,转化为无害物,使废水得到净化的方法称为生物法。如活性污泥、生物膜、自然生物处理等均属于生物法。
E. 印染污水处理最佳处理方法
由于印染废水的多变性,生物法处理效果有时还不能达到十分满意的效果。
因此,开发适应能力强的菌种,提高生物法的处理效果,并使废水经过处理后达到回用的要求,将是今后生物法研究的主要目标。
新型的生物制剂有以下几种:
(1)酶制剂:利用生物酶制剂处理废水、净化环境比其他生物法效率高、速度快、出水好,不产生二次污染。用于处理印染废水的酶有漆酶、木质素过氧化物酶、嗜碱酶等。
在木质素等过氧化物酶存在的条件下,漆酶的色度去除率可提高到75%。
(2)废水脱色微生物制剂:将污水处理厂活性污泥中的微生物进行分离纯化,来提取对染料脱色效果好的微生物,并进行培养。活性污泥中微生物种类较丰富,包含有细菌、真菌、微型动物等不同门类的生物物种,活性污泥中的微生物形成一个生态系统,在这个系统中以自养型微生物为主。
细菌吸食环境十的有机物,而细菌又会成为某些原士动物或后儿动物的食饵,原生动物之叫还有互相捕食,不同的后生动物也可能处在不同的营养层次上多种类的微牛物形成一个复杂的食物网。
中同科学院微生物研究所分离出的5种高效细菌对酸性红B2GL、酸性媒介棕RH、酸性媒介蓝B和酸性媒介黄GG等染料具有脱色降解能力,在细菌隔膜接种厌氧菌或好氧菌种系统中,处理模拟染色废水,脱色率能达到85%以上。
中国科学院微生物所和中国纺织工业设计院等单位分离出数百株脱色菌,将脱色卤和PVA降解菌投加到废水处理池中,脱色率达80%,PVA去除率达75%一90%,远高于普通。
(3)士物絮凝剂:与无机和有机合成高分子絮凝剂相比,生物絮凝剂具有许多独特的性质和优点:
①易于固液分离,形成沉淀物少;
②易被土物降解,无毒无害,安全性高;
③无二次污染;
④适应范围广;
⑤具有除浊和脱色性能等;
⑥有的生物絮凝剂还具有不受pH值条件影响,热稳定性强,用量少等特点。
人们预见生物絮凝剂絮凝活性的广性将使彻底消除污染成为现实,它大部分或全部取代合成高分子絮凝剂址大势所趋。
现在用于处理印染废水的生物絮凝剂有PFIOI(用于处理含羧甲基纤维素的退浆废水)、MF一3和NA7(用于染液脱色)和NOC一1(可消除污泥膨胀。恢复活性污泥的沉降性能)。
F. 从源头解决印染行业环保问题,怎样去除印染废水中的锑
一种印染抄 废水中锑的去除方法,袭其特征在于,包括以下步骤:
(1)碱减量废水和退浆废水加入过量酸,调节PH值,进行酸析处理;
(2)酸析处理后的废水与调节池中染色废水混合,向混合废水中加入聚硫酸铁,并调节PH值,然后通入气浮池,回收浮渣;
(3)气浮池处理完成,向废水中加入液碱,通入水解池进行水解酸化处理,收集废气,将废水继续通入生化池;
(4)废水经生化池处理后进入二沉池,二沉池中分离的污泥回流进入生化池,分离的废水加入聚硫酸铁,并调节PH值,然后进入三沉池;
(5)经三沉池处理的废水达排放要求,直接排放到外环境或者进入车间回收利用,污泥进行填埋或焚烧处理。
G. 聚乙烯醇胶棉的生产废液会对水源造成什么危害,他的化学成分能否通过净水器过滤
含聚乙烯醇废水处理技术
乙烯醇(Polyvinyl alcohol,简称PVA),是目前发现的高聚物中唯一具有水活性的有机高分子化合物。因其具有强力的黏结性,气体阻隔性,耐磨性等良好的化学、物理性能,被作为纺织行业的上浆剂,建筑行业的涂料、黏结剂,化工行业的乳化剂、分散剂,医药行业的润滑剂,造纸行业的粘合剂及土壤的改良剂而广泛应用[1-2]。但含有PVA 的工业废水,具有COD 值高,可生化性差等特点,倘若排入水体,因其具有较大的表面活性使得接纳的水体产生大量泡沫,不利于水体复氧,而且还会促进水体沉积物中重金属的迁移释放,破坏水体环境。
国内外学者对含PVA 工业废水的处理,做了大量的研究,并取得了一批重要的科研成果。在这些研究中,对PVA 废水的处理方法大致可划分为三类,即物理法,化学法和生物法。其物理法主要有盐析凝胶法、吸附法、萃取法、膜分离法和泡沫分离法等;化学法主要有高级湿式氧化法、光催化氧化法、Fenton 氧化法、过硫酸盐氧化法、微波辐射法和电化学法;生物法主要通过活性污泥利用微生物的新陈代谢作用来降解PVA。
1 物理法
1.1 盐析凝胶法
在对PVA 废水的处理过程,可采用盐析凝胶法进行。即根据PVA 特性,向废水中投加盐析剂硫酸钠和胶凝剂硼砂,使得硼砂与PVA 分子发生反应,形成PVA-硼砂双二醇型结构,在Na+和SO42-的极性作用下,通过其强大的水和能力将大量的水吸附到周围,使得PVA 脱水从废水中析出。
郭丽[4]采用盐析法退浆废水中的聚乙烯醇进行回收试验,结果表明,当废水中PVA 浓度为12 g/L 时,硫酸钠和硼砂用量分别为14 g/L 和1.4 g/L,控制反应时间20 min,反应温度50 ℃,溶液初始pH 为8.5~9.5,PVA 回收率大于90 %。
徐竟成等[5]采用化学凝结法对纺织印染退浆废水中的聚乙烯醇进行处理回收,成功地进行了生产性规模回收废水中的PVA,PVA 回收率和COD 去除率均达80%左右。
阎德顺等人[6]采用凝结法对退浆废水中的PVA 进行回收研究。结果表明,PVA 间歇反应回收率可达90 %,在此基础上,实现了PVA 连续化回收工艺,回收率达80 %。
1.2 吸附法
吸附法作为一种低能耗的固体萃取技术,在溶解性有机物的处理中有着不可比拟的优势。吸附法依靠吸附剂上密集的孔道、巨大的比表面积或通过表面各种功能基团与被吸附物质分子之间的多重作用力,达到有选择性地富集有机物的目的。吸附法的优势在于对难降解的有机物有较好地去除效果[7]。
Shishir Kumar Behera 等人[8]采用活性碳对PVA 吸附去除进行动力学研究。结果表明,当PVA 初始浓度为50 mg/L 时,投加活性碳浓度5 g/L,温度为20 ℃,pH 为6.5,搅拌转速150 r/min,反应时间30 min,PVA 去除率可达到92 %。
1.3 萃取法
萃取法作为一种高效的富集分离技术,其根据不同物质,在不同的溶剂中分配系数的大小不等的原理,利用与水不相溶的有机溶剂与试液一起振荡,使得目标物质在有机相中得以富集,具有选择性好、回收率高、设备简单、操作简便、快速,以及易于现自动控制等特点,广泛用于分析化学、无机化学、放射化学、湿法冶金以及化工制备等领域。
聚乙烯醇可用水不溶性的烃类(按100 %~120 %聚乙烯醇的质量)进行萃取而去除。含聚乙烯醇0.3 g/L 的废水,在室温下用35 %(质量)的己烷,以1000 r/min 搅拌10 min,静置1 h 后分层,水相中COD 值为86.5 mg/L,COD 去除率为59.8 %,如重复萃取3 次,则COD 降低为41.6 mg/L 相当于80.65 %的去除率[9]。
1.4 泡沫分离法
泡沫分离法是利用泡沫与水界面的物理吸附作用以表聚物形式去污净水的方法。其通过向溶液中鼓泡并形成泡沫层,使得泡沫层与液相主体分离,从而达到浓缩表面活性物质或净化液相体的目的[10]。泡沫分离技术具有设备简单、能耗低、投资少等特点,在化工、医药、污水处理等领域应用广泛。
含聚乙烯醇的废水可通入空气,使其气泡溢出而去除PVA。1 m3的聚乙烯醇废水中含有COD 843 mg/L,以1.8 L/min 的速度通入空气,去除产生的泡沫,78 min 后,废水的体积减少到原来的70 %,而COD 值降低到193 mg/L[9]。
1.5 膜分离法
膜分离技术是通过膜对混合物中各组分的选择渗透作用的差异,以外界能量或化学位差为推动力,对物质进行分离、富集、提纯的有效液体分离技术[11],具有低能耗,易操作且可实现废水的循环利用和回收有用物质等优点。其在污水处理领域应用广泛,并形成了微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)等新的污水处理方法。
王静荣等[12]采用美国Abcor 公司的卷式膜超滤装置可以从聚乙烯醇退浆废水中回收PVA 试验。结果表明,该方法是可行的。控制料液温度在60~80 ℃,操作压力为0.4~0.6 MPa 条件下,可使浓度0.5 %~1.0 %的聚乙烯醇废水浓缩至10.0 %,聚乙烯醇的去除率在95 %以上,回收的聚乙烯醇浆料经调配后,可回用于生产,满足生产工艺上的要求。郑辉东等[13]针对纺织印染厂排放的含PVA 退浆皮水,利用中空纤维超滤膜实验装置对其进行处理试验。结果表明,处理后的废水达到中水标准,可以循环使用。
马星骅等[14]以陶瓷膜作为载体,高岭土作为涂膜材料制备了动态膜并研究了动态陶瓷膜对PVA 退浆废水的处理效果。结果表明,在高岭土涂膜质量浓度0.6 g/L,跨膜压差0.3 MPa,错流速度3 m/s,温度50 ℃的条件对废水进行过滤,PVA 及COD 的去除率分别可达56 %和71 %。
2 化学氧化法
2.1 高级湿式氧化法
湿式氧化法是处理高浓度难生化有机废水的高级氧化技术,由日本煤气大阪公司开发成功[15]。它是指在高温(125~320 ℃),高压(0.5~20 MPa)条件下,以氧气或空气为氧化剂,将有机污染物氧化为有机小分子物质或将其矿化为二氧化碳和水等无机物的化学过程。它经历了传统湿式空气氧化法、催化湿式氧化法、湿式过氧化物氧化法、超临界水氧化法及催化超临界水氧化法的历程[16]。该方法具有氧化速度快,无二次污染,处理效率高等特点[17]。
采用湿式氧化法对含聚乙烯醇的废水进行处理,控制反应温度220 ℃,反应压力10.0 MPa,在该反应条件下,以300 r/min的速率进行搅拌1 h,可使得废水中的COD 由11800 mg/L 降低到2150 mg/L[9]。
Yan Bo 等人[18]采用催化超临界水氧化法对PVA 溶液进行了氧化实验研究。当废水中PVA浓度为2000 mg/L,投加催化剂KOH600 mg/L,反应压力25 MPa,反应温度873 K,停留时间60 s,PVA 废水被完全转化为H2,CO,CH4 和CO2,TOC 去除率、碳气化率、氢气化率分别为96.00 %,95.92 %,126.40 %。
2.2 光催化氧化法
光催化氧化是在有催化剂的条件下的光学降解,可分为均相和非均相两种类型。均相光催化氧化降解是以Fe2+或Fe3+及H2O2为介质,通过光助Fenton 产生羟基自由基得到降解。非均相催化降解是污染体系中投入一定量的光敏半导体材料,同时结合光辐射,使光敏半导体在光的照射下激发产生电子空穴对,吸附在半导体上的溶解氧、水分子等与电子空穴作用,产生OH·等氧化能力极强的自由基[16]。
吴缨等人[19]采用纳米TiO2 做为光催化剂,对聚乙烯醇(PVA)水溶液进行了超声光催化降解研究。结果表明,在超声波频率40kHz、废水初始pH 为5.5,催化剂TiO2 用量110 g/L、反应温度30 ℃、PVA 初始浓度90 mg/L 的条件下,控制反应80 min,PVA水溶液降解率可达100 %。
Yingxu Chen 等人[20]在紫外灯照射下,采用非均相的TiO2 作为催化剂对PVA 进行降解实验研究。结果表明,当PVA 初始浓度为30 mg/L,TiO2 投加量2 mg/L,H2O2 投加量为5 mmol/L,反应时间60 min,PVA 去除率可达70 %。
2.3 Fenton 氧化法
Fenton 试剂具有极强的氧化能力,由Fe2+和双氧水构成,在酸性条件下H2O2 被Fe2+离子催化分解并产生氧化能力很强的OH·自由基,具有较高的氧化能力,可以无选择的氧化废水大多数的有机物。其对废水处理主要通过有机物的氧化和混凝沉淀作用进行,与常规氧化剂处理有机废水相比较,具有反应迅速、温度和压力等反应条件温等优点[21-22]。在普通Fenton 试剂氧化法的基础上,又发展了光-Fenton、电-Fenton 等氧化方法。
曹扬[23]采用Fenton 氧化法对PVA 模拟废水进行处理研究,结果表明当溶液的初始pH=5,H2O2/COD=1.3,H2O2/Fe2+=10∶1,反应温度为40 ℃的条件下,控制反应时间30 min,COD 去除率可达到80 %,BOD/COD 值也由0.082 上升到0.60。
雷乐成[24]在0.75 L环流式光化学氧化反应器中进行了光助Fenton 高级氧化技术处理纺织印染中PVA 退浆废水的试验。研究结果表明,在低浓度亚铁离子、理论双氧水加入量、中压紫外和可见光汞灯的辐射条件下,反应0.5 h,溶解性有机碳去除率高达90 %。
2.4 臭氧氧化法
臭氧是一种氧化性很强且反应产生的物质对环境污染很小的强氧化剂[25],其氧化过程主要通过直接氧化和间接氧化来进行。直接氧化通过与污染物发生环加成、亲电反应以及亲核反应来实现,其对污染物的氧化具有选择性;间接氧化是臭氧在水溶液中容易受到诱导发生自分解,通过链反应生成强氧化剂—羟基自由基,再由羟基自由基氧化污染物[26]。
在臭氧氧化法的基础上,加入其他氧化剂或引入紫外光照或超声波,形成了O3/H2O2,O3/UV 和O3/US 等其他高级氧化技术。荆国华等人[27]进行了臭氧氧化聚乙烯醇废水的试验研究,并采用O3/UV 和O3/US 方法与单独臭氧氧化处理效果进行了对照。试验结果表明,经12 min 处理,O3/UV 和O3/US 协同作用下对PVA 降解率较单独臭氧氧化的63.2 %有显著提高,表现出了良好的协同效应。
2.5 过硫酸盐氧化法
过硫酸盐因其具有较强的氧化性、无选择性反应及室温下性质稳定等优点,成为污染物氧化反应中常规氧化剂的替代品。加之,过硫酸根离子在加热、金属离子及紫外光照射等作用的条件下,其可以形成氧化能力更强的硫酸根自由基SO4-·,并且可以形成羟基自由基OH·,在废水体系中,两种自由基可以共同参与污染物的氧化反应[28]。
S2O82-+heat/UV→2SO42-
S2O82-+Men+→SO42-+Me(n+1)++SO42-
SO42-+H2O←→OH+H++SO42-
SO42-+OH-→SO42-+OH
Seok-Young Oh 等人[28]采用过硫酸钾氧化剂在加热并投加Fe2+或Fe(0)的条件下对PVA 溶液进行氧化实验。结果表明,在PVA 初始浓度为46.5~51.9 mg/L 时,控制温度200 C,投加K2S2O8250 mg/L,并按照S2O82-与Fe2+或Fe(0)的摩尔比为1∶1 投加Fe2+或Fe(0),反应2 h 后,PVA 完全被氧化。用GC-MS 检测并证明PVA 被转化为C4H6O2。
利用硫酸铵盐或钠盐,将聚乙烯醇氧化成水不溶性的树脂加以去除。当COD 为800 mg/L 的含聚乙烯醇废水,与2000 mg/L的过硫酸铵在80~100 ℃下加热1 h 后,除去海绵状棕色树脂,COD 去除率>99 %[9]。
2.6 微波辐射法
自可以工业化生产并使用的微波源出现以后,微波能在工业生产中的应用技术得到广泛的研究,微波化学污水处理技术便应运而生。该技术是一项具有突破性、创新性、广谱性的水处理技术,就是利用微波对化学反应的诱导催化作用,通过物理及化学作用对水中的污染物进行降解、转化,从而实现污水净化的目的[29]。
夏立新等人[30]采用微波辐射技术对PVA 降解反应进行了实验研究。在试验中考察了微波功率、pH、H2O2 用量和反应时间对聚乙烯醇降解反应的影响。结果表明,在微波辐射条件下,废水初始pH 为3,微波功率为800 W,辐射时间为l min,H2O2 用量为22 g H2O2/100 g PVA 时,5 mL 聚乙烯醇(7 %)的平均聚合度能够在1 min 内由1750±50 降至67。与常规油浴加热相比,反应速度提高10~20 倍。
Shu-Juan Zhang 等人[31]采用γ射线对PVA 废水进行辐射降解实验。实验结果表明,PVA 的降解率受PVA 初始浓度、辐射剂量、pH、H2O2 投加量的影响。当PVA 初始浓度为200 mg/L,辐射剂量12.1 Gy/min,辐射时间90 min,废水pH 介于1~5 或在10~12 范围内变化时,PVA 降解率均在85 %以上,甚至有时可以达到完全矿化。
2.7 电化学法
电化学水处理技术是高级氧化技术的一种,通过外加电场作用,使废水中的污染物在特定的电化学反应器内发生电化学反应或物理反应,使废水中的污染物得到有效去除或回收,该反应过程主要包括电沉积、电吸附、电凝聚、电化学还原和电化学氧化等。其具有适应性广、操作简便、无需添加氧化还原剂、对环境友好等优点[32]。
根据污染物氧化还原产物,可将电化学水处理技术分为电化学燃烧和电化学转换两类。电化学燃烧即直接将有机物深度氧化为CO2 和H2O 等;电化学转换即把有毒物质转变为无毒物质,或把大分子有机物转化为小分子有机物。根据有机物氧化还原过程中电子转移方式不同,电化学水处理技术又可以分为直接电解和间接电解。直接电解是指污染物在电极上发生直接的电子转移过程而被氧化(阳极过程)或被还原(阴极过程)而从废水中去除。间接电解是指利用电化学产生的氧化还原物质作为反应剂或催化剂,使污染物转化成毒性更小的物质。
Wei-Lung Chou 等人[33]采用铁电凝法对PVA 溶液进行氧化处理实验。结果表明,Fe/Al 电极组和比Fe/Fe、Al/Fe、Al/Al 电极组和处理效果好。当溶液pH 为6.5,PVA 初始浓度为100 mg/L,槽电压为10 V,板间距离为2 cm,反应温度20 ℃,搅拌转速300r/min,控制反应120 min,PVA 去除率可以达到77.1 %。
徐金兰等人[34]以含PVA 的印染废水为处理对象,采用管式电凝聚器对其先进行预处理。试验结果表明,管式电凝聚器在pH=5,I=0.748 A/dm2,t=5 min。的操作条件下,COD 的去除率大约为50 %左右,电解后出水可生化性明显改善;并将电解出水经生物曝气、生物接触氧化处理,结果最终出水COD 达到100 mg/L 左右。
Sang yong Kim 等人[35]采用RuO2/Ti 作为阳极对PVA 溶液进行电化学氧化实验研究。结果表明,初始PVA 浓度为410 mg/L,板间距离为20 mm,电流密度为1.34 mA/cm2,Cl-浓度为17.1 mM,控制反应时间300 min,PVA 及COD 去除率分别为70.18 %,27.47%。
3 生化法
生化法是利用微生物的新陈代谢作用,使废水中呈溶解、胶体状态的有机污染物转化为稳定地无害物质,其分为好氧法和厌氧法。由于PVA 构成的有机污染物浓度高且难被生物降解,在采用生化法之前,对废水进行预处理,以提高废水的可生化性。
福建纺织化纤集团有限公司[36]在对PVA 废水的处理时,采用了采用水解酸化+活性污泥法+接触氧化法工艺进行处理,可以将废水中的COD 值由500~600 mg/L 降到20~60 mg/L,COD、BOD的去除率在85 %以上,出水优于《污水综合排放标准》中的其他排污单位一级标准。
裴义山等采用一体式好氧膜生物反应器(MBR)对难降解聚乙烯醇有机废水进行实验研究。结果表明,当进水COD为100~600mg/L 时,控制pH 为7~8,温度为15~29 ℃,HRT 为10~20 h,SRT 为100 d,可使系统出水COD 在40 mg/L 以下,平均为15.5mg/L,COD 的平均去除率为90.7 %。
来之中国污水处理工程网 >> 污水处理技术 >> 正文
如果使用家用净水器建议:益之源净水器
可 知道行家 密我 专解
H. 印染厂的污水主要成分是哪些怎么处理好呢
①退浆废水,水量较小,污染物浓度高,主要含有浆料及其分解物、纤维屑、酸、淀粉碱和酶类污染物,浊度大。废水呈碱性,pH值为12左右。用淀粉浆料时BOD、COD均高,可生化性较好;用合成浆料时COD很高,BOD小于5mg/L,水可生化性较差; ②煮炼废水,水量大,污染物浓度高,主要含有纤维素、果酸、蜡质、油脂、碱、表面活性剂、含氮化合物等。废水碱性很强,水温高,呈褐色,COD与BOD很高,达每升数千毫克。化学纤维煮炼废水的污染较轻; ③漂白废水,水量大,污染较轻,主要含有残余的漂白剂、少量醋酸、草酸、硫代硫酸钠等; ④丝光废水,含碱量高,NaOH含量在3%-5%,多数印染厂通过蒸发浓缩回收NaOH,所以丝光废水一般很少排出,经过工艺多次重复使用最终排出的废水仍呈强碱性,BOD、COD、SS均较高; ⑤染色废水,水质多变,有时含有使用各种染料时的有毒物质(硫化碱、吐酒石、苯胺、硫酸铜、酚等),碱性,PH有时达10以上(采用硫化、还原染料时),含有有机染料、表面活性剂等。色度很高,而SS少,COD较BOD高,可生化性较差; ⑥印花废水,含浆料,BOD、COD高; ⑦整理工序废水,主要含有纤维屑、树脂、甲醛、油剂和浆料,水量少; ⑧碱减量废水:是涤纶仿真丝碱减量工序产生的,主要含涤纶水解物对苯二甲酸、乙二醇等,其中对苯二甲酸含量高达75%。碱减量废水不仅pH值高(一般>12),而且有机物浓度高,碱减量工序排放的废水中CODCr可高达9万mg/L,高分子有机物及部分染料很难被生物降解,此种废水属高浓度难降解有机废水。
I. 物化法处理精细化工污水
物化法处理精细化工污水具体内容是什么,下面中达咨询为大家解答。
一 废水的来源
“精细化工”一词首先来源于日本,70年代,日本把凡生产具有专门功能,研究开发制造及应用技术密集度高,配方技术能左右产品性能,附加价值高,收益大,小批量,多品种的化工产品,称为精细化学品,生产精细化学品的工业,称为精细化学工业,简称精细化工。我国化工界得到多数人公认的定义是:凡能增进或赋予一种(类)产品以特定的功能,或本身拥有特定功能的小批量,高纯度的化学品,称为精细化工品。精细化工的全称是“精细化学工程”,属化学工程学科范畴。
精细化工产品的种类繁多,所包括的范围很广,如医药,农药,染料,颜料,各种中间体,涂料,香料和香精,化妆品,盥洗卫生用品,合成洗涤剂,表面活性剂,印刷油墨等。精细化工厂排出的废水主要来源于以下几类:
1.工艺废水
工艺废水是指生产过程中生成的浓废水(如蒸馏残液、结晶母液、过滤母液等),一般来说有的有机污染物含量较多,有的含盐浓度较高,有的还有毒性。不易生物降解,对水体污染较重。
2.洗涤废水
洗涤废水包括一些产品或中间产物的精制过程中的洗涤水,间歇反应时反应设备的洗涤用水。这类废水的特点是污染物浓度较低,但水量较大,因此污染物的排放总量也较大。
3.地面冲洗水
地面冲培卜洗水中主要含有散落在地面上的溶剂、原料、中间体和生产成品。这部分废水的水质水量往往与管理水平有很大关系。当管理较差时.地而冲洗水的水量较大.且水质也较差,污染物总量会在整个废水系统中占有相当的比例。
4.冷却水
却水一般均是从冷凝器或反应釜夹套中放出的冷却水。只要设备完好没有渗漏,冷却水的水质一般都较好,应尽量设法冷却后回用,不宜直接排放。直接排放一方面是资源浪费,另外也会引起热污染。一般来说,冷却水回用后,总是有一部分要排放出去的,这部分冷却水与其他废水混合后,会增加处理废水的体积。
5 .跑、冒、滴、漏及意外事故造成的污染
操作的失误或设备的泄漏会使原料、中间产物或产品外溢而造成污染,因此,在对废水治理的统筹考虑中,应当有事故的应急措施。
6 .二次污染废水
二次污染废水一般来自于废水或废气处理过程中可能形成的新的废水污染源,如预处理过程中从污泥脱水系统中分离出来的废水、从废气处理吸收塔中排出的废水。
7.工厂内的生活污水
二 精细化工废水的特点
1 原料以石化制品、煤加工副产品合成或植物提取、合成等。产品繁多, 工艺复杂;
2 过程使用大量有毒有害化工原料,如卤素化合物、硝基化合物, 苯、苯酚、萘以及衍生物, 具有较强刺激性气味;
3 过程副反应多, 产生的废水组分复杂;
4 中含有大量有机物(CODcr 常达几万mg/L)、色度高, 含盐高、pH极端、难生化降解;
5 高氨氮或含氮化合物;缺乏营养元素磷:
6 是目前最难处理的工业废水之一, 必须加强清洁生产和减排措施, 才能达到有效的污染控制;
三 精细化工工业废旅运水的治理原则
大部分精细化工废水均属于高难度废水范围(B:C小于0.3)。精细化工高难度工业废水其主要处理内容只有两个,其一是可溶物质,其二是不可溶配镇穗物质,归纳这两大类物质的去除手段为两个基本原则:其一,利用地球引力进行固液分离;其二,运用自然界中微生物将其降解为二氧化碳和水及剩余污泥。
对于可溶性有机物中难降解性的有毒有害溶剂去除可采用:吸附法,渗透法,吹脱发,高温氧化法,化学凝聚法,复合氧化法,膜分离法,技术关键在于将不可生化降解物质转化为可生化降解物质,在运用高温复合氧化和微捕技术,水与溶剂的分离技术,高盐去除的水中结晶技术等脱除。
针对具体的废水处理,其技术手段有多种形式:物理法,化学法,生物法,电化学法,复合法等。高级氧化是废水可生化转化的关键技术,包括高温催化氧化,光辐射氧化,气体氧化,电解等,这些都是非常有用的技术手段。我们可以根据不同水样的分析,针对不同内容,不同处理要求,技术性及经济性指标制定出不同处理工艺。
四 精细化工废水物化处理技术应用
精精细化工废水含有许多有毒有害难降解的有同物,比值较低, 直接采用生化法处理这类废
1 混凝处理
在众多物化法处理工艺中,混凝处理具有工艺简便、运行费用低廉等优点,特别是在脱除有色污染物时更是优先采用。由于目前常见的混凝剂只有少数几种对染料脱色效果好,而且产生的大量化学污泥还没有出路,所以近几年研究方向在于研制适用范围广、脱色能力强、同时对有机物也有较好去除效果的多功能高效混凝剂,并研究开辟污泥综合利用途径。一般认为,起脱色作用的主要是混凝产生的胶体物质和微小絮体的吸附作用,这对水溶性染料的去除非常重要;同时,通过架桥、电中和作用,生成的絮体也载带微细悬浮物。混凝剂的配方设计目标就是改善上述两方面的作用,并按印染废水的差异,设计成通用型和对某几种染料特别有效的专用型,成为系列产品。
1.1 FC系列
FC系列混凝剂对活性染料、分散染料、直接染料和硫化染料废水的脱色率达85%~95%,通常用量为200~300ppm,Fe对COD和PVA也有一定的去除效果。当投药量为300PPm时,实验所得的COD去除率为38%,PVA去除率为67.4%。
1.2 XP系列
XP系列混凝剂也有较广的适用性,实验表明,它对由13类染料构成的印染废水均有效,COD一次去除率平均为78.6%。
1.3 PFS一MS高效混凝技术
PFS是一种无机高分子絮凝剂,MZ是一种新研制的助凝剂,即新技术关键助剂,其特殊的助凝作用在于改变了某些染料的水溶性环境,打破了某些染料的亲水基,破坏了某些染料的双键结构,对某些燃料及可溶性有机物起吸附和氧化作用,同时起架桥作用。当PFS和MZ混合时,即形成以配位键结合的具有极限高电荷和极限高分子型的纯 无机高聚合体的复盐。PFS一MZ共同使用时,其凝聚效果和处理效果优于市场常用的无机混凝剂,降低PFS的投加量,可起到低耗高效的处理效果。PFS一MZ的工艺技术主要优点是工艺流程短、处理效果好、运行成本低、基建投资低,其主要构筑物可合为一体,操作管理简单。技术特点是由混合、絮凝、沉淀、回流4个步骤完成处理的全过程。
1.4 NE凝聚剂在废水处理中的应用
新型NE凝聚剂是一种无机凝聚剂,它主要是由含铁、镁、铝等元素化合物组成的复合物。其特征是高效、价廉、污泥沉降速度快。使用该凝聚剂对印染废水和炼钢除尘废 水进行处理,具有良好效果。NE凝聚剂和高效凝聚剂TS(代号)的处理效果比较如下:
(1)COD的去除 NE凝聚剂的去除率普遍高于TS,使用NE的CODcr去除率一般在75%-85%,而使用TS时一般在60%左右,有些即使在使用量相同的情况下,使用NE的CODcr去除率也比TS高40%左右。
(2)脱色率 使用NE的脱色率都高于TS,使用NE的脱色率一般在95%~100%,而TS的脱色率对一部分废水的处理可达95%~100%,但对另一部分废水则为50%~75%。
(3)凝聚剂的使用量及成本 相对而言,NE使用量对COD去处率的影响小于TS,在使用量相同的情况下,药剂费低一倍左右。
(4)沉降速率 NE的沉降性能优于TS,在实验中发现,使用NE经凝聚10min左右大部分凝聚物已沉降。
(5)NE的使用性 尤其适用于碱度高的废水,退浆、煮炼和染色是污染较严重的工段,而且碱度高,可采用NE进行处理。
1.5综合利用混凝产生的化学污泥
将其与其它化工原料以一定配比制成建筑材料,如地面砖、贴面砖等。用XP系列混凝剂产生的化学污泥以25%的比例与其它材料搭配制成的贴面砖具有良好的机械性能,其强度优于普通白瓷砖,溶出实验结果符合要求,完全可以用于一般用途,而且价格低于白瓷砖。
2电凝聚法处理精细化工行业废水
电凝聚浮上法的基本原理是将需处理的废水作为电解质溶液,在直流电源的作用下发生电化学反应。在阳极上发生氧化反应,使有机物分解氧化成无害成分;在阴极上发生还原反 应,使氧化型色素还原成无色。常规电凝聚法是根据实验获得的电凝聚槽电压与电极上电流密度的关系,然后决定电凝聚槽的总电压,通常这个槽电压小于安全电压36V。但要满足废水处理时电极上的电流密度达 到一定的处理效果,总电流密度就很大,一般在1000-3000安培之间,因而废水处理单位电能消耗较大。
随着电子技术的迅速发展,将可控硅脉冲电路应用到电凝聚的整流设备中,并对电凝聚槽进行优化设计。通过反复实验研究和生产性运转证明,采用较高的槽电压可以大大降 低 总电流强度和减少电解历时,从而提高电流效率,降低电耗和铁耗。脉冲作用可以使极板表面减少沉淀物,保持高的电流效率。高压脉冲电凝聚法就是基于这一原理发展起来的一种废水处理新方法,对废水脱色处理效果尤其明显。其特性如下:
(l)高压脉冲电凝聚浮上法处理工艺对色度的去除率高达90%~95%,出水清澈,适用范围广。
(2)与常规电凝聚法比较,电耗、铁耗大大降低,运行费用降低。
(3)该工艺运转灵活,适应性强,无论生产加工何种产品,均能取得较好的处理效果。该工艺尤其适用于中小型纺织印染加工企业和乡镇企业,有广阔的推广应用前景。
(4)污泥采用离心脱水,经脱水后污泥含水率为70%左右,可直接装袋运出制砖,无二次污染。
(5)废水经该工艺处理可回用,具有良好的环境和经济效益。对染料的电化学性能研究表明,各类染料在电解处理时,其CODcr去除率的大小顺序为:硫化染料、还原染料>酸性染料、活性染料>中性染料、直接染料>阳离子染料。除阳离子染料外,各类染料的脱色率均在90%以上,且脱色率高低与CODcr去除率一致。
总之,电解法具有投资省、占地少、处理效果好、机械化程度高等优点。目前该方法已有定型设备,并已投人实用。
3 铁屑微电解法处理精细化工行业废水
铁屑微电解机理 以铁屑微电解法为主要处理工艺处理废水, 在技术和经济上都是可行的, 具有工艺可靠、投资少、运行费用低、操作管理简便等优点。当将含碳铸铁屑和惰性焦炭颗 粒浸于具有传导性的电解质溶液中时, 就形成无数个微小的原电池, 在其作用空间形成一个电场, 在电位较低的铁阳极上, 铁失去电子生成Fe2+, 进人溶液中, 使电子流向碳阴极, 在阴离子附近, 溶液中的溶解氧吸收电子生成OH-, 在偏酸性溶液中, 阴极产生的新生态[H], 进而生成氢气逸出。其电极反应
如下
阳极:Fe — 2e →Fe2+ Eo (Fe2+ / Fe)=0.44V
阴极:2H+ +2e →2[H] →H2, Eo (H+ / H)=0.00V
O2 + 4H+ + 4e →2H2O Eo (O2)=1.23V
O2 + 2H2O + 4e →4 OH- Eo (O2 / OH-)=1.23V
从上述反应式可知, 由于Fe2+的不断生成,能有效地克服阳极的极化作用, 从而促进铁的电化学腐蚀, 使大量的Fe2+进人溶液, 形成具有较高吸附絮凝活性的絮凝剂, 能有 效去除染色废水中的染料胶体微粒和杂质。在偏酸性溶液中, 电极反应所产生的新生态 [H],能与溶液中的许多组分发生氧化一还原反应, 可破坏染色废水中染料分子的发色基 团, 达到脱色的目的。因此, 可以认为铁屑微电解处理染色废水的机理是通过氧化一还原吸附絮凝等综合作用的结果。通常条件为铁屑微电解柱进水pH为4~6, 中和沉淀pH为7~8;染色废水在铁屑微电解柱HRT=30min, 沉淀槽沉淀时间为60min,砂滤柱HRT=30min.
以铁屑微电解法为主要处理工艺处理废水, 在技术和经济上都是可行的, 具有工艺可靠、投资少、运行费用低、操作管理简便等优点。
4 电化学法——自凝一静电混凝法处理精细化工废水
4.1 自凝效应
废水中的各污染物质在混合以后, 由于胶体污染颗粒表面反应自由能的降低, 会在废水处理体系中自行从分散状态变为聚集状态, 产生自凝效应。适当调节废水的pH值会促成这一作用, 对使用染料品种比较单一的印染废水, 在间断投加少量混凝剂的情况下, 也可促进自凝作用。
4.2静电混凝
处于分散状态的废水中的污染颗粒, 当进人一种粒状材料空隙间的同号静电场以后, 由于静电场对胶粒的吸引和对胶粒漫散层电荷的压缩, 产生强制电中和作用, 进而由于表面能 的释放而聚沉, 于是被粒状材料所构成的滤床所截留。
由于静电处理是利用电扬对胶粒的聚沉作用,没有电子得失, 故电耗甚微, 可以忽略不计。
5 沉淀一气浮法处理精细化工废水
目前, 国内外处理精细化工废水的物化法大多采用沉淀法、气浮法或上述方法的相互组合以及开发的新技术。主要方法有组合式沉淀法、气浮加组合沉淀法和CS系列双汲气浮加沉淀法。
气浮分离的速度决定于颗粒和液体密度的大小, 气浮处理工业废水, 具有投资省、占地少、分离速度快、处理效果好等优点
6 吸附法对精细化工废水进行深度处理
6.1吸附剂的研究与应用
6.1.1活性炭吸附剂
实践证明, 颗粒活性炭对各种染料的吸附去除能力顺序为碱性>酸性>直接>硫化染料。活性炭对分子量在400左右的染料分子脱色效果最为理想, 对分子量小的染料吸附也较好, 而对疏水性染料脱色效果较差。
6.1.2 矿物吸附剂
(1) Imamura将高岭土、大理石粉末、熔岩粉末按1:1:1混合, 锻烧得到的脱色剂可以较好地去Imamura除废水中的染料成分和色度。
(2) Okada:水铝英石(allopane)的胶态土可用于印染废水。
(3) 活性白土对苯系偶氮分散染料有很好的脱色效应。
(4)斜发沸石用酸、碱处理后再活化可有效地去除废水中的染料成分, 脱色率99.7%。
(5)麦饭石对染料的吸附效率高, 具有良好的脱色率和CODcr去除率, 我国麦饭石资源丰富,开辟此技术前景广阔。
(6)利用凹凸棒石粉作吸附剂去除印染废水色度。
(7)利用镁型吸附MgO、Al2O3、粘土活性一MgO—粘土处理印染废水。
(8)利用活化硅藻土(Al2O3和Fe2O3为主)进行印染废水深度脱色。
(9)SiO2吸附去除碱性染料是一种经济、高效的处理工艺。
(10)天然蒙脱土处理含酸性阳离子染料废水, 脱色率可达90%以上, CODcr去除率高达96.9%
6.1.3煤及煤渣吸附剂
实验证明, 具有最好脱色效果的是粒径80%,色度>70%。活化煤处理印染废水具有投资低、占地少、操作简便、便于管理、处理效果稳定等优点。
6.1.4天然废料吸附剂
木炭、稻壳、玉米棒、甘蔗渣、泥炭、锯屑等都是天然的吸附剂。
6.1.5离子交换树脂吸附剂
近年来, 针对水溶性离子型染料废水脱色困难这一问题, 进行了利用磺化煤和改性纤维素离子交换树脂进行脱色的研究。此外, 国外利用特殊纤维和特别加工制成的聚酞胺纤维, 活性炭纤维的脱色技术也有很多的研究。
6.2吸附法的组合新工艺
6.2.1活性炭填充电极电解法
此工艺具有以下特点处理效果好, 无二次污染脱色效果好, 不投加其它脱色氧化剂, 脱色效果达以上活性炭不需再生处理设备制造简单适用范围广。
6.2.2腐蚀电极法
腐蚀电极法处理废水具有多种机制, 以电化学为主, 兼有还原降解、吸附和混凝作用。此法具有以废治废、节约资源、投资省和运行费用低等特点。该工艺流程简单、占地少、便于上马、操作管理简单, 尤其适用于中小型纺织印染厂的废水治理。
,
6.2.3吸附一化学凝聚法
利用烟道灰吸附一化学凝聚法处理毛纺织厂印染废水。也可采用化学凝聚一半煤渣吸附法处理棉纺印染废水。
实践证明, 开发廉价、高效和新型的吸附材料和研究吸附法的优化组合工艺流程是废水脱色和深度处理的一条新途径。
7 膜分离法处理精细化工废水
7.1 动态膜
经过研究, 认为从处理效果和经济上讲ZRO,PAA动态膜是可行的, 并进行实际的全封闭循环,表明膜的稳定性、流量及截流率是令人满意的水洗后的废水经过反渗透之后, 其渗透水及化学物质的再利用率可达88%~96%, 其余的也达到废水的排放标准。
对剩余废液及反渗透浓缩物的有效再利用也是完全可行的, 实现这一目的的有效手段是通过实验确定助剂及染料的补加量, 这样无疑会大大提高废染液的利用率, 最终实现无废水排放的全循环过程。而操作压力高、能耗大是动态反渗透膜的不足。
7.2纤维素类膜
维生素类膜(CA)的选择性随膜表面与各种染料互变异构体的相互作用而发生巨大变化, 然而由于膜材料本身在耐pH、耐温等方面的不足,正逐步被新的膜材料所淘汰。
CTA反渗透膜解决了染色废水用于水的再循环, CTA在耐pH值、耐压、耐温等方面都优于CA, 但反渗透所需的高压操作仍是它的不足。
7.3 聚矾超滤膜
聚矾超滤膜由于其良好的物化稳定性成为目前最富竞争力的超滤膜之一, pH使用范围是1~18, 最高允许温度120℃ , 同时具有良好的抗氧化、耐氯等性能。
7.4荷电超滤膜和疏松反渗透膜
7.4.1 简介
荷电超滤膜或疏松反渗透膜是用来描述分离性能介于反渗透和超滤之间的一种膜。荷电超滤膜是以其化学结构含有荷电基团而定义的疏松反渗透膜是以其物理结构而命 名他们往往指的是一种膜, 对一价盐如NaCl的截留只有20%~30%而对于500~2000分子量的物质应具有较高的分离率, 同时保持高的水通量。此外, 荷电超滤保持了超滤低压的特点, 该膜在耐pH值、耐压密、耐污染、耐温等方面都比较突出。一般染料的分子量正好在这种膜的截流范围, 特别是离子性染料, 由于膜上固定离子的作用, 其分离性能是中性膜难以比拟的。
7.4.2 制取
利用化学方法改性聚矾, 然后制成基膜, 进一步将亲水性的复合层与基膜进行化学反应, 然后在亲水性的溶剂里进行交联制成复合膜, 这样复合层与基膜不仅不出现剥离现象, 而且表现出耐溶剂、耐压密、耐酸碱, 最高使用温度70℃
7.4.3 结论
荷电超滤膜由于其特殊的截留分子量范围, 同时具有高流量低压操作的特点, 将是未来处理印染废水中最具有竞争力的膜材料。此外, 该膜具有耐压密、耐酸碱、耐污染等特点, 如果再配以计算机辅助配色等手段, 将会使印染废水得到最大的回收和再利用, 而且还符合排放标准。
8 化学处理方法
8.1 化学氧化
(1)氧化脱色, 适宜的催化剂可提高O3氧化的脱色率。催化率包括以活性炭为骨架的MnO2催化剂和以ZnSO4为催化剂。
(2) H2O2氧化脱色。
(3)Fenton试剂脱色技术。
(4) ClO2氧化脱色。
8.2化学还原
还原剂主要是铁屑。
9 离子对萃取法
9.1萃取机理
在酸性条件下, 长链胺与含有磺酸基团的染料分子反应形成疏水的离子对蓄积在有机相中, 如过量的胺相中, 从而与水相分离。相分离可借助于惰性非极性溶剂, 优先的是碳氢化合物。合适的胺包括伯胺如萘胺等芳香族胺、仲胺以及叔胺。
包括伯胺如萘胺等芳香族胺、仲胺以及叔胺。
9.2操作
萃取法操作时, 先将废水调节到合适的pH值,然后混以胺和非极性惰性溶剂, 再予以振荡。废水的pH值处理到, 一状态时脱色就基本完成了。有机相的回收如果有机相中含有活性染料, 惰性溶剂可以通过蒸馏加以回收, 而且如果调节得当, 胺还可以回用, 在这种情况下, 蒸馏残渣必须按照特殊废品法规加以处理, 而有机相则可以选择通过直接焚烧处理掉。
对含有NaOH水溶液的胺与溶剂的混合物则进行再提取。
对有金属络合染料存在的情况下, 用水溶液处理胺、溶剂和染料的混合物是非常巧妙的解决方法, 这样染料进人到水相中, 并以溶液的形式重新在染色工厂得到应用, 胺与溶剂的混合物在返回到脱色循环中去。
物理化学法作为重要的污水处理方法正在精细化工行业环境保护中起着越来越重要的作用, 许多新方法也在不断的涌现, 它们为我国的环境保护和精细化工行业发展起到了很大的促进作用。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
J. 印刷废水如何处理,印刷废水如何处理知识
您好,纸引未来网帮您解答现在很多处理污水的方法都是运用物理、生物、化学,以及内一些联合水处理等方法来容处理污水,不过印染这方面的污水对水源的污染确实是挺厉害的
预处理可以生化,沉淀,过滤再用树脂脱色,再加RO深度处理,关键是成本高,还有印染水温度较高,对膜的影响较大,大概只能用到三年左右,如果上蒸发,理论上可以做到零排放,但一次性投资成本高
退浆废水:水量较小,但污染物浓度高,其中含有各种浆料、浆料分解物、纤维屑、淀粉碱和各种助剂。废水呈碱性,pH值为12左右。上浆以淀粉为主的(如棉布)退浆废水,其COD、BOD值都很高,可生化性较好:上浆以聚乙烯醇(PVA)为主的(如涤棉经纱)退浆废水,COD高而BOD低,废水可生化性较差。
希望采纳谢谢