⑴ 求一份污水处理的混凝沉淀池的设计和计算说明
您好朋友,关于污水处理的混凝闷棚沉淀池一般采用机械化混凝沉淀方式,具有处理效率高、处理效果好等优点。
下面是一份设计和计算说明:1. 混凝沉淀池设计参数(1)水流量:根据实际需要确定。(2)总容积:根据水流量及停留时间计算得出。(3)单位容积产污量:由实测数据得出。(4)投加药剂量:按照药剂厂家提供的使用说明进行决定。2. 混凝沉淀池计算公式(1)初始水质指数SSi = 实际投加的SS浓度 x 1000 ÷ 总容积(2)最终水质指数SSf = (初始水质指数 - SS去除率) ÷ (1 - SS去除率)(3)单位容积去除污染物量Q = 单位容积产生污染物量 - 单位容积余留污染物量其中,SS为悬浮物浓度。3. 设备配置和操作说明(1)设备配置:混凝沉淀池包括进水口、出水口、配药桶、加药泵、调节器等设备。(2)操作说明:① 确定处理水的流量和污染物质量,计算出混凝沉淀池的总容积。② 通过进水口将污水引仔老入混凝沉淀池中,并在进水口处添加药剂进行混合。③ 经过一段时间后,待污物沉淀到底部,清除上层清水。④ 根据需要反复进行第3步操作,直至达到处理效果。以上是混凝沉淀池的基本设计和操作说明,具体参数应根据实际情况进行调整。
混凝沉淀池设计中,常用的搅拌机转速、流速、流量和停留时间等参数计算公式如下:
1. 搅拌机转速:通常根据污水中固体颗粒物的大小和浓度来确定,较大的颗粒物需要较强的搅拌力才能将其悬浮在水中。一般来说,搅拌机转速可根据下面的公式进行初步估算:
n = (P/V)0.33
其中,n为搅拌机转速,单位为rpm;P为搅拌功率,单位为W;V为混凝池容积,单位为m³。
2. 流速和流量:可以根据处理要求和混凝池的尺寸确定。一般来说,设计时应保证废水在混凝池内停留的时间足够长,并且废水流速不宜过快。常用的公式包括:
Q = AVC
其中,Q为废水流量,单位为m³/h;A为混凝池截面积,单位为m²;V为废水在混凝池内停留时间,单位为h;C为废水污染物浓度,单位为mg/L。
3. 停留时间:通常根据混凝池的尺寸和处理要求进行确定。一般情况下,停留时间应满足污水中悬浮物和颗粒物沉降的时间,并保证药剂充分反应。常用的公式包括:
V = Q × t
其中,V为混凝池容积,单位为m³;Q为废水流量,单位为m³/h;蚂戚则t为停留时间,单位为h。
需要注意的是,这些公式只是初步估算或计算混凝沉淀池中某一参数值的方法,在实际设计中需要结合具体情况进行综合考虑和调整。如果您需要深入了解具体设计方案,请咨询专业的工程师或企业进行咨询。
感谢您的信任,以上是我的回复,希望可以帮助到您,有用的话还请记得点赞关注哦,祝您生活愉快~️
⑵ 在污水处理站设计中,流量为10000立方米每天。调节池、水解酸化池、AO工艺、消毒池一般需要几个
设计一个就可以了,不过如果你所设计的地方数量变动太大可以并且最少的时候长达几个月可以考虑除调节池意外的池体设计两套并联使用。
⑶ 污水厂的处理池为什么大多呈圆形
污水处理池设计成圆形是污水处理厂的一个普遍现象,那么,水池设计成圆形是为什么呢?
其实,并不是所有的水池都会设计成圆形的,其中也有方形构造,设计水池的形状要综合考虑,结合自身的实际情况而定。不论设计哪种形状都是基于有效利用现有的土地资源和减少成本决定的。
独立的水池多数是圆形的,这是一个非常有趣的数学问题。我们先看一下水池设计的作用,污水处理的水池主要作用是盛装水的,不论哪个环节,污水在处理过程中都要有或多或少的时间停留,水池的容积是首要考虑的问题,在不考虑土地使用状况的前提下,同等容积的水池圆形水池的周长是最小的(这一点在数学中已经有论证了,这里不再探讨)那么由此可以得出,设计同样容积的水池,圆形水池建筑材料最节省,因此圆形水池是最节约建筑成本的。如果单单计算建筑耗材问题,底部半球形是最节约材料的,但是,底部半球形设计不便于污水处理过程中的各种作业操作要求,因此退而求其次会选择圆柱形水池设计,这里面水池的深度和半径也有一个科学的比例,但是因为涉及到污水处理过程中的沉淀、絮凝、气浮等技术要求,不可能按照这个最节约比例设计,必须按照实际的水处理技术进行科学合理地设计,一般水池的深度是有严格标准的。
除了圆形,个别的污水处理系统也有长方形水池,主要是联排多个水池同时作业,往往有一个甚至多个水池的墙壁可以共用,另外长方形水池可以更方便的使用机械作业,因此有些污水处理厂的水池也有长方形的设计。
不论哪种设计,首先要满足污水处理技术的要求,其次才是节约建筑成本,不过圆形的水池设计,100%是基于节约建筑成本的考虑。
⑷ 污水处理池体大小依据是什么
池体大小主要还是根据进水负荷来计算,比如进水COD400左右,日进水水量1000方,出水要求COD100左右,水力停留时间根据不同工艺来定,要求停留时间24小时以上。
计算:
水力负荷=(体积/时间)/面积=流量/面积;体积/时间=流量。
单位时间内,通过单位面积的水体叫水力负荷。例如,每小时,通过每平方米地表面,排出去(渗透下去的)水量。或每天,通过每平方米地表面,排出去(渗透下去的)水量(立方米)。
反应池根据污泥负荷、污泥龄、水力停留时间等计算,化学反应池根据化学反应接触停留时间确定。池体大小至少要有1000方,如果进水COD更高,池体大去确保COD有足够时间消纳。
处理池注意事项
沉淀池池体平面为矩形,进口设在池长的一端采用淹没进水孔,水由进水渠通过均匀分布的进水孔流入池体,进水孔后设有挡板,使水流均匀地分布在整个池宽的横断面。沉淀池的出口设在池长的另一端采用溢流堰,以保证沉淀后的澄清水可沿池宽均匀地流入出水渠。
堰前设浮渣槽和挡板以截留水面浮渣。水流部分是池的主体。池宽和池深要保证水流沿池的过水断面布水均匀,依设计流速缓慢而稳定地流过。池的长宽比一般不小于4,池的有效水深一般不超过3米。污泥斗用来积聚沉淀下来的污泥,多设在池前部的池底以下,斗底有排泥管,定期排泥。
⑸ 【污水处理厂工艺流程设计计算】 污水处理厂基本流程
1概述
1.1 设计依据
本设计采用的主要规范及标准:
《城市污水处理厂污染物排放标准 (GB18918-2002) 》二级排放标准 《室外排水设计规范》(1997年版) (GBJ 14-87) 《给水排水工程概预算与经济评价手册》
1.2 设计任务书(附后)
2原水水量与水质和处理要求
2.1 原水水量与水质
Q=60000m3/胡携d
BOD 5=190mg/L COD=360mg/L SS=200mg/L NH 3-N=45mg/L TP=5mg/L
2.2处理要求
污水排放的要求执行《城镇污水处理厂污染物排放标准(GB18918-2002) 》二级排放标准:
BOD 5≤30mg/L COD≤100mg/L SS≤30mg/L NH 3-N ≤25(30)mg/L TP≤3mg/L
3污水处理工艺的选择
本污水处理厂水质执行《城镇污水处理厂污染物排放标准(GB18918-2002) 》二级排放标准,其污染物的最高允许排放浓度为:BOD 5≤30mg/L;COD ≤100mg/L;SS ≤30mg/L;NH 3-N ≤25(30)mg/L;TP ≤3mg/L。
城市污水中主要污染物质为易生物降解的有机污染物,因此常采用二级生物处理的方法来进行处理。
二级生物处理的方法很多,主要分两类:一类是活性污泥法,主要包括传统活性污泥法、吸附—再生活性污泥法、完全混合活性污泥法、延时活性污泥法(氧化沟)、AB 工艺、A/O工艺、A 2/O工艺、SBR 工艺等。另一类是生物膜法,主要包括生物滤池、生物转盘、生物接触氧化法等工艺。任何工艺都有其各自的特点和使用条件。
活性污泥法是当前使用比较普遍并且有比较实际的参考数据。在该工艺中微生物在处理单元内以悬浮状态存在,因此与污水充分混合接触,不会产生阻塞,对进水有机物浓度的适应范围较大,一般认为BOD 5在150—400 mg/L之间时,都具有良好的处理效果。但是传统活性污泥处理工艺在处理的多功能性、高效稳定性和经济合理性方面已经难以满足不断提高的要求, 特别是进入90年代以来, 随着水体富营养化的加剧, 我国明确制定了严格的氨氮和硝酸盐氮的排放标准, 从而各种具有除磷、脱氮功能的污水处理工艺:如 A/O工艺、A 2/O工艺、SBR 工艺、氧化沟等污水处理工艺得到了深入的研究、开发和广泛的应用, 成为当今污水处理工艺的主流。
该地的污水中BOD 5 在190 mg/L左右, 要求出水BOD 5低于30mg/L。在出水的水质中,
不仅对COD 、BOD 5、SS 去除率都有较高的要求, 同时对氮和磷的要求也进一步提高. 结合具体情况在众多的污水处理工艺中选择了具有良好脱氮除磷效果的两种工艺—CASS 工 艺和Carrousuel 氧化沟工艺进行方案技术经济比较。
4污水处理工艺方案比选
4.1 Carrousuel氧化沟工艺(方案一)
氧化沟时二十世纪50年代由荷兰的巴斯维尔开发,后在欧洲、北美迅速推广,80年代中期,我国部分地区也建造了氧化沟污水处理工程。近几年来,处理厂的规模也发展到日处理水量数万立方米的工业废水及城市污水的大、中型污水处理工程。
氧化沟之所以能在近些年来裤孝伏得到较快的发展,在于它管理简便、运行稳定、流程简单、耐慎局冲击负荷、处理效果好等优点,特别是氧化沟具有特殊的水流混合特征,氧化
沟中的曝气装置只设在某几段处,溶解氧浓度较高,理NH 3-N 效果非常好,同时由于存在厌氧、好氧条件,对污水中的磷也有一定的去除率。
氧化沟根据构造和运行方式的不同,目前较多采用的型式有“Carrousel 型氧化沟”、“Orbal 型氧化沟”、“一体化氧化沟”和“交替式氧化沟”等,其中,由于交替式氧化沟要求自动化水平较高,而Orabal 氧化沟因水深较浅,占地面积较大,本报告推选Carrousel 氧化沟作为比选方案之一。
本设计采用的是Carrousel 氧化沟工艺. 其工艺的处理流程图如下图4-1所示: `
图4-1 Carrousel氧化沟工艺流程图
4.1.1污水处理系统的设计与计算
4.1.1.1进水闸门井的设计
进水闸门井单独设定, 为钢筋混凝土结构。设闸门井一座, 闸门的有效面积为1.8m 2, 其具体尺寸为1.2×1.5 m,有效尺寸为1.2 m×1.5 m×4.5 m。设一台矩形闸门。当污水厂正常运行时开启, 当后序构筑物事故检修时, 关闭某一闸门或者全部关闭, 使污水通过超越管流出污水处理厂。
4.1.1.2 中格栅的设计与计算
其计算简图如图4-2所示
(1)格栅间隙数:设栅前水深h=0.5m,过栅流速v=0.9m/s,栅条间隙宽度b=0.02m,格栅倾角α=60°,建议格栅数为2,一备一用。
Q max sin α0. 652⨯sin 60
=≈68个 n =
Nbhv 0. 02⨯0. 5⨯0. 9
(2)格栅宽度:设栅条宽度S=0.01m,
B=S(n-1)+bn=0.01×(68-1)+0.02×68=2.03≈2.00m
(3)进水渠道渐宽部分的长度:设进水渠道宽B 1=1.60m,其渐宽部分的展开角
α1=20(进水渠道内的流速为0.82m/s),
l 1=
B -B 12. 0-1. 6
=≈0.56m 2tg α12tg 20
(4)栅槽与出水渠道连接处渐窄部分的长度:
l 2=
l 10. 56==0.28m 22
(5)通过格栅的水头损失:设栅条断面为锐边矩形断面(β=2.42,K =3),
2
⎛S ⎫v h 1=β ⎪sin αK
b 2g ⎝⎭
4
3
0. 92⎛0. 01⎫
sin 600⨯3 =2. 42 ⎪⨯
19. 6⎝0. 02⎭
43
=0.103m
(6)栅后槽总高度:设栅前渠道超高h 2=0.3m,
H =h +h 1+h 2=0.5+0.103+0.3≈0.9m
(7)栅槽总长度:
L =l 1+l 2+0. 5+1. 0+
H 1
tg 60
0. 5+0. 3
=2.8m
tg 60
=0. 56+0. 28+0. 5+1. 0+
(8)每日栅渣量:在格栅间隙为20mm 的情况下,设栅渣量为每1000m 3污水产0.07 m 3,
W =
Q max W 1⨯864000. 652⨯0. 07⨯86400
=3. 29m 3/d>0.2 m3/d =
1. 2⨯1000K Z ⨯1000
宜采用机械清渣。
图4-2 格栅计算示意图
4.1.1.3细格栅的设计与计算
其计算简图如图4-2所示
(1)格栅间隙数:设栅前水深h=0.5m,过栅流速v=0.9m/s,栅条间隙宽度b=0.006m,格栅倾角α=600,格栅数为2。
Q max 0. 652⨯sin 60
=≈109个 n =
Nbhv 2⨯0. 006⨯0. 5⨯0. 9
(2)格栅宽度:设栅条宽度S=0.01m,
B=S(n-1)+bn=0.01×(109-1)+0.006×109=1.73≈1.75m
(3)进水渠道渐宽部分的长度:设进水渠道宽B 1=1.6m,其渐宽部分的展开角α1=20
(进水渠道内的流速为0.82m/s),
l 1=
B -B 11. 75-1. 60
=≈0.22m 2tg α12tg 20
(4)栅槽与出水渠道连接处渐窄部分的长度:
l 2=
l 10. 22
==0.11m 22
(5)通过格栅的水头损失:设栅条断面为锐边矩形断面(β=2.42,K =3),
2
⎛S ⎫v h 1=β ⎪sin αK
b 2g ⎝⎭
4
3
0. 92⎛0. 01⎫
sin 600⨯3 =2. 42 ⎪⨯
19. 6⎝0. 006⎭
43
=0.51m
(6)栅后槽总高度:设栅前渠道超高h 2=0.3m,
H =h +h 1+h 2=0.5+0.3+0.51≈1.3m (7)栅槽总长度:
L =l 1+l 2+0. 5+1. 0+
H 1
tg 60
0. 5+0. 3
=2.41m
tg 60
=0. 22+0. 11+0. 5+1. 0+
(8)每日栅渣量:在格栅间隙为6mm 的情况下,设栅渣量为每1000m 3污水产0.07 m 3,
W =
Q max W 1⨯864000. 652⨯0. 07⨯86400
=1. 65m 3/d>0.2 m3/d =
2⨯1. 2⨯1000K Z ⨯1000
宜采用机械清渣。
4.1.1.4 曝气沉砂池的设计与计算
本设计采用曝气沉砂池是考虑到为污水的后期处理做好准备。建议设两组沉砂池一备一用。其计算简图如图4-3所示。具体的计算过程如下:
(1)池子总有效容积:设t=2min,
V=Q max t ×60=0.652×2×60=78 m3
(2)水流断面积:
A=
Q max 0. 652
==9.31m2 0. 07v 1
沉砂池设两格,有效水深为2.00m ,单格的宽度为2.4m 。
(3)池长:
V 78L===8.38m,取L=8.5 m A 9. 31
(4)每格沉砂池沉砂斗容量:
V 0=0.6×1.0×8.5=5.1 m
(5)每格沉砂池实际沉砂量:设含砂量为20 m3/106 m3污水,每两天排一次,
3
20⨯0. 652
⨯86400⨯2=1.13〈5.1 m3
6
10⨯2
(6)每小时所需空气量:设曝气管浸水深度为2.5 m,查表得单位池长所需空气量为28 m3/(m·h),
q=28×8.5×(1+15%)×2=547.4 m3
图4-3 曝气沉砂池计算示意图
4.1.1.5 厌氧池的设计与计算
4.1.1.5.1 设计参数
设计流量为60000 m3/d,设计为两座每座的设计流量为30000 m3/d。 水力停留时间:
T =2h 。
污泥浓度:
X =3000mg/L
污泥回流液浓度:
V 0"=
X R =10000 mg/L
4.1.1.5.2 设计计算 (1)厌氧池的容积:
V =QT =30000×2/24=2500 m3
(2)厌氧池的尺寸:
水深取为h =5,则厌氧池的面积:
V 2500A ===500 m2。
h 5
厌氧池直径:
D =
4A
π
=
4⨯500
=25 m。 3. 14
考虑0.3的超高,故池总高为H =h +0. 3=5.3 m。 (3)污泥回流量的计算 回流比计算:
R =
X
=0.42
X R -X
污泥回流量:
Q R =RQ =0.42×30000=12600 m/d
4.1.1.6 Carrousel氧化沟的设计与计算
氧化沟,又被称为循环式曝气池,属于活性污泥法的一种。见图4-4氧化沟计算示3
4.1.1.6.1设计参数
设计流量Q=30000m3/d设计进水水质BOD 5=190mg/L; COD=360mg/L;SS=200mg/L;NH 3-N=45mg/L;污水水温T =25℃。
设计出水水质BOD 5≤30mg/L;COD ≤100mg/L;SS ≤30mg/L;NH 3-N ≤25(30)mg/L; TP ≤3mg/L。
污泥产率系数Y=0.55; 污泥浓度(MLSS )X=4000mg/L;挥发性污泥浓度(MLVSS )X V =2800mg/L; 污泥龄θc =30d; 内源代谢系数K d =0.055. 4.1.1.6.2设计计算
(1)去除BOD
氧化沟出水溶解性BOD 浓度S 。为了保证沉淀池出水BOD 浓度S e ≤30mg/L,必须控制所含溶解性BOD 浓度S 2,因为沉淀池出水中的VSS 也是构成BOD 浓度的一个组成部分。
S=Se -S 1
S 1为沉淀池出水中的VSS 所构成的BOD 浓度。
S 1=1.42(VSS/TSS)×TSS ×(1-e-0. 23⨯5) =1.42×0.7×20×(1-e-0. 23⨯5)
=13.59 (mg/L)
S=20-13.59=6.41(mg/L)
好氧区容积V 1。好氧区容积计算采用动力学计算方法。
V 1=
Y θc Q (S 0-S )
X V (1+K d θc )
=
0. 55⨯30⨯30000⨯(0. 16-0. 00641)
2. 8⨯(1+0. 055⨯30)
=10247m 3
好氧区水力停留时间:t=剩余污泥量∆X
Y
∆X=Q (S 0-S ) +Q (X 0-X 1) -QX e
1+K d θc
V 110247⨯24==8.20h
30000Q
=2096(kg/d)
去除每1kgBOD 5所产生的干污泥量=
∆X
=0.499(kgD S /kgBOD5)。
Q (S 0-S )
(2)脱氮
需氧化的氨氮量N 1。氧化沟产生的剩余污泥中含氮率为12.4%,则用于生物合成的总氮量为:
0. 124⨯769. 93⨯1000N 0==3.82(mg/L)
25000
需要氧化的氨氮量N 1=进水TKN-出水NH 3-N-生物合成所需要的氨N 。
N 1=45-15-3.82=26.18(mg/L)
脱氮量NR=进水TKN-出水TN-生物合成所需要的氨N=45-20-3.82=21.18(mg/L) 脱氮所需要的容积V 2
脱硝率q dn(t)= qdn(20)×1.08(T-20)=0.035×1.08(14-20)=0.022kg 脱氮所需要的容积:
V 2=
脱氮水力停留时间t 2:
QN r 30000⨯21. 18
==10315 m3 q dn X v 0. 022⨯2800
t 2 =
氧化沟总体积V 及停留时间t:
V 2
=8.25 h Q
V=V1+V2=10247+10315= 20562m3
t=V/Q=16.45 h
校核污泥负荷N =
QS 025000⨯0. 16
==0.083[kgBOD 5/(kgMLVSS ∙d )] XV 2. 8⨯17135
(3)氧化沟尺寸:取氧化沟有效水深为5m ,超高为1m ,氧化沟深6m 。
V
=20562/5=4112.4m 2 h
单沟宽10m ,中间隔墙宽0.25m 。则弯道部分的面积为:
2⨯10+0. 2523π()
3⨯10+3⨯0. 252A 1=+() π⨯10=965.63m
22
直线段部分的面积:
氧化沟面积为A=
A 2=A -A 1 =4112.4-965.63=3146.77 m2
单沟直线段长度:
L=
A 23146. 77
==78.67m ,取79m 。 4⨯104⨯b
进水管和出水管:污泥回流比R=63.4%,进出水管的流量为:Q 1=(1+R ) Q =1.634×
30000m /d=0.568 m /s,管道流速为v =1.0m/s。
3
3
则管道过水断面:
A=
管径d=
Q 0. 568==0.568m 2 v 1
4A
π
=0.850m, 取管径850mm 。
校核管道流速:
v=
(4)需氧量
Q
=0.94m A
实际需氧量:
AOR=D1-D 2-D 3+D4-D 5
去除BOD 5需氧量:
D 1=a "Q (S 0-S ) +b "VX =7754.03(kg/d) (其中a "=0.52,b "=0.12)
剩余污泥中BOD 5需氧量:
D 2=1. 42⨯∆X 1=1131.64(kg/d)
剩余污泥中NH 3-N 耗氧量:
D 3=4. 6⨯0. 124⨯∆X =454.57(kg/d) (0.124为污泥含氮率)
去除NH 3-N 的需氧量:
D 4=4.6×(TKN-出水NH 3-N )×Q/1000=3450(kg/d)
脱氮产氧量:
D 5=2.86×脱氮量=1514.37(kg/d)
AOR= D1-D 2-D 3+D4-D 5=8103.45(kg/d)
考虑安全系数1. 2,则AOR=8103.45×1. 2=11344.83(kg/d) 去除每1kgBOD 5需氧量=
AOR
Q (S 0-S )
11344. 83
25000⨯(0. 16-0. 00641)
=
=2.95(kgO 2/kgBOD5)
标准状态下需氧量SOR
SOR=
AOR ∙C S (20)
α(βρC S (T ) -C ) ⨯1. 024
(T -20)
(C S (20)20℃时氧的饱和度,取9.17mg/L;T=25℃;C S(T)25℃时氧的饱和度,取 8.38mg/L;C 溶解氧浓度,取2 mg/L;α=0.85;β=0.95;ρ=0.909)
SOR=
11344. 83⨯9. 17
=20764.89(kg/d) (25-20)
0. 85⨯(0. 95⨯0. 909⨯8. 38-2) ⨯1. 024
∆SOR
=5.41(kgO 2/kgBOD5)
Q (S 0-S )
去除每1kgBOD 5需氧量=
曝气设备的选择:设两台倒伞形表面曝气机,参数如下: 叶轮直径:4000mm ;叶轮转速:28R/min;浸没深度:1m ; 电机功率:210KW ;充氧量:≥2.1kgO 2/(kW·h)。
4.1.1.7二沉池的设计与计算
其计算简图如图4-5所示
4.1.1.7.1设计参数
Q max =652 L/s=2347.2 m 3/h;
氧化沟中悬浮固体浓度 X =4000 mg/L;
二沉池底流生物固体浓度 X r =10000 mg/L;
污泥回流比 R=63.4%。
4.1.1.7.2 设计计算
(1) 沉淀部分水面面积 F 根据生物处理段的特性,选取二沉池表面负荷q=0.9m3 /(m2·h), 设两座二次沉淀池 n =2.
F =Q max 2347. 22==1304(m) nq 2⨯0. 9
(2)池子的直径 D
D =4F
π=4⨯1304
π=40. 76(m),取D =40m 。
(3)校核固体负荷G
24⨯(1+R ) QX 24⨯(1+0. 634)⨯30000⨯4000G == F 1304
=141.18 [kg/(m2·d)] (符合要求)
(4) 沉淀部分的有效水深h 2 设沉淀时间为2.5h 。
h 2=qt =0.9×2.5=2.25 (m)
(5) 污泥区的容积V
V =2T (1+R ) QX 2⨯2⨯(1+0. 634) ⨯30000⨯4000 =24⨯(X +X r ) 24⨯(10000+4000)
=1945.2 (m3)
(6)污泥区高度h 4
污泥斗高度。设池底的径向坡度为0.05,污泥斗底部直径D 2=1.6m,上部直径D 1=4.0m,倾角为60°,则:
"= h 4D 1-D 24. 0-1. 6⨯tg 60°=2.1(m) ⨯tg 60°=22
11
V 1=2)πh 1"⨯(D 12+D 1D 2+D 2
12=13.72 (m3)
圆锥体高度
""=h 4D -D 140-4⨯0. 05=0.9(m) ⨯0. 05=22
V 2=
=
竖直段污泥部分的高度 ""πh 412⨯(D 2+DD 1+D 12) ⨯(402+40⨯4+42) =418.25(m3) π⨯0. 912
"""=h 4V -V 1-V 21945. 2-13. 72-418. 25==1.16(m) 1304F
"+h 4""+h 4"""=2.1+0.9+1.16=4.16(m) 污泥区的高度h 4=h 4
沉淀池的总高度H 设超高h 1=0.3m,缓冲层高度h 3=0.5m。
则 H =h 1+h 2+h 3+h 4=0.3+2.25+0.5+4.16=7.21m
取H =7.2 m
4.1.1.8接触池的设计与计算
采用隔板式接触反应池。其计算简图如图4-5所示。
水力停留时间:t=30min
12
平均水深:h =2.4m。
隔板间隔:b=1.5m。
池底坡度:3%
排泥管直径:DN=200mm。
4.1.1.8.2设计计算
接触池容积:
V =Qt =0.652×30×60=1174 m 3
水流速度:
v =Q 0. 652==0. 18 m/s hb 2. 4⨯1. 5
表面积:
Q 1174==489. 2 m2 h 2. 4
廊道总宽度:隔板数采用10个,则廊道总宽度为B=11×b=11×1.5=16.5m。 接触池长度:
F 489. 2L ===29.6m取30m 。 B 16. 5
水头损失,取0.4m 。 F =
13
⑹ 污水处理池为什么大多呈圆柱形
一是工艺原理要求。我们很早就学会箍木桶了,之所以需要「箍」紧木桶,一块一块木板拼起来的木桶并不漏水,原因就在于我们用环箍提供的环向拉力平衡了木桶里面水的压力。如果外面的环箍断了或者松了,木桶就会漏水。也正因为如此,承担着拉力的环箍不适合跨越棱角,否则容易被割断,也容易应力集中,所以木桶的环箍这一圈zui好没有任何棱角。所以,圆柱形成为了完美合理的解决方案。这也就是为什么很少有方形的木桶。同样的道理,这也是污水处理池设计成圆柱形而不是方形的原因。圆形污水处理池方便去除表面的悬浮物,中心进水时,水流会沿着径向流动,经过出水堰板,保证出水水质的均衡。而且圆形污水处理池不容易留死角,而方形的死角容易残留。水泥厂、炼油厂、化工厂、核电站的筒仓、烟囱、处理塔、高炉、输送管道……这些东西全都是圆柱形的,几乎没有方的。道理也是同样。
二是节省建筑成本。污水处理厂的水池主要作用是盛装水的,不论哪个环节,污水在处理过程中都要有或多或少的时间停留,水池的容积是首要考虑的问题,在不考虑土地使用状况的前提下,同等容积的水池圆形水池的周长是zui小的,那么由此可以得出,设计同样容积的水池,圆形水池建筑材料最节省,因此圆形水池是zui节约建筑成本的。如果单单计算建筑耗材问题,底部半球形是zui节约材料的,但是,底部半球形设计不便于污水处理过程中的各种作业操作要求,因此退而求其次会选择圆柱形水池设计。
⑺ 新建厂房污水池大小
1.5万立方
要1.5万立方大小,分三级处理利用系统,雨水池(洗澡和洗漱用水),洗衣和洗车用水池,冲厕用水。最好再建个沼气发生系统池,还可容纳厨房用水,经发酵后的沼杂还可以灌溉花草。可以利用厂房的地下室。
池体大小主要还是根据进水负荷来计算,比如进水COD400左右,日进水水量1000方,出水要求COD100左右,水力停留时间根据不同工艺来定,要求停留时间24小时以上。