导航:首页 > 污水知识 > 好养活性污泥法处理甲醇废水

好养活性污泥法处理甲醇废水

发布时间:2023-08-07 10:52:33

❶ 活性污泥法是怎么处理污水

活性污泥法
1.流程与原理.典型的活性污泥法是由曝气池、沉淀池、污泥回流系统和剩余污泥排除系统组成.污水和回流的活性污泥一起进入曝气池形成混合液.从空气压缩机站送来的压缩空气,通过铺设在曝气池底部的空气扩散装置,以细小气泡的形式进入污水中,目的是增加污水中的溶解氧含量,还使混合液处于剧烈搅动的状态,呈悬浮状态.溶解氧、活性污泥与污水互相混合、充分接触,使活性污泥反应得以正常进行.
第一阶段,污水中的有机污染物被活性污泥颗粒吸附在菌胶团的表面上,是由于其巨大的表面积和多糖类黏性物质的作用.同时一些大分子有机物在细菌胞外酶作用下分解为小分子有机物.
第二阶段,微生物在氧气充足的条件下,吸收这些有机物,并氧化分解,形成二氧化碳和水,一部分供给自身的增殖繁衍.活性污泥反应进行的结果,污水中有机污染物得到降解而去除,活性污泥本身得以繁衍增长,污水则得以净化处理.
经过活性污泥净化作用后的混合液进入二次沉淀池,混合液中悬浮的活性污泥和其他固体物质在这里沉淀下来与水分离,澄清后的污水作为处理水排出系统.经过沉淀浓缩的污泥从沉淀池底部排出,其中大部分作为接种污泥回流至曝气池,以保证曝气池内的悬浮固体浓度和微生物浓度;增殖的微生物从系统中排出,称为“剩余污泥”.事实上,污染物很大程度上从污水中转移到了这些剩余污泥中.
活性污泥法的原理形象说法:微生物“吃掉”了污水中的有机物,这样污水变成了干净的水.它本质上与自然界水体自净过程相似,只是经过人工强化,污水净化的效果更好.

废水处理中活性污泥法

好的让我来依次回答你的问题
1、污泥沉降比是指曝气池混合液静止30min后沉淀污泥的体积分数,通常采用1L的量筒测定。即把摇匀的曝气池混合液倒入量筒中1L刻度,待其沉淀30min后,看泥水分界线的位置,比如泥水分界在300ml处,则污泥沉降比为30%。
2、一般污泥主要有黄褐色、和黑色等几种。黄褐色一般是好氧曝气状态下形成的,有泥土气味,而黑色一般是在厌氧消化状态下形成的,有臭气味。
3、一般正常的活性污泥沉降性能良好,其污泥体积指数SVI在50~150之间。污泥膨胀一般表现为SVI值升高,一般SVI大于200就认为发生了污泥膨胀。
污泥膨胀分为丝状菌性膨胀和非丝状菌性膨胀,这个你可以具体在查清楚。一般对于污泥膨胀常采用以下几种方法:①控制曝气量,使曝气池中保持适量的溶解氧(不低于1~2mg/L,不高于4mg/L)。②调整pH。③投加氮、磷保持氮、磷比例适宜。④投加一些化学药剂,如混凝剂等。⑤把污水跳过初沉池直接进入曝气池,以提高曝气池内的污泥浓度。⑤在曝气池前段设置填料,降低污泥负荷。⑥用气浮池代替二沉池,往往有着很好的效果,但其造价较贵。这些都是可以考虑的因素,要根据实际情况进行取舍。
4、不同用途的污泥培养有着各自的方式,好氧、厌氧污泥都有自己的培养方式。首先,C、N、P的比例要协调,一般好氧污泥需要的BOD5:N:P=100:5:1。而厌氧对N、P要求较低一般BOD5:N:P=800:5:1,这些你培养时都要投加进去的,比如葡萄糖、氯化铵、磷酸氢二钾等。其次,根据你培养污泥的处理对象,适度按照从低到高浓度梯度添加你的处理对象混合液,让污泥适应你的处理对象。如果你的污泥培养上清液中的污染物质去除率趋于稳定,那么你的污泥培养也就趋于完成。
整个周期约1周到10天左右。

❸ 什么是好氧活性污泥好氧活性污泥法净化废水的机理是什么

好氧活性污泥是指污水曝气一段时间后,形成一种由大量微生物群体构成的易于沉淀的絮凝体。利用活性污泥去除污水中的可生物降解有机物,以及能被活性污泥吸附的悬浮固体和其他一些物质的污水处理工艺称为活性污泥法。其基本工艺流程是曝气池和二次沉淀池依次串联,并有回流污泥管将二次沉淀池沉淀下来的污泥又送回到曝气池中。答案来自环保通http://www.hbtong.com.cn

❹ 城市污水活性污泥处理的几种工艺

一、活性污泥法脱氮传统工艺
1、Barth提出的三级活性污泥法流程:
第一级曝气池的功能:① 碳化——去除BOD5、COD;② 氨化——使有机氮转化为氨氮;
第二级是硝化曝气池,投碱以维持pH值;
第三级为反硝化反应器,可投加甲醇作为外加碳源或引入原废水。
该工艺流程的优点是氨化、硝化、反硝化分别在各自的反应器中进行,反应速率较快且较彻底;但七缺点是处理设备多,造价高,运行管理较为复杂。

2、两级活性污泥法脱氮工艺
与前一工艺相比,该工艺是将其中的前两级曝气池合并成一个曝气池,使废水在其中同时实现碳化、氨化和硝化反应,因此只是在形式上减少了一个曝气池,并无本质上的改变。

二、缺氧——好氧活性污泥法脱氮系统(A—O工艺)

该流程与两级活性污泥工艺相比,是将缺氧的反硝化反应器设置在好氧反应器的前面,因此常被称为“前置式反硝化生物脱氮系统”。其主要特征有:反硝化反应器设置在流程的前端,而去除BOD、进行硝化反应的综合好氧反应器则设置在流程的后端;因此,可以实现进行反硝化反应时,可以利用原废水中的有机物直接作为有机碳源,将从好氧反应器回流回来的含有硝酸盐的混合液中的硝酸盐反硝化成为氮气;而且,在反硝化反应器中由于反硝化反应而产生的碱度可以随出水进入好氧硝化反应器,补偿硝化反应过程中所需消耗碱度的一半左右;好氧的硝化反应器设置在流程的后端,也可以使反硝化过程中常常残留的有机物得以进一步去除,无需增建后曝气池。目前,A-O工艺是实际工程中较常见的一种生物脱氮工艺。

三、其它生物脱氮工艺

1、氧化沟工艺

由于氧化沟的运行工艺特征,会在其反应沟渠内的不同部位分别形成好氧区、缺氧区,使得氧化沟内的活性污泥分别经过好氧区和缺氧区,从而可以实现生物脱氮功能。

2、生物转盘生物脱氮工艺

控制每级生物转盘的运行工况,使其分别处于好氧状态和缺氧状态,即在整个流程中需要分别采用好氧生物转盘和厌氧生物转盘,在不同的好氧生物转盘中分别实现BOD的去除和氨氮的硝化,而在厌氧生物转盘中则主要实现反硝化,其原理类似于前述的三级活性污泥生物脱氮工艺,只是在本工艺中实现各级功能是依靠生物转盘来完成的。

废水生物除磷工艺与技术

一、厌氧—好氧生物除磷工艺(A-O工艺)
实际上是另外一种意义上的“A—O工艺”,其中的“A”指的是“厌氧anaerobic”,它是直接根据生物除磷的基本原理出发而设计出来的一个工艺,其特点有:水力停留时间为3~6h;曝气池内的污泥浓度一般在2700~3000mg/l;磷的去除效果好(76%),出水中磷的含量低于1mg/l;污泥中的磷含量约为4%,肥效好;污泥的SVI小于100,易沉淀,不易膨胀。

二、Phostrip除磷工艺
实际上是一种生物除磷与化学除磷相结合的工艺,其特点有:除磷效果好,处理出水的含磷量一般低于1mg/l;污泥的含磷量高,一般为2.1~7.1%;石灰用量较低,介于21~31.8mgCa(OH)2/m3废水之间;污泥的SVI低于100,污泥易于沉淀、浓缩、脱水,污泥肥分高,不易膨胀。

同步生物脱氮除磷工艺

一、Bardenpho同步脱氮除磷工艺

其工艺特点:各项反应都反复进行两次以上,各反应单元都有其首要功能,同时又兼有二、三项辅助功能;脱氮除磷的效果良好。

二、A—A—O同步脱氮除磷工艺

AAO工艺是目前较为常见的同步脱氮除磷工艺,其工艺特点主要是:工艺流程比较简单;厌氧、缺氧、好氧交替运行,不利于丝状菌繁殖,无污泥膨胀之虞;无需投药,运行费用低。
该工艺的主要设计参数可以参见下表:

水力停留时间(h) 厌氧反应器 0.5~1.0
缺氧反应器 0.5~1.0
好氧反应器 3.5~6.0
污泥回流比(%) 50~100
混合液内循环回流比(%) 100~300
混合液悬浮固体浓度(mg/l) 3000~5000
F/M(kgBOD5/kgMLSS.d) 0.15~0.7
好氧反应器内DO浓度(mg/l) ³2
BOD5/P 5~15(以>10为宜)

三、UCT同步脱氮除磷工艺

在前述的两种同步脱氮除磷工艺中,都是将回流污泥直接回流到工艺前端的厌氧池,其中不课避免地会含有一定浓度的硝酸盐,因此会在第一级厌氧池中引起反硝化作用,反硝化细菌将与除磷菌争夺废水中的有机物而影响除磷效果,因此提出UCT(Univercity of Cape Town)工艺。UCT工艺将二沉池的回流污泥回流到缺氧池,使污泥中的硝酸盐在缺氧池中进行反硝化脱氮,同时,为弥补厌氧池中污泥的流失以及除磷效果的降低,增设从缺氧池到厌氧池的污泥回流,这样厌氧池就可以免受回流污泥中硝酸盐的干扰。
四、Phoredox同步脱氮除磷工艺

本工艺的特点是在缺氧反应器之前再加一座厌氧反应器,以强化磷的释放,从而保证在好氧条件下,有更强的吸收磷的能力,提高除磷效果。

❺ 活性污泥法法处理工业废水该如何调整工艺

主要废水的特点。如果是工业园的污水处理厂就比较复杂,一般除了生化处理还需要物化处内理,生化大多数采用A/O法,容运行稳定,脱氮效果好。物化可以用一些氧化和混凝沉淀之类的。

如果是城镇污水的就很简单了,牵涉到需要脱氮除磷的就用AAO,针对高氮的可以用AO,一般的可以用氧化沟。现在很多都用卡鲁塞尔2000氧化沟,可以在氧化沟前面增加厌氧区和缺氧区,形成改良式的氧化沟,也具有脱氮除磷效果。如果自动化水平较高的话,还可以用CASS。

选择工艺的时候主要是看水质水量特点,各种构筑物对水量大小都有一定适应力,水质的话要感觉COD、氮磷情况来决定工艺。同时兼顾排放标准,排放标准要求很高的话,生化后的处理还挺复杂的。

❻ 活性污泥降解污水中有机物的过程是怎样的

活性污来泥在曝气过程中,对有机物源的降解(去除)过程可分为三个阶段。在第一阶段,污水主要通过活性污泥的吸附作用而得到净化。在吸附阶段,主要是污水中的有机物转移到活性污泥上去,这是由于活性污泥具有巨大的表面积,而表面积上有多糖类的粘性物质所致。吸附作用一般30min,BOD5的去除率可达70%。第二阶段,也称氧化阶段,主要是转移到活性污泥表面的有机物为微生物所利用。在好氧微生物的活动下,有机物先被氧化成中间产物,接着有些中间产物合成为细胞质,另一些中间产物被氧化为无机的最终产物。在此过程中,微生物消耗水中的溶解氧,溶解氧的消耗就是化学需氧量。第三阶段是 泥水分离阶段,在这一阶段中,活性污泥在二沉池中进行沉淀分离。

❼ 比较厌氧活性污泥法和好氧活性污泥法处理废水的优缺点

厌氧优点:基本无动力消耗;可适于高浓度废水处理;可以产生沼气能源;产泥回量小答,泥处理成本低;可以处理含表面活性剂高的废水,不产生泡沫。
厌氧缺点:出水不能直接达标,需要进一步好氧处理;厌氧去氨氮污染物基本无去除效率,而且会消耗过量的碳源,增加了好氧处理脱氮的难度。
好氧优点:可以直接处理达标,出水无臭味,清澈;
好氧缺点:动力消耗大,污泥产量高,容易出现泡沫,污泥膨胀等问题。

❽ 好氧活性污泥处理生活废水

活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。
你是想问好氧活性污泥处理生活废水的工艺流程呢?还是想问出水的具体数据呢?
活性污泥工艺是城市污水处理的主要工艺,它的设计计算有三种方法:污泥负荷法、泥龄法和数学模型法。三种方法在操作上难易程度不同,计算结果的精确度不同,直接关系到设计水平、基建投资和处理可靠性。正因为如此,国内外专家都在进行大量细致的研究,力求找出一种精确度更高而又便于操作的计算方法。
1 污泥负荷法
这是目前国内外最流行的设计方法,几十年来,运用该法设计了成千上万座污水处理厂,充分说明它的正确性和适用性。但另一方面,这种方法也存在一些问题,甚至是比较严重的缺陷,影响了设计的精确性和可操作性。
污泥负荷法的计算式为〔1〕:
V=24LjQ/1000FwNw=24LjQ/1000Fr (1)
污泥负荷法是一种经验计算法,它的最基本参数Fw(曝气池污泥负荷)和Fr(曝气池容积负荷)是根据曝气的类别按照以往的经验设定,由于水质千差万别和处理要求不同,这两个基本参数的设定只能给出一个较大的范围,例如我国的规范对普通曝气推荐的数值为:
Fw=0.2~0.4 kgBOD/(kgMLSS·d)
Fr=0.4~0.9 kgBOD/(m3池容·d)
可以看出,最大值比最小值大一倍以上,幅度很宽,如果其他条件不变,选用最小值算出的曝气池容积比选用最大值时的容积大一倍或一倍以上,基建投资也就相差很多,在这个范围内取值完全凭经验,对于经验较少的设计人来说很难操作,这是污泥负荷法的一个主要缺陷。
污泥负荷法的另一个问题是单位容易混淆,譬如我国设计规范中Fw的单位是kgBOD/(kgMLSS·d),但设计手册中则是kgBOD/(kgMLVSS·d),这两种单位相差很大。MLSS是包括无机悬浮物在内的污泥浓度,MLVSS则只是有机悬浮固体的浓度,对于生活污水,一般MLVSS=0.7MLSS,如果单位用错,算出的曝气池容积将差30%。这种混淆并非不可能,例如我国设计手册中推荐的普通曝气的Fw为0.2~0.4kgBOD/(kgMLVSS·d)〔2〕,其数值和设计规范完全一样,但单位却不同了。设计中经常遇到不知究竟用哪个单位好的问题,特别是设计经验不足时更是无所适从,加上近年来污水脱氮提上了日程,当污水要求硝化、反硝化时,Fw、Fr取多少合适呢?
污泥负荷法最根本的问题是没有考虑到污水水质的差异。对于生活污水来说,SS和BOD浓度大致有数,MLSS与MLVSS的比值也大致差不多,但结合各地的实际情况来看,城市污水一般包含50%甚至更多的工业废水,因而污水水质差别很大,有的SS、BOD值高达300~400 mg/L,有的则低到不足100 mg/L,有的污水SS/BOD值高达2以上,有的SS值比BOD值还低。污泥负荷是以MLSS为基础的,其中有多大比例的有机物反映不出来,对于相同规模、相同工艺、相同进水BOD浓度的两个厂,按污泥负荷法计算曝气池容积是相同的,但当SS/BOD值差异很大时,MLVSS也相差很大,实际的生物环境就大不相同,处理效果也就明显不同了。
综上所述,污泥负荷法有待改进。因此,国际水质污染与控制协会(IAWQ)组织各国专家,于1986年首次推出活性污泥一号模型(简称ASM1)〔3〕,1995年又推出了活性污泥二号模型(简称ASM2)〔4、5〕。
2 数学模型法
数学模型法在理论上是比较完美的,但在具体应用上则存在不少问题,这主要是由于污水和污水处理的复杂性和多样性,即使是简化了的数学模式,应用起来也相当困难,从而阻碍了它的推广和应用。到目前为止,数学模型法在国外尚未成为普遍采用的设计方法,而在我国还没有实际应用于工程,仍停留在研究阶段。
数学模型法的主要问题是模型中有很多系数和常数,ASM1中有13个,ASM2中有19个,它们都需要设计人员根据实际污水水质和处理工艺的要求确定具体数值,其中多数要经过大量监测分析后才能得出,而且不同的污水有不同的数值。由于污水水质多变,确定这些参数很困难,如果这些参数有误,就直接影响到计算结果的精确性和可靠性。国外已经提出了这些参数的数值,但我国的污水成分与国外有很大差别,特别是污水中的有机物成分差别很大,盲目套用国外的参数值肯定是不行的。因此,要将数学模型法应用于我国的污水处理设计,必须组织力量监测分析各种污水水质,确定有关参数,才有可能把数学模型实用化。然而,从我国目前情况看,数据分析和积累恰恰是最大的薄弱环节之一,我国已运转的城市污水处理厂有上百座,至今连一些最基本的数据都难以确定,更不用说数学模型法所需的各种数据了,显然,要在我国应用数学模型法还需做大量的工作,还需要相当长的时间。
3 泥龄法
3.1泥龄法的计算式
设计规范中提出了按泥龄计算曝气池容积的计算公式〔1〕:
V=〔24QθcY(Lj-Lch)/1 000Nwv(1+Kdθc) (2)
设计规范对式中几个关键参数提出了推荐值:
Y=0.4~0.8(20℃,有初沉池)
Kd=0.04~0.075(20℃)
当水温变化时,按下式修正:
Kdt=Kd20(θt)t-20 (3)
式中 θt——温度系数,θt=1.02~1.06
θc——高负荷取0.2~2.5,中负荷取5~15,低负荷取20~30
可以看出,它们的取值范围都很宽,Y值的变化幅度达100%,Kd值的变化幅度达87.5%,θc值的变化幅度从50%到几倍,实际计算时很难取值,这也是泥龄法在我国难以推广的原因之一。
为了使泥龄计算法实用化,笔者根据自己的设计体会,建议采用德国目前使用的ATV标准中的计算公式,并对式中的关键参数取值结合我国具体情况适当修改。实践证明,按该公式计算概念清晰,特别便于操作,计算结果都能满足我国规范的要求,不失为一种简单、可信而又十分有效的设计计算方法。其基本计算公式为:
V=24QθcY(Lj-Lch)/1000Nw (4)
式中 Y——污泥产率系数(kgSS/kgBOD)
Q、Lj、Lch值是设计初始条件,是反映原水水量、水质和处理要求的,在设计计算前已经确定。
泥龄θc是指污泥在曝气池中的平均停留时间,其数值为:
θc=VNw/W (5)
式中 W——剩余污泥量,kgSS/d
W=24QY(Lj-Lch)/1000 (6)
根据以上计算式,采用泥龄法设计计算活性污泥工艺时,只需确定泥龄θc、剩余污泥量W(或污泥产率系数Y)和曝气池混合液悬浮固体平均浓度Nw(MLSS)即可求出曝气池容积V。与污泥负荷法相比,它用泥龄θc取代Fw或Fr作为设计计算的最基本参数,与数学模型法相比,它只需测定一个污泥产率系数Y,而不需测定13或19个参数数据。
3.2泥龄的确定
泥龄是根据理论同时又参照经验的累积确定的,按照处理要求和处理厂规模的不同而采用不同的泥龄,德国ATV标准中单级活性污泥工艺污水处理厂的最小泥龄数值见表1。
表1 德国标准中活性污泥工艺的最小泥龄
d处理目标处理厂规模
≤5 000 m3/d≥25 000 m3/d
无硝化54
有硝化(设计温度:10 ℃)108
有硝化、反硝化(10 ℃)
VD/V=0.2
VD/V=0.3
VD/V=0.4
VD/V=0.512
13
15
1810
11
13
16
有硝化、反硝化、污泥稳定25不推荐
注 VD/V为反硝化池容与总池容之比。

表中对规模小的污水厂取大值,是考虑到小厂的进水水质变化幅度大,运行工况变化幅度大,因而选用较大的安全系数。
泥龄反映了微生物在曝气池中的平均停留时间,泥龄的长短与污水处理效果有两方面的关系:一方面是泥龄越长,微生物在曝气池中停留时间越长,微生物降解有机污染物的时间越长,对有机污染物降解越彻底,处理效果越好;另一方面是泥龄长短对微生物种群有选择性,因为不同种群的微生物有不同的世代周期,如果泥龄小于某种微生物的世代周期,这种微生物还来不及繁殖就排出池外,不可能在池中生存,为了培养繁殖所需要的某种微生物,选定的泥龄必须大于该种微生物的世代周期。最明显的例子是硝化菌,它是产生硝化作用的微生物,它的世代周期较长,并要求好氧环境,所以在污水进行硝化时须有较长的好氧泥龄。当污水反硝化时,是反硝化菌在工作,反硝化菌需要缺氧环境,为了进行反硝化,就必须有缺氧段(区段或时段),随着反硝化氮量的增大,需要的反硝化菌越多,也就是缺氧段和缺氧泥龄要加长。上述关系的量化已体现在表1中。
无硝化污水处理厂的最小泥龄选择4~5 d,是针对生活污水的水质并使处理出水达到BOD=30 mg/L和SS=30 mg/L确定的,这是多年实践经验的积累,就像污泥负荷的取值一样。
有硝化的污水处理厂,泥龄必须大于硝化菌的世代周期,设计通常采用一个安全系数,以确保硝化作用的进行,其计算式为:
θc=F(1/μo) (7)
式中θ c——满足硝化要求的设计泥龄,d
F——安全系数,取值范围2.0~3.0,通常取2.3
1/μo——硝化菌世代周期,d
μo——硝化菌比生长速率,d-1
μo=0.47×1.103(T-15) (8)
式中 T——设计污水温度,北方地区通常取10 ℃,南方地区可取11~12 ℃
代入式(8)得:
μo=0.47×1.103(10-15)=0.288/d
再代入式(7)得:
θc=2.3×1/0.288=7.99 d
计算所得数值与表1中的数值相符。
表1是德国标准,但它的理论依据和经验积累具有普遍意义,并不随水质变化而改变,因此笔者认为可以在我国设计中应用。
在污泥负荷法中,污泥负荷是最基本的设计参数,泥龄是导出参数。而在泥龄法中,泥龄是最基本的设计参数,污泥负荷是导出参数,两者呈近似反比关系:
θcFw=Lj/Y(Lj-Lch) (9)
式中污泥产率系数Y是泥龄θc的函数。

3.3污泥产率系数的确定
采用泥龄法进行活性污泥工艺设计计算时,准确确定污泥产率系数Y是十分重要的,从式(4)中看出,曝气池容积与Y值成正比,Y值直接影响曝气池容积的大小。
式(6)给出了Y值和剩余污泥量W的关系,剩余污泥量是每天从生物处理系统中排出的污泥量,它包括两部分:一部分随出水排除,一部分排至污泥处理系统,其计算式为:
W=24QNch/1000+QsNs (10)
式中 Nch——出水悬浮固体浓度,mg/L
Qs——排至污泥处理系统的剩余污泥量,m3/d
Ns——排至污泥处理系统的剩余污泥浓度,kg/m3
剩余污泥量最好是实测求得。从式(10)可以看出,对于正常运行的污水处理厂,Q、Nch、Qs及Ns值都不难测定,这样就能求出W和Y值。问题在于设计时还没有污水处理厂,只有参照其他类似污水处理厂的数值。由于污水水质不同,处理程度及环境条件不同,各地得出的Y值不可能一样,特别是很多城市污水处理厂由于资金短缺等原因,运行往往不正常,剩余污泥量W的数值也测不准确,这势必影响设计的精确性和可靠性。
从理论上分析,污泥产率系数与原水水质、处理程度和污水温度等因素有关。首先,污泥产率系数本来的含义是一定量BOD降解后产生的SS。由于是有机物降解产物,这里的SS应该是VSS,即挥发性悬浮固体,但污水中还有相当数量的无机悬浮固体和难降解有机悬浮固体,它们并未被微生物降解,而是原封不动地沉积到污泥中,结果产生的SS将大于真正由BOD降解产生的VSS,因此在确定污泥产率系数时,必须考虑原水中
无机悬浮固体和难降解有机悬浮固体的含量。其次,随着处理程度的提高,污泥泥龄的增长,有机物降解越彻底,微生物的衰减也越多,这导致剩余污泥量的减少。至于水温,是影响生化过程的重要因素,水温增高,生化过程加快,将使剩余污泥量减少。对于各种因素的影响,可根据理论分析通过实验建立数学方程式,其计算结果如经受住实践的检验,就可用于实际工程。德国已经提出了这样的方程式,按这个方程式计算出的Y值已正式写进ATV标准中。
Y=0.6(Nj/Lj+1)-0.072×0.6θc×FT/1+0.08θc×FT (11)
F=1.072(T-15) (12)
式中 Nj ——进水悬浮固体浓度,mg/L
FT——温度修正系数
T——设计水温,与前面的计算取相同数值
可以看出,Nj/Lj值反映了污水中无机悬浮固体和难降解悬浮固体所占比重的大小,如果它们占的比重增大,剩余污泥量自然要增加,Y值也就增大了。θc值影响污泥的衰减,θc值增长,污泥衰减得多,Y值相应减少。温度的影响体现在FT值上,水温增高,FT值增大,Y值减小,也就是剩余污泥量减少。
这个方程式对我国具有参考价值。由于我国的生活习惯与西方国家差异很大,污水中有机物比重低,有机物中脂肪比例低,碳水化合物比例高,因而产泥量也不会完全相同。根据国内已公布的数据和笔者的经验,我国活性污泥工艺污水处理厂的剩余污泥产量比西方国家要少,因此,式(11)中须乘上一个修正系数K:
Y=K×0.6(NjLj+1)-〔(0.072×0.6θc×FT)/(1+0.08θc×FT) (13)
一般取K=0.8~0.9。
在目前缺乏我国自己的Y值计算式的情况下,笔者认为采用式(13)计算Y值是可行的。
3.4 MLSS的确定
不管采用哪种设计计算方法,都需要合理确定MLSS。在其他条件不变的情况下,MLSS增大一倍,曝气池容就减小一倍;MLSS减小一倍,曝气池容就增大一倍。它直接影响基建投资,因此需要慎重确定。
在设计规范和手册中,对MLSS值推荐了一个选用范围,如普通曝气是1.5~2.5 kg/m3,延时曝气是2.5~5.0 kg/m3,变化幅度都比较大,设计时不好操作。为了选定合适的MLSS值,有必要弄清影响它的因素。
MLSS不能选得过低,主要有三个原因:
①MLSS过低,曝气池容积V就要相应增大,在经济上不利。
②MLSS过低,曝气池中容易产生泡沫,为了防止泡沫,一般需保持2 kg/m3以上的污泥浓度。
③当污泥浓度很低时,所需氧量较少,如MLSS过低,池容增大,单位池容的供气量就很小,有可能满足不了池内混合的要求,势必额外增加搅拌设备。MLSS也不能选得过高,主要是因为:
①要提高MLSS,必须相应增加污泥回流比,降低二沉池表面负荷,加长二沉池停留时间,这就要求增大二沉池体积和回流污泥能耗。把曝气池、二沉池和回流污泥泵房作为一个整体来考虑,为使造价和运行费用总价最低,污泥回流比通常限制在150%以内。对于一般城市污水,二沉池的回流污泥浓度通常为4~8 kg/m3,若按最高值约8 kg/m3计,回流比为150%时的曝气池内MLSS为4.8kg/m3,实际设计中MLSS最高一般不超过4.5kg/m3。
②污水的性质和曝气池运行工况对MLSS有巨大影响,如果污水中的成分或曝气池的工况有利于污泥膨胀,污泥指数SVI值居高不下(如SVI>180 mL/g),回流污泥浓度就会大大降低,MLSS就必须选择低值。
根据以上分析,在选定MLSS时要照顾到各个方面:
①泥龄长、污泥负荷低,选较高值;泥龄短、污泥负荷高,选较低值;同步污泥好氧稳定时,选高值。
②有初沉池时选较低值,无初沉池时选较高值。
③SVI值低时选较高值,高时选较低值。
④污水浓度高时选较高值,低时选较低值。
⑤合建反应池(如SBR)不存在污泥回流问题,选较高值或高值。
⑥核算搅拌功率是否满足要求,如不满足时要进行适当调整。
德国ATV标准对MLSS值规定了选用范围,有硝化和无硝化时其MLSS值是一样的,这不完全符合我国具体情况。我国城市污水污染物浓度通常较低,在无硝化(泥龄短)时如果MLSS值过高,有可能停留时间过短,不利于生化处理,故将无硝化时的MLSS值降低0.5kg/m3,推荐的MLSS值列于表2。
表2 推荐曝气池MLSS取值范围
kg/m3处理目标MLSS
有初沉池无初沉池
无硝化2.0~3.03.0~4.0
有硝化(和反硝化)2.5~3.53.5~4.5
污泥稳定 4.5

3.5泥龄法的优缺点
①泥龄法是经验和理论相结合的设计计算方法,泥龄θc和污泥产率系数Y值的确定都有充分的理论依据,又有经验的积累,因而更加准确可靠。
②泥龄法很直观,根据泥龄大小对所选工艺能否实现硝化、反硝化和污泥稳定一目了然。
③泥龄法的计算中只使用MLSS值,不使用MLVSS值,污泥中无机物所占比重的不同在参数Y值中体现,因而不会引起两者的混淆。
④泥龄法中最基本的参数——泥龄θc和污泥产率系数Y都有变化幅度很小的推荐值和计算值,操作起来比选定污泥负荷值更方便容易。
⑤泥龄法不像数学模型法那样需要确定很多参数,使操作大大简化。
⑥计算污泥产率系数Y值的方程式是根据德国的污水水质和实验得出的,结合我国情况在应用时需乘以一个修正系数。
4 结论
①活性污泥工艺的设计计算方法有必要从污泥负荷法逐步向泥龄法过渡,最终过渡到数学模型法。在数学模型法实用化之前,泥龄法将发挥重要作用。
②按泥龄法计算用式(4),该式与设计规范中的计算式相比,Nw与Nwv的转换和污泥衰减的影响在Y值的计算中考虑,这样理论意义更加清晰,使用起来更加方便。
③德国ATV标准中推荐的泥龄选用数据(见表1)是根据有机物降解和微生物生长规律结合实
际经验产生的,不涉及污水的具体水质变化,在我国有实用价值。
④污泥产率系数Y值的计算式(11)有充分的理论依据,但它是用德国污水实验得出的,为了适用于我国,须乘以修正系数,修正后的计算式(13)可用于实际设计计算。
⑤MLSS的取值在设计规范中有规定,但范围较大,不太好操作,建议参照表2中的数据选用,相互对比检验。
⑥建议对我国有一定代表性的城市污水进行实验研究,推出自己的Y值计算方程式,使泥龄法的实用基础更加扎实可靠。
活性污泥法处理城市生活污水主要运行方式:
1、推流式活性污泥法
2、完全混合活性污泥法
3、分段曝气活性污泥法
4、吸附-再生活性污泥法
5、延时曝气活性污泥法
6、高负荷活性污泥法
7、浅层、深水、深井曝气活性污泥法
8、纯氧曝气活性污泥法
9、氧化沟工艺
10、序批式活性污泥法

❾ 活性污泥降解污水中有机物的过程是怎样的

活性抄污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。其作用原理是:
第一阶段,污水中的有机污染物被活性污泥颗粒吸附在菌胶团的表面上,这是由于其巨大的比表面积和多糖类黏 性物质。同时一些大分子有机物在细菌胞外酶作用下分解为小分子有机物。
第二阶段,微生物在氧气充足的条件下,吸收这些有机物,并氧化分解,形成二氧化碳和水,一部分供给自身的增殖繁衍。活性污泥反应进行的结果,污水中有机污染物得到降解而去除,活性污泥本身得以繁衍增长,污水则得以净化处理。

阅读全文

与好养活性污泥法处理甲醇废水相关的资料

热点内容
围岩突水处理 浏览:614
饮水机怎么放在水槽 浏览:629
酿酒为什么不能用纯净水 浏览:923
污水管路下面能用什么 浏览:842
屠宰养殖废水处理计划书 浏览:196
bt方式合同污水 浏览:734
福克斯原厂汽油滤芯是什么牌子的 浏览:391
浙江环氧树脂板 浏览:48
好美净水器没有水怎么办 浏览:214
优化工厂废水周边环境 浏览:557
离子交换能力 浏览:448
泡茶用矿泉水还是蒸馏水 浏览:457
环氧树脂胶粘玻璃怎么样 浏览:975
60升万和热水器如何排污水 浏览:222
蒸馏水是不是完全纯洁 浏览:714
室内空气净化器多少 浏览:603
饮水机2分管直径多少 浏览:750
60升水加多少除垢剂 浏览:805
美的极光先锋怎么拆空调滤芯视频 浏览:575
华津时代净水器出水小怎么回事 浏览:79