Ⅰ 水处理工艺的水力停留时间是根据什么定的各种工艺的停留时间大概是多少比如A/O ,AA/O,SBR,MBR,IC,CASS
水力停留时间是计算出来的,当然也有很多工程师是根据经验确定的。
计算方法:
首先,你要确定进、出水水质,计算出需要出去多少有机物;
第二,设计池中污泥浓度(实际运行污泥浓度低了就回流污泥,高了就排出剩余污泥),也就是池中微生物的质量kg与池子容积的比值m³;
第三,选择合适的处理负荷,也就是1kg污泥能处理多少有机物;
第四,根据一三条,算出需要多少kg污泥(微生物量);
第五,根据二四条,算出需要多大容积的池子;
第六,根据池子的容积除以进水流量,算出水力停留时间(HRT)。
AO,AAO,SBR,MBR,CASS等都有相应的资料提供参考HRT,根据废水的处理难易程度,适当增减HRT。
AO,AAO很少被用于工业废水,因为工业废水的污染物浓度高,需要的停留时间很长,这些工艺需要的池容积太大,投资太大,效率也不高。一般用于城市污水处理厂。
Ⅱ AO污水处理工艺中的COD数值计算
这刚看了本书,COD化学需氧量,在酸性条件下,用强氧化剂重铬酸钾将有机物氧化成二氧化碳和水所消耗的氧量,滴定测出所消耗的氧化剂量,就可以计算出了
Ⅲ 水处理工艺的水力停留时间是根据什么定的各种工艺的停留时间大概是多少比如A/O ,AA/O,SBR,MBR,IC,CASS
水力停留时间是计算出来的,当然也有很多工程师是根据经验确定的。
计算方法:
首先,你要确定进、出水水质,计算出需要出去多少有机物;
第二,设计池中污泥浓度粗物(实际运行污泥浓度低了就回流污泥,高了就排出剩余污泥),也就是池中微生物的质量kg与池子容积的比值m³;
第三,选择合适的处理负荷,也就是1kg污泥能处理多少有机物;
第四,根据一三条,算出需要多少kg污泥(微生物量);
第五,根据二四条,算出需要多巧粗大容积的池子;
第六,根据池子岩宽液的容积除以进水流量,算出水力停留时间(HRT)。
AO,AAO,SBR,MBR,CASS等都有相应的资料提供参考HRT,根据废水的处理难易程度,适当增减HRT。
AO,AAO很少被用于工业废水,因为工业废水的污染物浓度高,需要的停留时间很长,这些工艺需要的池容积太大,投资太大,效率也不高。一般用于城市污水处理厂。
Ⅳ A/O生活污水处理工艺各阶段去除率是多少
A/O工艺以其低廉的施工成本与运行费用得到了广泛的应用。但采用A/O工艺进行处理,其脱氮率受回流比R 的限制 ,脱氮率为80%—95%之间,出水总氮含量仍然较高。例如,某高氨氮废水氨氮含量为500mg/L,出水总氮含量依然在100mg/L—25mg/L,而我国城镇污水处理厂排放总氮限值为15mg/L。因此,需要突破A/O工艺的脱氮率受回流比的限制,进一步提高A/O工艺的脱氮率,现有技术一般是采用单独反硝化技术对A/O工艺进行改进,对其出水进行进一步脱氮。其中的反硝化技术主要有SBR工艺、反硝化颗粒污泥或固定床等,但是,这些反硝化技术,一方面增加了A/O工艺系统的复杂程度,成本高;另一方面,反硝化后残余有机物会带来二次污染。本技术工艺克服现有的A/O工艺或其改进工艺的脱氮率受回流比的限制、 在传统A/O工艺基础上进行了工艺改进,曝气池(O池)溶解氧跃升位置(即DO突跃点)的泥水混合液作为硝化液回流至氧池(A池);与此同时,在曝气池的溶解氧跃升位置添加碳源。脱氮率能够达到近100%,脱氮率高,出水COD低于50mg/L,操作简单,适用范围广,易于工业化实施。
Ⅳ 污水处理的AO工艺基本流程是什么
一、AO工艺的概述
AO工艺即缺氧好氧工艺(Anoxic Oxic),是一种改进型的采用活性污泥法(有时候也会采取添加填料的生物膜法的方式组合使用,例如:接触氧化工艺)的污水处理工艺,不仅可以降解有机物,还具有一定的除磷脱氮效果。
A级生物池,在A级生物池段异养菌将污水中可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,将蛋白质、脂肪等污染物进行氨化。在O级生物池段存在好氧微生物及消化菌,其中好氧微生物将有机物分解成CO2和H2O;在充足供氧条件下,硝化菌的硝化作用将NH3-N氧化为NO3-,通过回流控制返回至A级生物池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮。
二、 A/O法脱氮工艺的特点:
(a) 流程简单,勿需外加碳源与后曝气池,以原污水为碳源,建设和运行费用较低;
(b) 反硝化在前,硝化在后,设内循环,以原污水中的有机底物作为碳源,效果好,反硝化反应充分;
(c) 曝气池在后,使反硝化残留物得以进一步去除,提高了处理水水质;
(d) A段搅拌,只起使污泥悬浮,而避免DO的增加。O段的前段采用强曝气,后段减少气量,使内循环液的DO含量降低,以保证A段的缺氧状态。
三、 A/O法存在的问题:
1.由于没有独立的污泥回流系统,从而不能培养出具有独特功能的污泥,难降解物质的降解率较低;
2、若要提高脱氮效率,必须加大内循环比,因而加大运行费用。从外,内循环液来自曝气池,含有一定的DO,使A段难以保持理想的缺氧状态,影响反硝化效果,脱氮率很难达到90%。
Ⅵ 为什么在AO工艺计算有效容积式不考虑回流的污水量
你好!
硝化液回流是进入反硝化用来处理氨氮,污泥回流是保持池水内污泥量平衡。专
回流水量的大小不影响容属积,只影响水的停留时间,间接地影响了污水处理效率。
说俗点就是你哪怕池水回流变成水轮车,但总是那么多水没变啊。
仅代表个人观点,不喜勿喷,谢谢。
Ⅶ 如何计算AO工艺,活性污泥中微生物总量。
1、粗略计算是用池子中污泥浓度乘以池子中总水量
2、污泥中有部分不是微生物,要精确计算的话可根据微生物占污泥中的比例计算得力,这个比例一般都是经验数据,在网上查文献看一下,或者看一下《水污染控制工程》或者是废水生物处理之类的书籍。
Ⅷ ao工艺原理是什么
ao工艺原理:A/O脱氮工艺是将前段缺氧段和后段好氧段串联在一起,A段DO(溶解氧)不大于0.2mg/L,O段DO=2~4mg/L。
在缺氧段(A池)异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)代谢为NH3-N,在曝气池中充足供氧条件下,在硝化细菌的硝化作用将NH3-N氧化为NO3-(或NO2-)。
通过内回流控制返回至A池,在缺氧条件下,反硝化细菌在反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。
优缺点
AO脱氮工艺中缺氧池(A池)在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷,反硝化反应产生的碱度可以补偿好氧池中进行硝化反应对碱度的需求。好氧在缺氧池之后,可以使反硝化残留的有机污染物得到进一步去除,提高出水水质。
BOD5的去除率较高可达90~95%以上,但脱氮效果稍差,脱氮效率70~80%。尽管如此,由于A/O工艺比较简单,也有其突出的特点,目前仍是比较普遍采用的工艺。在高氨氮废水中一般采取二级AO串联的方式设计。
Ⅸ 污水处理三级AOO处理工艺,怎么运行只有污泥回流,没有消化液回流可以么回流比,污泥浓度等,请详解
你能不能把各单位构筑物处理后出水指标,比如进水COD NH3-N TP PH等,单位构筑物处理后的指标值都列出来,才能具体调试啊,这只有构筑物是没法说的
Ⅹ 污水处理ao工艺基本原理
AO工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异养菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。
根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:
(1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。
(2)流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。
(3)缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。
(4)容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。
(5)缺氧/好氧工艺的耐负荷冲击能力强。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮(内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。