⑴ 污水处理线型填料布置尺寸多少
1、格栅
设备宽500,人工定时清污。
2、调节均衡池
由于生活区排出的废水,水质、水量、酸碱度等水质指标随排放点变化及排水时间大幅度波动,为使处理构筑物和管渠不受废水高峰流量或浓度变化的冲击,需设调节池,起调节均衡水质水量作用。
调节池的较小有效容积应能够容纳水质水量变化一个周期所排放的全部废水量,根据我们常规设计,调节设计停留时间为12小时,有效容积为36m3。调节池内采用穿孔曝气管进行预曝气。
调节池规格尺寸为:L4.0XB3.0XH3.5m
调节池内安装二台污水提升泵(1用1备),污水泵采用PLC控制,采用液位及时间联动方式来控制水泵的正常运行。
3、地埋式一体化污水处理设备技术说明
地埋式一体化污水设备采用钢结构,总规格为8.0×2.0×2.5。箱体安装于地表下,上留检修人孔。箱体组成:水解酸化池(A级池)、二级生物接触氧化池、二沉池、消毒池、污泥池、风机房等组成。具体各单元规格见下文详述。
3.1、A级生化池
A级生化池的内尺寸为1.5m×2.0m×2.5m,有效水深2.0m,内挂生物填料。该填料使用寿命长,挂膜、脱膜容易,使污水处理处理状态,有利于生物降解。主要工艺参数为:HRT=2.0h。
3.2、二级生物接触氧化池
一、二级生物接触氧化池的内尺寸为3.8m×2.0m×2.5m。
池有效水深2.0m,内挂生物填料。采用微孔曝气器进行曝气。主要工艺参数为:HRT=5.1h;容积负荷0.8KgBOD/m3.d,气水比为15:1。
3.3、二沉池
二沉池采用竖流式沉淀池,考虑到生活污水污泥沉降性能一般,设计二沉池处理负荷为0.80m3/h.m2,二沉池内尺寸为1.7m×2.0m×2.5m。
排污方式为泵提排泥。
3.4、消毒池及污泥池
消毒池按规范:“TJ14-74”标准不小于0.3小时,本污水消毒时间设计为0.5小时。消毒采用接触溶解的消毒方式。
消毒池HRT=0.5h,有效水深2.0m。氯消解量控制在15~30g/ m3左右,具体通过调节排水的细菌总数来控制。
消毒池内尺寸为0.50m×2.00m×2.5m。
污泥池内尺寸为0.50m×2.00m×2.5m。
风机房内尺寸为1.00m×2.00m×2.5m
⑵ 污水厂接触消毒池设计规范是什么在哪里可以查到!
给排水设计规范GB50014-2006
⑶ 地埋式污水处理设备埋设深度一般为多少
哎啊,这方面问题我还真是不大了解也,我在别人那COPY了点过来,你参考看下用得上不嘛。
污水处理厂常用的是潜水排污泵,如果北方地区有回用的要求,还会有双吸离心泵等。
鼓风机的出口风压一般是(水深+1)*9.8kpa,多加的10kpa主要是空气管路的水头损失,一般设计中不会去细算。根据你的曝气水深5m,选择的鼓风机出口风压升值58.8kpa,进口压力就是标准大气压力98kpa。流量根据自己计算生化池的气量来确定。
设备主要有七部份组成:(1)全自动格栅(2)缺氧池(3)生物接触氧化池(4)二沉池(5)消毒池(6)
污泥池(7)自动控制柜。
污水进入设备前行设置-调节池,以调节污水水质、水量、调节池有效停留时间一般为 4-8小时,调节池
进口处设置格栅网箱,以拦载污水中的大颗粒杂物确保水泵正常运行。
(1) 全自动格栅:调节池中的污水由水泵抽至格栅内,格栅用于拦载污水中的微小漂浮物和悬浮颗粒,
拦载下来的污物随格栅齿耙自动进入污池中,污水流入后续工艺中,该格栅为日本进口设备,具有分离效果
好(栅隙5mm~10mm)能自动除污物、不易堵塞、使用寿命长等优点。
(2) 缺氧池:缺氧为脱氮处理而设置,经过格栅分离后的污水自流进缺氧池与接触池中的回流硝化液
相混合,缺氧池中放置NZP-II 型填料作为反硝化细菌的载体,填料对氮、磷、硫化物去除效果好,停留时间
为 2 小时与前续工艺中的污泥池相结合形成 A/O 法处理工艺,从而达到脱磷、脱氮的目的。(仅 DM-C 型设备
有消毒池)
(3) 生物接触氧化池:共分三级,总且化时间 6 小时,前二级采用 NZP-I 型填料,该填料水流特性十
分优越,第三级采用NZP-II型填料,该填料比表面积大,处理负荷达 14kgBOD/m3.d是一般填料的 5-10倍,
生化池根据实际情况:可采用微孔曝气或射流式曝气机或离心式曝气机,污水在生化池内不断循环,充分地与
填料上的生物膜相接触,达到有机物迅速降解作用。
(4) 二沉池:生化后的污水进入二沉池,二沉池设计表面负荷 0.9-1.2m3/m2.d 二沉水槽为升降式可调
液位,齿形集水槽,其槽集水均匀沉淀效果较好,二沉的污泥气提至污泥池。
(5) 消毒池:按国家标准:TJ14-74制作,消毒池停留时间为 30 分钟,消毒剂采用固体氯丸或漂白粉,
一般一周投加一次。
(6) 污泥池:经格栅拦载的污物和二沉池污泥均进入污泥池,污泥池内设有污泥硝化系统,污泥池上
清液回流至调节池。
(7)(如采用风机曝气) 风机房、自动控制柜:风机房单独设置,内装二台风机(一用一备),风机房和
微机控制柜为一体,风机房出风管和设备进风管相连结,其距离不超过 15米,其尺寸和详细说明见表 2。
工厂建议:考虑设备的采购、运行成本,日常维护及噪声要求,请使用潜水式离心曝气机或射流式曝气
机。容易产生气泡的污水,建议在初沉池内定期加消泡剂。对于含有色素的污水,建议在排水口前加活性碳
等吸附剂。
⑷ 我是新手 急求一篇医院污水处理设计方案!
污水简介
一般医院污水由来自住院部、门诊室、实(化)验室、食堂、浴室、卫生间、试版剂室、洗衣权房等场所排放的污水组成。医院污水中含有一些特殊的污染物,如药物、消毒剂、诊断用剂、洗涤剂,以及大量病原性微生物、寄生虫卵及各种病毒,如蛔虫卵、肝炎病毒、结核菌和痢疾菌等。
污水特点
该污水是一种低浓度污水,水质与一般生活污水类似,其中除含有有机的和无机的污染物,如各种药物、消毒剂、手术遗弃物等污染物,还含有大量病菌、病毒和寄生虫,成份较为复杂。与工业污水和生活污水相比,它具有水量小,污染力强的特点。该污水如未经处理而直接排入水体,必然会污染水源,传播疾病,会对周围水域及土壤等造成较严重的污染,从而危害人们的日常生活。
处理方法
此类污水含大量有机物,可生化性好。针对医院污水的特点和排放水质的要求,经综合分析并结合医院污水处理的有关规定,吸收相关企业污水处理实际经验, 尤其是同类型污水处理中的设计、运行经验, 本工程采用生化处理和二氧化氯消毒工艺,采用缺氧和好氧并用的方法来降低污水的COD和BOD,使污水达到净化的效果。二氧化氯消毒是一种成熟、有效的消毒措施,而且操作和维护管理都比较方便。
⑸ 污水处理300t/d,这个污水池容量多少立方米
污水处理每天300吨的小规模污水处理厂的污水池容量,一般根据产生污水的内生产工艺,生产时间等容进行设计取值,一般需要设计污水缓冲池或者调节池,一般都是24小时的缓冲调节池容的,也就是污水池的容量一般是300立方米,同时再考虑污水的变化系数,不可预见水量等,可以乘以一个大于1的系数,例如1.1,那么设计出来的污水处的容量就是330立方米有效容积,考虑到超高0.3米,也就是在原来330立方米的基础上,增加污水池0.3米的深度。
⑹ 设计污水处理厂时那些构筑物要备用的
污水处理厂的设计方案
一、工程概述
城市污水处理厂的设计工作一般分为两个阶段,即初步设计和施工图设计。
城市污水处理厂的设计工作内容包括确定厂址、选择合理的工艺流程、确定污水处理厂平面与高程的布置、计算建(构)筑物等。
1、设计资料的收集与调查
(1)建设单位的设计任务书
包括设计规模(处理水量)、处理程度要求、占地要求、投资情况等。
(2)收集相关资料
包括原水水质资料、当地气象资料(温度、风向、日照情况等)、水文地质资料(地下水位、土壤承载力、受纳水体流量、最高水位等)、地形资料、城市规划情况等。
(3)必要的现场调查
当缺乏某些重要的设计资料时,则现场的调查是必需的。
2、厂址选择
城市污水处理厂厂址选择是城市污水处理厂设计的前提,应根据选址条件和要求综合考虑,选出适用的、系统优化、工程造价低、施工及管理方便的厂址。
二、处理流程选择:
污水处理厂的工艺流程是指在达到所要求的处理程度的前提下,污水处理各单元的有机组合,以满足污水处理的要求。
1、污水处理流程的选择原则:
经济节省性原则;
运行可靠性原则;
技术先进性原则。
2、应考虑的其他一些重要因素:
充分考虑业主的需求;
考虑实际操作管理人员的水平。
本次设计采用生物好氧处理法。好氧生物处理BOD5去除率高,可达90%~95%,稳定性较强,系统启动时间短,一般为2~4周,很少产生臭气,不产生沼气,对污水的碱度要求低。
污水处理工艺流程图如下:
平面图:
三、污水处理工程设计计算:
(一)、设计水量,水质及处理程度:
平均流量:5万吨/天,变化系数1.4;
进水:COD:400 mg/L,BOD:300 mg/L,SS:350 mg/L;
出水:COD: 60 mg/L,BOD: 20 mg/L,SS: 20 mg/L;
处理程度计算:COD:(400-60)/400=85% ;
BOD:(300-20)/300=93.3% ;
SS:(350-20)/350=94.3% 。
(二)、格栅及其设计:
格栅是由一组平行的金属栅条制成,斜置在污水流经的渠道上或水泵前集水井处,用以截留污水中的大块悬浮杂质,以免后续处理单元的水泵或构筑物造成损害。
设计中取二组格栅,N=2组,安装角度α=60°
Q 设计水量=平均流量×变化系数=0.810 m3/s
2、格栅槽宽度:
B=S(n-1)+bn
式中: B——格栅槽宽度(m);
S——每根格栅条的宽度(m)。
设计中取S=0.015m,则计算得B=0.93m。
3、进水渠道渐宽部分的长度:
4、出水渠道渐窄部分的长度:
5、通过格栅的水头损失:
6、栅后明渠的总高度:
H=h+h1+h2
式中: H——栅后明渠的总高度(m);
h2——明渠超高(m),一般采用0.3-0.5m
设计中取h2 =0.30m,得到H=1.28m。
7、栅槽总长度:
8、每日栅渣量计算:
采用机械除渣及皮带输送机或无轴输送机输送栅渣,采用机械栅渣打包机将栅渣打包,汽车运走。
9、进水与出水渠道:
城市污水通过DN1200mm的管道送入进水渠道,设计中取进水渠道宽度B1 =0.9m,进水水深h1=h=0.8m,出水渠道B2=B1=0.9m,出水水深h2=h1=0.8m。
(三)、沉砂池及其设计:
沉砂池是借助于污水中的颗粒与水的比重不同,使大颗粒的沙粒、石子、煤渣等无机颗粒沉降,减少大颗粒物质在输水管内沉积和消化池内沉积。
沉砂池按照运行方式不同可分为平流式沉砂池,竖流式沉砂池,曝气式沉砂池,涡流式沉砂池。
设计中采用曝气沉砂池,沉砂池设2组,N=2组,每组设计流量0.4051m3/s
1、沉砂池有效容积:
式中: V——沉砂池有效容积(m3);
Q——设计流量(m3/s);
t——停留时间(min),一般采用1-3min。
设计中取t=2min,Q=0.4051m3/s,得到V=48.61m3。
出水堰后自由跌落0.15m,出水流入出水槽,出水槽宽度B2=0.8m,出水槽水深h2=0.35m,水流流速v2=0.89m/s。采用出水管道在出水槽中部与出水槽连接,出水管道采用钢管。管径DN2=800mm,管内流速v2=0.99m/s,水力坡度i=1.46‰。
12、排砂装置:
采用吸砂泵排砂,吸砂泵设置在沉砂斗内,借助空气提升将沉砂排出沉砂池,吸砂泵管径DN=200mm。
(四)、初沉池及其设计:
初次沉淀池是借助于污水中的悬浮物质在重力的作用下可以下沉,从而与污水分离,初次沉淀池去除悬浮物40%~60%,去除BOD20%~30%。
初次沉淀池按照运行方式不同可分为平流沉淀池、竖流沉淀池、辐流沉淀池、斜板沉淀池。
设计中采用平流沉淀池,平流沉淀池是利用污水从沉淀池一端流入,按水平方向沿沉淀池长度从另一端流出,污水在沉淀池内水平流动时,污水中的悬浮物在重力作用下沉淀,与污水分离。平流沉淀池由进水装置、出水装置、沉淀区、缓冲层、污泥区及排泥装置组成。
沉淀池设2组,N=2组,每组设计流量Q=0.4051m3/s。
10、沉淀池总高度:
H=h1+h2+h3+h4
式中:h1——沉淀池超高(m),一般采用0.3-0.5;
h3——缓冲层高度(m),一般采用0.3m;
h4——污泥部分高度(m),一般采用污泥斗高度与池底坡底i=1‰的高度之和。
设计中取h1=0.3m,h3=0.3m,得h4=3.94m,得到H=7.54m。
15、出水渠道:
沉淀池出水端设出水渠道,出水管与出水渠道连接,将污水送至集水井。
式中: v3——出水渠道水流流速(m/s),一般采用v3≥0.4m/s;
B3——出水渠道宽度(m);
H3——出水渠道水深(m),一般采用0.5-2.0。
设计中取B3=1.0M,H3=0.8m,得到v3=0.51m/s>0.4m/s。
出水管道采用钢管,管径DN=1000mm,管内流速为v=0.51m/s,水力坡降i=0.479‰。
16、进水挡板、出水挡板:
沉淀池设进水挡板和出水挡板,进水挡板距进水穿孔花墙0.5m,挡板高出水面0.3m, 伸入水下0.8m。出水挡板距出水堰0.5m,挡板高出水面0.3m,伸入水下0.5m。在出水挡板处设一个浮渣收集装置,用来收集拦截的浮渣。
17、排泥管:
沉淀池采用重力排泥,排泥管直径DN300mm,排泥时间t4=20min,排泥管流速v4=0.82m/s,排泥管伸入污泥斗底部。排泥管上端高出水面0.3m,便于清通和排气。排泥静水压头采用1.2m。
18、刮泥装置:
沉淀池采用行车式刮泥机,刮泥机设于池顶,刮板伸入池底,刮泥机行走时将污泥推入污泥斗内。
(五)、曝气池及其设计:
设计中采用传统活性污泥法。传统活性污泥法,又称普通活性污泥法,污水从池子首端进入池内,二沉池回流的污泥也同步进入,废水在池内呈推流形式流至池子末端,其池型为多廊道式,污水流出池外进入二次沉淀池,进行泥水分离。污水在推流过程中,有机物在微生物的作用下得到降解,浓度逐渐降低。传统活性污泥法对污水处理效率高,BOD去除率可达到90%以上,是较早开始使用并沿用至今的一种运行方式
7、曝气池总高度:
H总=H+h
式中: H总——曝气池总高度(m);
h——曝气池超高(m),一般取0.3—0.5m。
设计中取 h=0.5m,则 H=4.7m。
10、管道设计:
①中位管:
曝气池中部设中位管,在活性污泥培养驯化时排放上清液。中位管管径为600mm。
②放空管:
曝气池在检修时,需要将水放空,因此应在曝气池底部设放空管,放空管管径为500mm。
④消泡管
在曝气池隔墙上设置消泡水管,管径为DN25mm,管上设阀门。消泡管是用来消除曝气池在运行初期和运行过程中产生的泡沫。
⑤空气管
曝气池内需设置空气管路,并设置空气扩散设备,起到充氧和搅拌混合的作用。
11、曝气池需氧量计算:
依照气水比5:1进行计算,Q=14580m3/h。
12、鼓风机选择:
空气扩散装置安装在距离池底0.2m处,曝气池有效水深为4.2m,空气管路内的水头损失按1.0m计,则空压机所需压力为:
P=(4.2-0.2+1.0)×9.8=49kPa
鼓风机供气量:
Gsmax=14580m3/h=243m3/min。
根据所需压力及空气量,选择RE-250型罗茨鼓风机,共5台,该鼓风机风压49kPa,风量75.8m3/min。正常条件下,3台工作,2台备用;高负荷时,4台工作,1台备用
(六)、二沉池及其设计:
二沉池一般可分为平流式、辐流式、竖流式和斜板(管)等几类。
平流式沉淀池可用于大、中、小型污水处理厂,但一般多用于初沉池,作为二沉池比较少见。平流式沉淀池配水不易均匀,排泥设施复杂,不易管理。
辐流式沉淀池一般采用对称布置,配水采用集配水井,这样各池之间配水均匀,结构紧凑。辐流式沉淀池排泥机械已定型化,运行效果好,管理方便。辐流式沉淀池适用于大、中型污水处理厂。
竖流式沉淀池一般用于小型污水处理厂以及中小型污水厂的污泥浓缩池。该池型的占地面积小、运行管理简单,但埋深较大,施工困难,耐冲击负荷差。
斜管(板)沉淀池具有沉淀效率高、停留时间短、占地少等优点。一般常用于小型污水处理厂或工业企业内的小型污水处理站。斜管(板)沉淀池处理效果不稳定,容易形成污泥堵塞,维护管理不便。
设计中选用辐流沉淀池,沉淀池设2组,N=2组,每组设计流量0.405m3/s。
3、沉淀池有效水深:
h2=q′×t
式中: h2——沉淀池有效水深(m);
t——沉淀时间(h),一般采用1—3h。
设计中取 t=2.5h,得到 h2=3.5m。
4、径深比:
D/h2=10.4,满足6-12之间的要求。
5、污泥部分所需容积:
式中: Q0——平均流量(m3/s);
R——污泥回流比(%);
X——污泥浓度(mg/L);
Xr——二沉池排泥浓度(mg/L)。
设计中取Q0=0.579 m3/s,R=50%,
,
SVI——污泥容积指数,一般采用70-150;
r——系数,一般采用1.2。
设计中取SVI=100,r=1.2,得到Xr=1.2×104mg/L,X=4000mg/L。
经计算得到 V1=1563.3m3。应采用连续排泥方式。
6、沉淀池的进、出水管道设计:
进水管:流量应为设计流量+回流量,管径计算为900mm
出水管:管径计算为800mm
排泥管:管径为500mm
7、出水堰计算:
堰上负荷的校核。规定堰上负荷范围1.5-2.9L/m.s之间。
8、沉淀池总高度:
H=h1+h2+h3+h4+h5
式中:H——沉淀池总高度(m);
h1——沉淀池超高(m),一般采用0.3-0.5m;
h2——沉淀池有效水深(m);
h3——沉淀池缓冲层高度(m),一般采用0.3m;
h4——沉淀池底部圆锥体高度(m);
h5——沉淀池污泥区高度(m)。
设计中取h1=0.3m,h3=0.3m,h2=3.5m.
根据污泥部分容积过大及二沉池污泥的特点,采用机械刮吸泥机连续排泥,池底坡度为0.05。
h4=(r-r1)×i
式中:r——沉淀池半径(m);
r1——沉淀池进水竖井半径(m),一般采用1.0m;
i——沉淀池池底坡度。
设计中取r1=1.0m,i=0.05,得到h4=0.86m。
式中:V1——污泥部分所需容积(m3);
V2——沉淀池底部圆锥体容积(m3);
F——沉淀池表面积(m2)。
计算可得 =315.4m3,则h5=1.20m。
得到H=6.16m。
(七)、消毒接触池及其设计:
污水经过以上构筑物处理后,虽然水质得到了改善,细菌数量也大幅减少,但是细菌的绝对值依然十分客观,并有存在病原菌的可能,因此,污水在排放水体前,应进行消毒处理。
设计中采用平流式消毒接触池,消毒接触池设2组,每组3廊道。
1、消毒接触池容积:
V=Qt
式中: Q——单池污水设计流量(m3/s);
t——消毒接触时间(min),一般采用30min。
设计中取t=30min,得每组消毒接触池的容积为729m3。
2、消毒接触池表面积:
F=V/h2
式中:h2——消毒池有效水深,设计中取为2.5m。
设计中取h2=2.5m,得到F=291.6m2。
3、消毒接触池池长:
L′=F/B
式中:B——消毒池宽度(m),设计中取为5m。
设计中取B=5m,计算得 L=58.32m。每廊道长为19.44m,设计中取为20m。
校核长宽比:L′/B=11.7>10,合乎要求。
4、消毒接触池池高:
H=h1+h2
式中:h1——消毒池超高(m),一般采用0.3m;
设计中取h1=0.3m,计算得 H=2.8m。
5、进水部分:
每个消毒接触池的进水管管径D=800mm,v=1.0m/s。
6、混合:
采用管道混合的方式,加氯管线直接接入消毒接触池进水管,为增强混合效果,加氯点后接D=800mm的静态混合器。
(八)、污泥浓缩池及其设计:
污泥浓缩的对象是颗粒间的空隙水,浓缩的目的是在于缩小污泥的体积,便于后续污泥处理,常用污泥浓缩池分为竖流浓缩池和辐流浓缩池2种。二沉池排出的剩余污泥含水率高,污泥数量较大,需要进行浓缩处理;初沉污泥含水量较低,可以不采用浓缩处理。设计中一般采用浓缩池处理剩余活性污泥。浓缩前污泥含水率99%,浓缩后污泥含水率97%。
13、溢流堰:
浓缩池溢流出水经过溢流堰进入出水槽,然后汇入出水管排出。出水槽流量q=0.0015m3/s,设出水槽宽b=0.15m,水深0.05m,则水流速为0.2m/s,溢流堰周长:
c=π(D-2b)
计算得到c=15.86m。
溢流堰采用单侧90°三角形出水堰,三角堰顶宽0.16m,深0.08m,每格沉淀池有110个三角堰,三角堰流量q0为:
Q1=0.0015/110=0.0000136m3/s
h′=0.7q02/5
式中: q0——每个三角堰流量(m3/s);
h′——三角堰堰水深(m)。
计算得到h′=0.0079m。
三角堰后自由跌落0.10m,则出水堰水头损失为0.1079m
⑺ 污水处理提升泵站进水管管低标高怎么算
1、确定相对标高0.00(一般以地面为0.00)2、进水管底标高是整个工艺高程的关键,如果你设计的流程重力流,只有一次提升,那么根据你最后出水标高,依次递推算出你的进水管标高。例如:工艺是调节池+初沉池+生化池+沉淀池+消毒池,那么消毒池出水排入河流至少需要高于当地河流高度,假设地面标高0.00,附近排水河流河面标高-1.00,那么你的消毒池出水至少要大于-1.00,这样你结合消毒池水头损失算出沉淀池出水标高、算出生化池出水标高、算出初沉池出水标高、算出初沉池进水标高,如果你的提升泵是从调节池到初沉池,那么你的提升泵站进水管管底标高不能低于初沉池进水标高。(注意水头损失和流速、扬程、高程相关)。按照以上最终得出了你的提升泵站进水管底标高。